UNIVERSITÄT Mannheim

Cryptographic Tools For Privacy-Preserving Data Processing

Frederik Armknecht Group for Theoretical Computer Science and IT-Security

> December 16, 2014 Paris, France

Overview

- Introduction
- Group Homomorphic Encryption
- Somewhat Homomorphic Encryption
- Adapted Homomorphic Encryption
- Conclusion

Introduction

Cloud Computing

Outsider Attacker

Insider Attacker?

Possible Approaches

• Interactive

- User and provider run an interactive protocol
- Cryptographic techniques: multi-party computation, secure function evaluation
- Advantage: can be quite efficient, good control over who learns what
- Disadvantage: additional involvement of the user

Non-interactive

- Data needs to be available to the service provider but at the same time intrinsically protected
- Solution: encryption

Encryption

Homomorphic Encryption

Encryption that allows for meaningful operations on encrypted data

Example: RSA (1978)

Parameters: $N=p \cdot q$ with p,q large primes (approx. 1000 bits) Plaintext space: \mathbb{Z}_N (={0,...,N-1} modulo N) Ciphertext: \mathbb{Z}_N (={0,...,N-1} modulo N) Encryption Key: $e \in \mathbb{Z}_N$ with gcd(e, (p-1)(q-1))=1 Decryption key: $d \in \mathbb{Z}_N$ with $e \cdot d \mod ((p-1) \cdot (q-1)) = 1$ Encryption of $m: c := m^e \mod N$ Decryption of $c: c^d \mod N = m$

Homomorphism: $m^e \cdot m'^e = (m \cdot m')^e$

$$m \cdot m' = m \cdot m'$$

Group Homomorphic Encryption

Classical Encryption Scheme

UNIVERS

MANNHEIM

Reminder: Group

• A **group** (in mathematical sense) is a set G together with a binary operation ∘:G×G→ G such that

Group Axiom	Property
Closure	For all g,g'∈G: g∘g'∈G
Associativity	For all $g,g',g'' \in G$: $(g \circ g') \circ g'' = g \circ (g' \circ g'')$
Neutral element	$e \circ g = g \circ e = g$
Inverse element	For all g∈G exists g'∈G such that g ∘ g'=g' ∘ g= e

Example: Rational numbers without zero

Neutral element: 1

Inverse element: x⁻¹

Considered Hom. Encr. Schemes

IINIVFR

MANNHEIM

Overview of some homomorphic encryption schemes

Scheme	Plaintext Space	Security related to	
RSA; 1978	Integers modulo N=p*q	Factorization	
Goldwasser, Micali; 1984	1 Bit	Quadratic residues mod N	
Benaloh; 1985	Integers modulo R s.t	R th residues mod N	
ElGamal; 1985	Cyclic group G	Decision Diffie-Hellman in G	
Paillier; 1999	Integers modulo N	N th residues mod N ²	
Daamgard, Jurik; 2001	Integers modulo N ^s	N th residues mod N ^{s+1}	

- Different approaches
- For some proofs of security are known, for other not
- Some are much better understood than others
- Question: Unified view on security and design of homomorphic schemes

Security of Some Existing Schemes

Scheme	IND-CPA secure if the following problem is hard	IND-CCA1 secure if the following problem is hard
ElGamal; 1985	Decision Diffie-Hellman; 1998	[Lipmaa; 2010]
Paillier; 1999	N th residues mod N ² ; 1999	??
Daamgard, Jurik; 2001	N th residues mod N ^{s+1} ; 2001	??
Boneh et al.; 2005	Decision Diffie-Hellman; 2005	??

Our Result: Abstraction

Scheme	IND-CPA secure if the following problem is hard	IND-CCA1 secure if the following problem is hard
Abstract scheme	Abstract problem: SMP (subgroup membership problem)	Abstract problem: SOAP (splitting oracle assisted SMP)

Application: Easy Confirmation of Known Results

Scheme	IND-CPA secure if the following problem is hard	IND-CCA1 secure if the following problem is hard
ElGamal; 1985	Decision Diffie-Hellman; 1998	[Lipmaa; 2010]
Paillier; 1999	N th residues mod N ² ; 1999	??
Daamgard, Jurik; 2001	N th residues mod N ^{s+1} ; 2001	??
Boneh et al.; 2005	Decision Diffie-Hellman; 2005	??

Application: Missing Characterizations

Scheme	IND-CPA secure if the following problem is hard	IND-CCA1 secure if the following problem is hard
ElGamal; 1985	Decision Diffie-Hellman; 1998	[Lipmaa; 2010]
Paillier; 1999	N th residues mod N ² ; 1999	\checkmark
Daamgard, Jurik; 2001	N th residues mod N ^{s+1} ; 2001	\checkmark
Boneh et al.; 2005	Decision Diffie-Hellman; 2005	\checkmark

Application: New Schemes

Scheme	IND-CPA secure if the following problem is hard	IND-CCA1 secure if the following problem is hard			
ElGamal; 1985	Decision Diffie-Hellman; 1998	[Lipmaa; 2010]			
Paillier; 1999	N th residues mod N ² ; 1999	\checkmark			
Daamgard, Jurik; 2001	N th residues mod N ^{s+1} ; 2001	\checkmark			
Boneh et al.; 2005	Decision Diffie-Hellman; 2005	\checkmark			
Scheme 1	K-linear Problem	New Problem			
Scheme 2	Gonzales Nieto et al.; 2005	New Problem			

Summary

- Situation for group homomorphic encryption schemes very well understood
- Open questions:
 - What about symmetric key schemes?
 - What about schemes that support more operations?

Somewhat Homomorphic Encryption

Somewhat Homomorphic Encryption

Generalization: An encryption scheme is homomorphic wrt a set of operations *Ops* if there exists a set Ops* such that ...

MANNHEIM

Example

A., Augot, Perret, Sadeghi. Cryptography and Coding 2011.

- Generic construction for homomorphic schemes based on certain error-correcting codes
- Advantages
 - Allows for unlimited additions and fixed (but arbitrary) number of multiplications
 - Many instantiations possible, e.g., Reed-Solomon codes, Reed-Muller codes
 - Simple operations
 - Decryption is very efficient

Disadvantages

- Number of encryptions needs to be limited
- Length of ciphertexts

UNIVERSITÄT Mannheim

Concrete Implementation

- $\mu 1$ = #multiplications, #fresh encryptrions pprox n/2
- Observe: we can use any finite field that is big enough, e.g., GF(2^r) (efficiency)

	Security Parameter	s = 80	s = 128	s = 256	s =	80	s = 128	s = 256	
	μ	$\mu = 2$					$\mu = 3$		
	n_{\min}	4,725	8,411	19,186	14,2	236	26,280	61,044	
	$\log_{0}(a_{\min})$	17	18	23	1	8	19	24	
Parameters	Effort Setup	Effort l	Encryption	Effort Decry	ption	Effor	t Addition	Effort Mult	tiplication
$\mu = 2$	Min: 1m 57.781 s	Min	: 0.031s	$Min: < 10^{-1}$	^{-28}s	Min:	$< 10^{-28}$ s	Min: <	10^{-28} s
s = 80	Max: 1m 58.998s	Max: 0.11s Max:		Max: 0.03	32s Max: 0.016s		Max: 0.032s		
	Av: 1m 58.33s	Av: 0.072s		Av: 0.001 Av		Av: (0.000573s	Av: 0.00)5238s
$\mu = 2$	Min: 1h 18m 22.089	s Min: 0.686s		Min: $< 10^{-1}$	$Min: < 10^{-28}$ Min: $< 10^{-28}$		$< 10^{-28}$ s	Min: <	10^{-28} s
s = 128	Max: 1h 20m 21.024	s Max	: 1.014s	Max: 0.01	<u>6s</u>	Ma	x: 0.031s	Max: 0	.032s
	Av: 1h 19m 12.149s	Av:	0.817s	Av: 0.004	4s	Av:	0.0017s	Av: 0.0	1044s
$\mu = 3$	Min: 46m 3.089 s	Min	: 0.171s	Min: $< 10^{-1}$	^{-28}s	Min:	$< 10^{-28}$ s	Min: <	10^{-28} s
s = 80	Max: 47m 4.024s	Max	: 0.312s	Max: 0.01	<u>6s</u>	Ma	x: 0.016s	Max: 0	.047s
	Av: 46m 40.149s	Av:	0.234s	Av: 0.00	2s	Av:	0.0015s	Av: 0.	014s

Fully Homomorphic Encryption

A fully homomorphic encryption scheme is homomorphic wrt all possible operations

UNIVERSITÄT MANNHEIM

Gentry's Breakthrough Result (2009)

C × A Ø & M htt Press room - 2009-06-25 IBM	p://www-03.ibm.com/pre	ss/us/en/pressrelease/27840.ws	s#feeds	□☆ - २ - 600.	jle 👂
IBM.			Press room 💽	ige j	Search
Home Solutions - Servio	ces • Products •	Support & downloads -	My IBM +	Welcome [I	BM Sign in] [Register]
Press room Press releases Press kits Photo gallery	IBM Research Discovers Meth Content; Could Computing Sect	ner Solves Longstar od to Fully Process End Greatly Further Data P urity	nding Cryptographic Chall crypted Data Without Knowing rivacy and Strengthen Cloud	enge 9 its	
Biographies Background	 Press release Related XML f 	eeds	Contact(s) information	No Pap	er Weight
Press room feeds Global press resources Press room search Media contacts	ARMONK, N.Y problem that has several decades a homomorphic en encrypted inform sacrificing confid	25 Jun 2009: An IBM Rese confounded scientists sind ago. The breakthrough, ca cryption," makes possible ation data that has beer entiality.	earcher has solved a thorny mathem ce the invention of public-key encry illed "privacy homomorphism," or " the deep and unlimited analysis of n intentionally scrambled without	natical /ption fully Make pa greener, complia	aper practices leaner, and more nt.
Related links IT Analyst support center Investor relations 	IBM's solution, fo called an "ideal la previously thoug confidential, elec behalf without ex private data. With the same detailed	rmulated by IBM Research ttice," and allows people t ht impossible. With the bre tronic data of others will b pensive interaction with th Gentry's technique, the a d results as if the original d	er Craig Gentry, uses a mathematica to fully interact with encrypted data eakthrough, computer vendors stor e able to fully analyze data on their ne client, and without seeing any of nalysis of encrypted information ca lata was fully visible to all.	al object i in ways ring the clients' the n yield	ter for the white r and ROI calculator Collection and

2010/3/21

UNIVERSITÄT Mannheim

UNIVERSITÄT MANNHEIM

Practice?

Homomorphic Evaluation of the AES Circuit

Craig Gentry IBM Research Shai Halevi IBM Research Nigel P. Smart University of Bristol

June 15, 2012

Abstract

We describe a working implementation of leveled homomorphic encryption (without bootstrapping) that can evaluate the AES-128 circuit in three different ways. One variant takes under over 36 hours to evaluate an entire AES encryption operation, using NTL (over GMP) as our underlying software platform, and running on a large-memory machine. Using SIMD techniques, we can process over 54 blocks in each evaluation, yielding an amortized rate of just under 40 minutes per block. Another implementation takes just over two and a half days to evaluate the AES operation, but can process 720 blocks in each evaluation, yielding an amortized rate of just over five minutes per block. We also detail a third implementation, which theoretically could yield even better amortized complexity, but in practice turns out to be less competitive.

Our Implementation. Our implementation was based on the NTL C++ library running over GMP, we utilized a machine which consisted of a processing unit of Intel Xeon CPUs running at 2.0 GHz with 18MB cache, and most importantly with 256GB of RAM.²

State of the Art?

Scheme	Underlying Problems	Asymptotic Runtime	Concrete Instantiation Runtime
Gentry: A Fully Homomorphic Encryption Scheme [18]	BDDP & SSSP	$\mathcal{O}(\lambda^6 \log(\lambda))$ per gate	-
van Dijk, Gentry, Halevi, Vaikuntanathan: FHE over the Integers [35]	AGCD & SSSP	${\cal O}(\lambda^{10})$	-
Coron, Naccache, Tibouchi: Public Key Compression and Mudulus Switsching for FHE over the Integers [13]	DAGCD & SSSP	-	Recryption (a step that takes place after every addition/multiplication) takes about 11 minutes.
Brakerski, Vaikuntanathan: Efficient FHE from (standard) LWE [9]	DLWE	$\tilde{\mathcal{O}}(\lambda^{2C})$ where C is a very large parameter that ensures bootstrappability.	-
Brakerski, Vaikuntanathan: FHE from Ring-LWE and Security for Key Dependent Messages [10]	PLWE	-	-
Brakerski, Gentry, Vaikuntanathan: FHE without Bootstrapping [8]	RLWE	Per-gate computation overhead $\tilde{O}(\lambda \cdot d^3)$ (where <i>d</i> is the depth of the circuit) without bootstrapping, $\tilde{O}(\lambda^2)$ with bootstrapping.	In [21]: 36 hours for an AES encryption on a supercomputer
Smart, Vercauteren: FHE with Relatively Small Key and Ciphertext Sizes [34]	PCP & SSSP	-	Key generation took several hours even for small parameters which do not deliver a fully homomorphic scheme, for larger parameters the keys could not be generated
Rohloff, Cousins: A Scalable Implementation of Fully Homomorphic Encryption Built on NTRU [32]	SVP & RLWE	-	Recryption at 275 seconds on 20 cores with 64-bit security
Halevi, Shoup: Bootstrapping for HElib [27]	RLWE	-	Vectors of 1024 elements from $GF(2^{16})$ was recrypted in 5.5 minutes at security level \approx 76, single CPU core.

Observations

- Somewhat-homomorphic ⇒ fully-homomorphic seems to induce high costs
- Rothblum's result on fully-homomorphic encryption schemes: symmetric key ⇔ public key
- Question: are <u>efficient</u> fully-homomorphic encryption schemes possible at all?

Counter-question: do we need fully-homomorphism in practice?

- Examples exist where a scheme with less functionalities would be sufficient
- Adapted homomorphic encryption schemes

Adapted Homomorphic Encryption

Adapted Homomorphic Encryption

- 1. Given: a concrete use case
- 2. Identify the necessary operations
- 3. Develop appropiate encryption scheme

MANNHEIM

Example: Recommender System

- Recommender systems are a way of suggesting like or similar items and ideas to a user.
- Automates quotes like:
 - "I like this book; you might be interested in it"
 - "I saw this movie, you' II like it"
 - "Don't go see that movie!"

• Examples

- Amazon
- Ebay

Considered General Scenario

Example: Regularized Matrix Factorization (RMF) Recommender

NHEIM

Threat: data misuse

Question: Is it possible to ask for recommendations **without** revealing the preferences?

Solution

Challenge: Develop an appropriate encryption scheme!

Our Solution

• Encrypt preference vector such that

- Service provider cannot read the encrypted preferences
- Computation on encrypted data possible
- More formal:
 - Encryption scheme Enc_k(.) encrypts <u>real-valued data</u>
 - <u>Additively homomorphic:</u>

 $Enc_k(m) \circ Enc_k(m') = Enc_k(m+m') \quad \forall m, m' \in R$

• <u>"External homomorphism"</u>:

$$\lambda \cdot Enc_k(m) = Enc_k(\lambda \cdot m) \quad \forall \lambda, m \in R$$

Concrete Scheme

- Adaptation of the 2011 code-based scheme
- Key generation
 - Sample vector $\vec{K} \in \mathbb{R}^n \setminus \{\vec{0}\}$
- Encryption of a real value *m*
 - Generate a vector $\vec{C} \in R^n$ such that $\langle \vec{C}, \vec{K} \rangle = m$
- Decryption of a ciphertext

• Compute
$$\langle \vec{C}, \vec{K} \rangle = m$$

Properties

- Efficient (pre-computation)
- Additive homomorphism: Let \overrightarrow{C} and $\overrightarrow{C'}$ be an encryption of \underline{m} and $\underline{m'}$, respectively. Consider the decrpytion of $\overrightarrow{C} + \overrightarrow{C'}$:

$$\left(\overrightarrow{C} + \overrightarrow{C'}\right)^T \cdot \overrightarrow{K} = \overrightarrow{C}^T \cdot \overrightarrow{K} + \overrightarrow{C'}^T \cdot \overrightarrow{K} = m + m'$$

• External homomorphism: Let \overrightarrow{C} be an encryption of m and let λ be an arbitrary real value. Consider the decrpytion of $\lambda \cdot \overrightarrow{C}$:

$$\left(\lambda \cdot \overrightarrow{C}\right)^T \cdot \overrightarrow{K} = \lambda \cdot \left(\overrightarrow{C}^T \cdot \overrightarrow{K}\right) = \lambda \cdot m$$

Conclusion

Summary

- Homomorphic encryption allow for processing encrypted data without the need of decryption
- Many applications
- Problem: efficiency (in the case of huge data amount)
- Alternative approach: adapted homomorphic encryption schemes

Open Questions

- Identify further (more realistic) use cases
- Improve understanding between conditions and design possibilities
- Develop appropriate adapted cryptographic schemes

UNIVERSITÄT Mannheim

Backup Slides

Frederik Armknecht

Security Characterizations

Defining security: IND-CPA

Defining security: IND-CCA1

Proof of Security

Characterization of Group Homomorphic Encryption Schemes

Recall: Considered Hom. Encr. Schemes

MANNHEIM

1st Observation: Encryption of "1"

Encryptions of "1" form a subgroup of the ciphertext space!

2nd Observation: Encryption of m≠1

Set of encryptions of "m" is equal to $m \cdot C_1$

MANNHEIM

Consequence

Simple observation:

Consequence:

Recognizing encryptions of \mathbf{m} (m'=m)? (m'=1?)Recognizing encryptions of $\mathbf{1}$ (m'=1?)

UNIVERSITÄT Mannheim

Security Characterization

- 1. Identify subgroup C₁ (= encryptions of 1)
- 2. Formulate SMP wrt. to C_1

Application: Easy IND-CPA characterization of existing schemes

Scheme	IND-CPA secure <u>if and only if</u> the following problem is hard	IND-CCA1 secure if the following problem is hard
ElGamal; 1985	Decision Diffie-Hellman; 1998	[Lipmaa; 2010]
Paillier; 1999	N th residues mod N ² ; 1999	??
Daamgard, Jurik; 2001	N th residues mod N ^{s+1} ; 2001	??
Boneh et al.; 2005	Decision Diffie-Hellman; 2005	??

What about IND-CCA1 ?

SOAP

SOAP = Splitting oracle assisted SMP

Phase 2: Challenge

UNIVERSITÄT Mannheim

Security Characterization

Application: IND-CCA1 Characterization of Existing Schemes

Scheme	IND-CPA secure if and only if the following problem is hard	IND-CCA1 secure if and only if the following problem is hard
ElGamal; 1985	Decision Diffie-Hellman; 1998	[Lipmaa; 2010]
Paillier; 1999	N th residues mod N ² ; 1999	\checkmark
Daamgard, Jurik; 2001	N th residues mod N ^{s+1} ; 2001	\checkmark
Boneh et al.; 2005	Decision Diffie-Hellman; 2005	\checkmark

Generic scheme

- •Encryption of m:
 - Sample c' $\in C_1$
 - Output c:= m·c'
- •Decryption of c:
 - Determine c mod C₁

Application: Design of New Schemes

- Given: SMP with group G and subgroup S
- Interpret G as ciphertext space and S as encryption of 1
- Construct encryption/decryption as described before
- Scheme is IND-CPA secure iff initial SMP is hard

Application: New Schemes

Scheme	IND-CPA secure if the following problem is hard	IND-CCA1 secure if the following problem is hard
ElGamal; 1985	Decision Diffie-Hellman; 1998	[Lipmaa; 2010]
Paillier; 1999	N th residues mod N ² ; 1999	\checkmark
Daamgard, Jurik; 2001	N th residues mod N ^{s+1} ; 2001	\checkmark
Boneh et al.; 2005	Decision Diffie-Hellman; 2005	\checkmark
Scheme 1	K-linear Problem	New Problem
Scheme 2	Gonzales Nieto et al.; 2005	New Problem

Scheme 1

- IND-CPA secure if and only if k-linear problem is hard
- K-linear problem:
 - Extension of Diffie-Hellman problem
 - Can be instantiated for any positive integer k
 - In generic group model: is hard for k+1 even if weak for k

Scheme 2

- IND-CPA secure if and only if a problem introduced by Manuel Gonzáles, Boyd, and Dawson is hard
- Distinctive feature: First homomorphic scheme with a cyclic ciphertext group
- Can be directly combined with a work by Hemenway and Ostrovsky for efficiently constructing IND-CCA2 secure schemes

The Code-Based Encryption Scheme

Coding Theory

Encryption based on Coding Theory

UNIVERSITÄT Mannheim

Example: Reed-Solomon Codes

Encryption of a plaintext m

- Parameters:
 - Finite field F; support points x₀, x₁,...,x_n; degree d
 - Encryption key: *I* = error positions
- Encryption of a message *m*:
 - Choose random polynomial p(x) of degree d with $p(x_0)=m$
 - Compute Y:=(y₁,...,y_n):=(p(x₁),...,p(x_n))
 - Randomize y_i at error positions
 - Ciphertext C=(y1,...,yn) (= erroneous Reed-Solomon codeword)

Example: Reed-Solomon Codes

Decryption of a ciphertext $\vec{c} = (y_1, ..., y_n)$:

- Ignore errorneous y_i values
- Interpolate p(x) through the remaining, correct y_i-values
- Compute p(x₀)=m

Additive Homomorphism

 $\vec{c} = (p(x_1), c_2, p(x_3), c_4, c_5, p(x_6))$ = encryption of $p(x_0)=m$ ╋ $\vec{c'} = (p'(x_1), c'_2, p'(x_3), c'_4, c'_5, p'(x_6))$ = encryption of $p'(x_0)=m'$ $\overline{c''} = ((p+p')(x_1), c''_2, (p+p')(x_3), c''_4, c''_5, (p+p')(x_6)) = encryption of$ $(p+p')(x_0)=m+m'$

JANNHFIM

Multiplicative Homomorphism

 $\vec{c} = (p(x_1), c_2, p(x_3), c_4, c_5, p(x_6))$ = encryption of $p(x_0)=m$ $\vec{c'} = (p'(x_1), c'_2, p'(x_2), c'_4, c'_5, p'(x_6))$ = encryption of $p'(x_0)=m'$ $\overline{c''} = ((p \cdot p')(x_1), c''_2, (p \cdot p')(x_3), c''_4, c''_5, (p \cdot p')(x_6)) = encryption of$ $(p \cdot p')(x_0) = m \cdot m'$ if degree is not too high

ANNHEIM

Generic Scheme

- Key generation: Sample vector $\overrightarrow{K} \in \mathbb{F}^n \setminus \{ \overrightarrow{0} \}$ with certain properties
- Encryption of a real value *m*
 - Output a vector $\overrightarrow{C} \in \mathbb{F}^n$ such that

$$\overrightarrow{C}^T \cdot \overrightarrow{K} = m$$

• Decryption of a ciphertext $\overrightarrow{C} \in \mathbb{F}^n$

Compute
$$\overrightarrow{C}^T \cdot \overrightarrow{K} = m$$

Restrictions

1. Number of encryptions needs to be limited

 Otherwise, key can be recovered by solving a system of linear equations

2. Cannot be public-key

- All encryptions of 0 form a sub-space C₀
- If public-key, an attacker can derive a basis for C₀
- Once such a basis is known, one can easily decide if ciphertext is encryption of 0
- This is equivalent to win the IND-CPA game

UNIVERSITÄT Mannheim

Security

• Proof of security

 Scheme is secure if Decisional Synchronized Codeword Problem (DSCP) is hard

Hardness of DSCP?

- Depends on the deployed code
- For Reed-Muller codes, extensive analysis conducted
- Identified parameter ranges that seem to provide certain levels of security