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Cloud Computing
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Insider Attacker?
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Possible Approaches

* |Interactive
e User and provider run an interactive protocol

e Cryptographic techniques: multi-party computation,
secure function evaluation

e Advantage: can be quite efficient, good control over who
learns what

e Disadvantage: additional involvement of the user
* Non-interactive

 Data needs to be available to the service provider but at
the same time intrinsically protected

e Solution: encryption

Frederik Armknecht 7
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Encryption
Encryption Decryption
key key
Plaintext . Ciphertext l
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Homomorphic Encryption

Encryption that allows for meaningful operations on

encrypted data
o
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Example: RSA (1978)

%= 8 3 Jam

Parameters: N=p - g with p,q large primes (approx. 1000 bits) A
Plaintext space: 7, (={0,...,N-1} modulo N) &
Ciphertext: Z, (={0,...,N-1} modulo N) _ﬁ
Encryption Key: e € Z,, with gcd(e, (p-1)(g-1) )=1 (:_.»-:«
Decryption key: d € Z, with e - d mod ((p-1)-(g-1)) = 1
Encryption of m: c :=m¢ mod N

Decryption of ¢: c?* mod N=m

Homomorphism: me . mle — (m ’ ml)e

.=
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Group Homomorphic Encryption
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Classical Encryption Scheme

Plaintext Ciphertext
space space

encryption

decryption

Frederik Armknecht




UNIVERSITAT
MANNHEIM

Reminder: Group

* A group (in mathematical sense) is a set G together
with a binary operation o:GxG— G such that

Closure For all g,g°€G: gog‘eG

Associativity For all g,g 8"’ €G: (gog’) o g’ =go (g’ o g”)
Neutral element eog=goe=g

Inverse element For all g€G exists g'€G such that go g’'=g’ o g=¢e

Example: Rational numbers without zero
Neutral element: 1

Inverse element: x1

Frederik Armknecht
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Considered Hom. Encr. Schemes

Plaintext Ciphertext
space

Space Groups

7\ encryption
\ /| decryptionA

Group homomorphism
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Overview of some homomorphic encryption schemes

Scheme ________|Plaintext Space SRR

RSA; 1978 Integers modulo N=p*q Factorization

Goldwasser, Micali; 1984 1 Bit Quadratic residues mod N
Benaloh; 1985 Integers modulo R s.t. ... Rt residues mod N
ElGamal; 1985 Cyclic group G Decision Diffie-Hellman in G
Paillier; 1999 Integers modulo N N residues mod N2
Daamgard, Jurik; 2001 Integers modulo N° Nt residues mod Ns*!

e Different approaches
 For some proofs of security are known, for other not
e Some are much better understood than others

e Question: Unified view on security and design of homomorphic
schemes

Frederik Armknecht
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Security of Some Existing Schemes

IND-CPA secure if the IND-CCA1 secure if the

following problem is hard following problem is hard
ElGamal; 1985 Decision Diffie-Hellman; 1998 [Lipmaa; 2010]
Paillier; 1999 Nt residues mod N2; 1999 ??
Daamgard, Jurik; 2001 Nt residues mod N5*1; 2001 27

Boneh et al.; 2005 Decision Diffie-Hellman; 2005 ?7?

Frederik Armknecht
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Our Result: Abstraction

A., Katzenbeisser, Peters. Designs, Codes and Cryptography 2013.

IND-CPA secure if the IND-CCAL1 secure if the
following problem is hard following problem is hard

Abstract problem: Abstract problem:
SMP SOAP
(subgroup membership (splitting oracle assisted

problem) SMP)

Abstract scheme

Frederik Armknecht
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Application: Easy Confirmation of Known Results

A., Katzenbeisser, Peters. Designs, Codes and Cryptography 2013.

IND-CPA secure if the IND-CCA1 secure if the

following problem is hard following problem is hard

ElGamal; 1985
Paillier; 1999
Daamgard, Jurik; 2001
Boneh et al.; 2005

Frederik Armknecht
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Application: Missing Characterizations

A., Katzenbeisser, Peters. Designs, Codes and Cryptography 2013.

IND-CPA secure if the IND-CCA1 secure if the

following problem is hard following problem is hard

ElGamal; 1985

Paillier; 1999
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Application: New Schemes

A., Katzenbeisser, Peters. Designs, Codes and Cryptography 2013.

IND-CPA secure if the IND-CCA1 secure if the

following problem is hard following problem is hard

ElGamal; 1985

Paillier; 1999

Boneh et al.; 2005
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Summary

e Situation for group homomorphic encryption
schemes very well understood
 Open questions:
e What about symmetric key schemes?
 What about schemes that support more operations?

Frederik Armknecht
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Encryption
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Somewhat Homomorphic Encryption

Generalization: An encryption scheme is homomorphic wrt a
set of operations Ops if there exists a set Ops™* such that ...

T
alul Sala

Operations Operations
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Example

A., Augot, Perret, Sadeghi. Cryptography and Coding 2011.

e Generic construction for homomorphic schemes based on
certain error-correcting codes

 Advantages

e Allows for unlimited additions and fixed (but arbitrary) number of
multiplications

 Many instantiations possible, e.g., Reed-Solomon codes, Reed-Muller
codes

e Simple operations
e Decryption is very efficient
 Disadvantages

e Number of encryptions needs to be limited
e Length of ciphertexts

Frederik Armknecht
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Concrete Implementation
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 u — 1 =#multiplications, #fresh encryptrions ~ n/2

 Observe: we can use any finite field that is big enough, e.g.,
GF(2') (efficiency)

| Security Parameter || s =80 s=128 | s=256 | s=80 s =128 s = 256
Iz p=2 p=3
Timin 4725 8,411 19,186 14,236 26,280 61,044
loga(@min) 17 18 23 18 19 24
Parameters Effort Setup Effort Encryption|Effort Decryption|Effort Addition|Effort Multiplication
=2 Min: Im 57.781 s Min: 0.031s Min: < 10~*°s [Min: < 10~*®s| Min: < 10™*%s
s = 80 Max: 1m 58.998s Max: 0.11s Max: 0.032s Max: 0.016s Max: 0.032s
Av: Im 58.33s Av: 0.072s Av: 0.001 Av: 0.000573s Av: 0.005238s
p =2 ||Min: 1h 18m 22.089 s| Min: 0.686s Min: < 10~*®s [Min: < 10~ *®s| Min: < 10~ *"s
s = 128 ||Max: 1h 20m 21.024s| Max: 1.014s Max: 0.016s Max: 0.031s Max: 0.032s
Av: 1h 19m 12.149s Av: 0.817s Av: 0.004s Av: 0.0017s Av: 0.01044s
=3 Min: 46m 3.089 s Min: 0.171s | Min: < 10=®s [Min: < 10~°®*s| Min: < 10=*%s
s = 80 Max: 47m 4.024s Max: 0.312s Max: 0.016s Max: 0.016s Max: 0.047s
Av: 46m 40.149s Av: 0.234s Av: 0.002s Av: 0.0015s Av: 0.014s

Frederik Armknecht
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Fully Homomorphic Encryption

A fully homomorphic encryption scheme is homomorphic wrt
all possible operations

I
olur =

Operations Operations

2y

op op

el o]
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Gentry‘s Breakthrough Result (2009)

&) 1BM Press room -
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IBM Researcher Solves Longstanding Cryptographic Challenge

Press releases Discovers Method to Fully Process Encrypted Data Without Knowing its
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oo Computing Security
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ARMONK, N.Y. - 25 Jun 2009: An IBM Researcher has solved a thorny mathematical
problem that has confounded scientists since the invention of public-key encryption
several decades ago. The breakthrough, called "privacy homomorphism,” or "fully
homomorphic encryption," makes possible the deep and unlimited analysis of
encrypted information -- data that has been intentionally scrambled -- without
sacrificing confidentiality.

IBM's solution, formulated by IBM Researcher Craig Gentry, uses a mathematical object
called an "ideal lattice," and allows people to fully interact with encrypted data in ways
previously thought impossible. With the breakthrough, computer vendors storing the
confidential, electronic data of others will be able to fully analyze data on their clients’
behalf without expensive interaction with the client, and without seeing any of the
private data. With Gentry's technique, the analysis of encrypted information can yield
the same detailed results as if the original data was fully visible to all.

Using the solution could help strengthen the business model of "cloud computing,”

Make paper practices
greener, leaner, and more
compliant.

(= Register for the white
paper and ROI calculator

Content Collection and
Archiving

_. .E |
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l_ C = {allowed binary circuits}

Theory?

Correct decryption

Correct evaluation

Y
Somewhat homomorphic

Compactness

Length of Eval output is independent of d

Max depth of circuits in C is d

L J Y
Levelled homomorphic

C = {all binary circuits}

P !

Levelled fully homomorphic

Fully homomorphic

i-hop correctness
L I

l_ oo-hop correctness
A J
oo-hop scheme

Frederik Armknecht 28
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Practice?

Homomorphic Evaluation of the AES Circuit

Craig Gentry Shai Halevi Nigel P. Smart
IBM Research IBM Research University of Bristol

June 15, 2012

Abstract

We describe a working implementation of leveled homomorphic encryption (without bootstrapping)
that can evaluate the AES-128 circuit in three different ways. One variant takes under over 36 hours to
evaluate an entire AES encryption operation, using NTL (over GMP) as our underlying software plat-
form, and running on a large-memory machine. Using SIMD techniques, we can process over 54 blocks
in each evaluation, yielding an amortized rate of just under 40 minutes per block. Another implemen-
tation takes just over two and a half days to evaluate the AES operation, but can process 720 blocks in
each evaluation, yielding an amortized rate of just over five minutes per block. We also detail a third
implementation, which theoretically could yield even better amortized complexity, but in practice turns
out to be less competitive.

Our Implementation. Our implementation was based on the NTL C++ library running over GMP, we
utilized a machine which consisted of a processing unit of Intel Xeon CPUs running at 2.0 GHz with 18MB
cache, and most importantly with 256GB of RAM.2

Frederik Armknecht
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State of the Art?

Scheme Upnderlylng Asymptotic Runtime Concrete Instantiation Runtime
roblems
Gentry: A Fully Homomorphic BDDP & 6 o o
Encryption Scheme [18] SSSP O(A" log(A)) per gate )
van Dijk, Gentry, Halevi, .
Vaikuntanathan: FHE over the Integers AGED & O(A\10) -
35] SSSP
Coron, Naccache, Tibouchi: Public N .
Key Compression and Mudulus DAGCD & : every addition/multplicaion takes about
Switsching for FHE over the Integers SSSp Y ' p _
[13] 11 minutes.
2C - -
Brakerski, Vaikuntanathan: Efficient DLWE O(A*) where f is a very large i
FHE from (standard) LWE [9] parameter that ensures
bootstrappability.
Brakerski, Vaikuntanathan: FHE from
Ring-LWE and Security for Key PLWE - -
Dependent Messages [10]
_ Per-gate computation overhead
Brakerski, Gentry, Vaikuntanathan: RLWE O(X - d?) (where d is the depth of the In [21]: 36 hours for an AES encryption
FHE without Bootstrapping [8] circuit) without bootstrapping, O(A?) on a supercomputer
with bootstrapping.

Smart, Vercauteren: FHE with Key generation took Su?veral hours even for

. . PCP & small parameters which do not deliver a
Relatively Small Key and Ciphertext - . ) .
Sizes [34] SSSP fully homomorphic scheme, for larger

’ parameters the keys could not be generated

Rohloff, Cousins: A Scalable
Implementation of Fully SVP & ) Recryption at 275 seconds on 20 cores
Homomorphic Encryption Built on RLWE with 64-bit security
NTRU [32]

. . . _ Vectors of 1024 elements from GF(21%)
Halevi, Shoup: Bootstrapping for RLWE - was recrypted in 5.5 minutes at security

HElib [27]

level ~ 76, single CPU core.

Frederik Armknecht
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Observations

 Somewhat-homomorphic = fully-homomorphic
seems to induce high costs

 Rothblum’s result on fully-homomorphic encryption
schemes: symmetric key < public key

* Question: are efficient fully-homomorphic
encryption schemes possible at all?

Counter-question: do we need fully-homomorphism in
practice?
e Examples exist where a scheme with less functionalities
would be sufficient
e Adapted homomorphic encryption schemes

Frederik Armknecht
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Adapted Homomorphic Encryption
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Adapted Homomorphic Encryption

1. Given: a concrete use case
2. ldentify the necessary operations
3. Develop appropiate encryption scheme

0 g )]

Operations Operations

‘-
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Example: Recommender System

e Recommender systems are a way of suggesting like
or similar items and ideas to a user.

 Automates quotes like:
e "l like this book; you might be interested in it"
e "I saw this movie, you' Il like it”
e "Don’ t go see that movie!"

e Examples

e Amazon
 Ebay

Frederik Armknecht
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Considered General Scenario

Service provider

T (P, obj) )
W L

\ .
‘ﬂ%\@\ Recommendation r

< y,
r = Z?:l fi(Obj) " Pi

Preference vector:
?: (pl,...,pn) ERn

Example: Regularized Matrix Factorization (RMF) Recommender

Frederik Armknecht
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Threat: data misuse

Service provider

T (P, obj) )
L

Preference vector:
?: (pl,...,pn) ERn

Recommendation r
<€

r =3 fi(obj) - ps

Question: Is it possible to ask for recommendations without
revealing the preferences?

Frederik Armknecht
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Solution

A., Strufe. Med-Hoc 2011. Service provider

User
N T )
C
"((%\f/: Encrypted
Recommendation Yy,
Enc,(r)

Preference vector: -
B =(p1,....pn) € R S fi(obg) - Enc(pi) = Enci(r)
=1

Challenge: Develop an appropriate encryption scheme!

Frederik Armknecht
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Our Solution

* Encrypt preference vector such that
e Service provider cannot read the encrypted preferences
e Computation on encrypted data possible

e More formal:

e Encryption scheme Enc,(.) encrypts real-valued data

e Additively homomorphic:
Enci(m) o Encp(m’) = Enciy(m+m') VYm,m’' € R
e External homomorphism®:

A Encg(m) = Encg(A-m) VA, mée R

Frederik Armknecht
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Concrete Scheme

 Adaptation of the 2011 code-based scheme
 Key generation

e Sample vector K € R™ \ {6}
* Encryption of a real value m

 Generate avector CiE_)R" such that

(C,K) =m

 Decryption of a ciphertext

e Compute (5,1_()) =m

Frederik Armknecht
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Properties

o Efficient (pre-computation)

* Additive homomorphism: Letaand C’ be an
encryption of m andg , respectively. Consider the

decrpytion of C' 4+ ("

(8+3)T-?:8T-?+5T-?:m+m’

e External homomorphism: Letabe an encryption of
m and let \ be an arbitrary real value. Consider the
decrpytion of ) -

(AH)T?:A-(BT?):AW

Frederik Armknecht
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Conclusion

Frederik Armknecht




MANNHEIM

Summary

e Homomorphic encryption allow for processing
encrypted data without the need of decryption

 Many applications

* Problem: efficiency (in the case of huge data
amount)

* Alternative approach: adapted homomorphic
encryption schemes

Frederik Armknecht
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Open Questions

* |dentify further (more realistic) use cases
* Improve understanding between conditions and
design possibilities

 Develop appropriate adapted cryptographic
schemes

Frederik Armknecht
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Security Characterizations
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Defining security: IND-CPA

Public param.

Time

b& {01} [ -| Challenge
C:=Encrypt(M,) C

—

Guess for b

Attacker wins if he correctly guesses b

Frederik Armknecht
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Defining security: IND-CCA1

Public param.
¢
, Decrypt

Time m;

be,{0,1 Mo, M,

€ {0,1} ‘ -| Challenge
C:=Encrypt(M,) C
'Guess for b

Attacker wins if he correctly guesses b

Frederik Armknecht
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Proof of Security
Goal: Prove security of scheme %
5}

Approach: ‘
Reduce security Crypto Mathematical

scheme Problem
Assumption: Mathematical

problem is is
hard to solve

Reduction: "\ - .’;\

Frederik Armknecht
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Characterization of Group
Homomorphic Encryption Schemes

Frederik Armknecht
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Recall: Considered Hom. Encr. Schemes

Plaintexts Ciphertext

/ vrous \
encryption
O )
decryption
yp A

Group homomorphism

Frederik Armknecht
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1t Observation: Encryption of “1”

Plaintexts Ciphertext

encryption
@ i
decryption
yp A

Group homomorphism

Groups

Encryptions of ,,1“ form a subgroup of the ciphertext space!

Frederik Armknecht
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2nd Observation: Encryption of mz1

Plaintexts Ciphertext

/ vrous \
encryption
@ )
decryption
yp A

Group homomorphism

Set of encryptions of ,m“ is equal to m-C,

Frederik Armknecht
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Consequence

Simple observation:

C=entypr & e mC, & cmleC,
tion of m

Consequence:

Recognizing Recognizing
encryptions of m encryptions of 1

Frederik Armknecht



UNIVERSITAT

MANNHEIM
Security Characterization
Scheme is Subgroup membership
IND-CPA SECURE oroblem (SMP)

is hard w.r.t. C;

2PN Oracle Attacker W/
SR/ Public param
Setup

Time "
b e, (0,1} —

C:=Em:rvm(,n£9) C

Challenge

—

Guess for b

Attacker wins if he correctly guesses b

Frederik Armknecht
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Application

Let a homomorphic scheme be given
Goal: IND-CPA security characterization

Ciphertext

Plaintexts

encryption
>
decryption

1. ldentify subgroup C, (= encryptions of 1)
2. Formulate SMP wrt. to C,

Frederik Armknecht
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Application: Easy IND-CPA characterization
of existing schemes

IND-CPA secure if and only if | IND-CCA1 secure if the

the following problem is following problem is hard
hard

ElGamal; 1985 [Lipmaa; 2010]

Paillier; 1999 ?7?
Daamgard, Jurik; 2001 27
Boneh et al.; 2005 27

What about IND-CCA1 ?

Frederik Armknecht
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SOAP
SOAP = Splitting oracle assisted SMP
Phase 1: Learning Phase 2: Challenge
Splitti Oracle SMP w.rt. C,

V. 4 4 PR N

|
3
L
i ;’ f
Rizel L y
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Security Characterization
Scheme is SOAP
IND-CCA1 SECURE is hard w.r.t. C,

Public param.

j Cj Choose
Decrypt - p »| Ciphertext
j —
_______ Mqy,M, T T T
>| Challenge
b €, {0,1} C
C:=Encrypt(M,)
 ——
Guess for b

Frederik Armknecht
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Application: IND-CCA1 Characterization of Existing Schemes

IND-CPA secure if and only if | IND-CCA1 secure if and only
the following problem is if the following problem is

hard hard

ElGamal; 1985

Paillier; 1999

Frederik Armknecht
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Generic scheme

Plaintexts Ciphertext

encryption
>
decryption

*Encryption of m:

* Sample ¢’ €C;

e Qutput c:= m-c’
eDecryption of c:

* Determine c mod C,

Frederik Armknecht
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Application: Design of New Schemes

Ciphd&stexpSpace

Plaintext
Space

encryption
>
decryption

e Given: SMP with group G and subgroup S

* Interpret G as ciphertext space and S as encryption of 1
e Construct encryption/decryption as described before

* Scheme is IND-CPA secure iff initial SMP is hard

Frederik Armknecht
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Application: New Schemes

IND-CPA secure if the IND-CCA1 secure if the

following problem is hard following problem is hard

ElGamal; 1985

Paillier; 1999

Boneh et al.; 2005

Frederik Armknecht
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Scheme 1

* IND-CPA secure if and only if k-linear problem is
hard

e K-linear problem:
e Extension of Diffie-Hellman problem

e Can be instantiated for any positive integer k
* In generic group model: is hard for k+1 even if weak for k

Frederik Armknecht




Scheme 2

* IND-CPA secure if and only if a problem introduced
by Manuel Gonzales, Boyd, and Dawson is hard

e Distinctive feature: First homomorphic scheme with
a cyclic ciphertext group

 Can be directly combined with a work by
Hemenway and Ostrovsky for efficiently
constructing IND-CCA2 secure schemes

Frederik Armknecht



UNIVERSITAT
MANNHEIM

The Code-Based Encryption Scheme
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Coding Theory

Random

Codeword errors
Message

@

_gu El
\

>

TN

Errorneous channels Decoding

Coding
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Encryption based on Coding Theory

Artificial ‘
errors ‘
. O
Errorneous

codeword l
Message
g8 - — g —E
= £
E ti >
ncryption .
(= Encoding) Decryption

(= Decoding)




UNIVERSITAT
MANNHEIM

Example: Reed-Solomon Codes

Encryption of a plaintext m

* Parameters:
e Finite field F; support points x,,x,,...,x,,; degree d
e Encryption key: I = error positions
* Encryption of a message m:
e Choose random polynomial p(x) of degree d with p(x,)=m

o Compute Y:=(y,...y,):=(p(Xy),.,0(X,))
* Randomize y;at error positions

e Ciphertext C=(y,,...,y,) (= erroneous Reed-Solomon codeword)

Frederik Armknecht
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Example: Reed-Solomon Codes

Decryption of a ciphertext ¢ =(y,,...,y,):
* Ignore errorneous y;- values

* Interpolate p(x) through the remaining, correct y;-values
e Compute p(x,)=-m

Yy Ys
(5 ° ng
y%l ’,’\\\Yg y //, \yg /Il ( )
m , S, Y7 ) S PIX
o | V. Vs Yo’y “Vaoy{,
RS L
I I I e e I e e
| 1T 17 1T 1T [ | [ 1
Xo X, X1o

Frederik Armknecht
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Additive Homomorphism
c =(p(x,), ¢,, P(X3),C4, Cs,P(Xg)) = encryption of
p(xo)=m
+
;') =(p’(x,), ¢’,, P’(X3),C"4, s, P’ (X¢)) = encryption of
p’(x0)=m’

¢ =((p+p’)(xy), 5, (P+p")(%5),€" 4, ”5,(p+P")(%5)) = encryption of
(p+p’)(Xo)=m+m’

Frederik Armknecht
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Multiplicative Homomorphism

¢=(p(x,), ¢y, P(X3),C4, C5,P(Xg)) = encryption of
p(xp)=m
o
c’:(p'(xl)’ C’ZI p’(x3);C’4z C’Slp’(x6)) = encryption Of
p’(Xg)=m’

c" =((p-p’)xy), ¢’y (p-p")(%3),c"4, ¢, (pP") (%)) = encryption of

(p-p’)(Xp)=m-m’
if degree is not too high

Frederik Armknecht
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Generic Scheme

* Key generation: .
e Sample vector? c " \ { 0 }with certain properties

 Encryption of a real value m
e Output avector (' € [F"such that

CT-K=m

* Decryption of a ciphertext 8 c F"

e Compute
CT. K =m

Frederik Armknecht
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Restrictions

1. Number of encryptions needs to be limited

Otherwise, key can be recovered by solving a system of
linear equations

2. Cannot be public-key

All encryptions of 0 form a sub-space C,
If public-key, an attacker can derive a basis for C,

Once such a basis is known, one can easily decide if
ciphertext is encryption of 0

This is equivalent to win the IND-CPA game

Frederik Armknecht
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Security

* Proof of security

e Scheme is secure if Decisional Synchronized Codeword
Problem (DSCP) is hard

e Hardness of DSCP?

 Depends on the deployed code
 For Reed-Muller codes, extensive analysis conducted

e |dentified parameter ranges that seem to provide certain
levels of security

Frederik Armknecht
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