UNSUPERVISED LEARNING

Clustering and k-means
Supervised vs Unsupervised Learning

Supervised learning uses labeled training set.

Classification

<table>
<thead>
<tr>
<th>Weight</th>
<th>Color</th>
<th>Seeds</th>
<th>Fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>80</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>112</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>170</td>
<td>120</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>210</td>
<td>105</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>180</td>
<td>130</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

apple
orange
orange
apple

attributes class (target)

In contrast, **Unsupervised learning** uses only unlabeled data: no class nor associated value.
Unsupervised Learning

Two tasks:

• **Clustering**
 find groups in the data

• **Representation learning**
 dimension reduction
What is clustering?
Find groups in the data
- Rely on a **similarity measure** (distance) between data points
Clustering: applications

- Explore and understand the data
 - Online social networks analysis
 - Epidemiology

- Summarize data, build taxonomies
 - Information search
 - Biology

- Apply specialized models on each segment
 - Marketing
What is a good clustering?

It’s hard to define precisely what we want.
What is a good clustering?

Two groups or three groups?

Two examples of *Partitional Clustering*
What is a good clustering?

Or maybe some hierarchical structure?

Hierarchical Clustering
What is a good clustering?

And sometimes, there are no clusters.
Other distinctions between clusterings

• **Exclusive** versus non-exclusive
 In non-exclusive (or overlapping) clusterings, points may belong to multiple clusters.

• **Fuzzy** versus non-fuzzy
 – In fuzzy clustering, a point belongs to each cluster with some probability (in [0,1])
k-means basic algorithm

The most popular clustering method
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- The number of clusters, K, must be specified

The basic algorithm is very simple:

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change
k-means basic algorithm

1) K initial "means" (here K=3, red, green, blue) are randomly generated within the data.

2) K clusters are created by associating every point with the nearest mean. Partitions = Voronoi diagram.

3) The centroid of each of the k clusters becomes the new mean.

4) Steps 2 and 3 are repeated until convergence has been reached.

Source: wikipedia
k-means algorithm properties

- Initial centers are chosen randomly: solution will differ from one run to another.
- Similarity is measured by Euclidean distance, or other measures like cosine or correlation.
- K-means will converge (trust me or read Bottou&Bengio 94)
- Complexity is $O(n \cdot K \cdot L \cdot D)$

\[n = \text{number of points}, \ K = \text{number of clusters} \]
\[L = \text{number of iterations}, \ d = \text{number of attributes} \]

Source: wikipedia
k-means : choosing initial centers

The algorithm is sensitive to the initial choice of centers: it can get stuck in a bad configuration.

Stuck in local minima

Good solution

Have a look at the interactive demo http://alekseynp.com/viz/k-means.html
k-means: choosing initial centers

The algorithm is sensitive to the initial choice of centers: it can get stuck in a bad configuration.

⇒ Lot of work on initialization strategies

⇒ A commonly used good strategy is called k-means++
k-means: quantifying performance

How to find the best clustering? How to choose K?

Quantization error (MSE) can be set to zero if K is sufficiently large (but is useful to compare 2 clusterings with the same k)

Silhouette coefficient measures cohesion and separation:

- For an individual point, i
 - Calculate $a =$ average distance of i to the points in its cluster
 - Calculate $b =$ min (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by
 $$s = 1 - a/b \quad \text{if } a < b, \quad \text{or } s = b/a - 1 \quad \text{if } a \geq b, \text{ not the usual case}$$
 - Typically between 0 and 1.
 - The closer to 1 the better.

- The Average Silhouette Coefficient of a cluster is the average of the silhouette coefficient of points belonging to the cluster.
k-means: determining the best k

See also Elbow method

And (in R) https://uc-r.github.io/kmeans_clustering
Hierarchical clustering
Produces a hierarchical tree, can be visualized as a dendrogram (records the sequence of merges)

Interpretability, taxonomy
Number of clusters not fixed in advance
Hierarchical clustering

Agglomerative algorithm

1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains
Hierarchical clustering

Agglomerative algorithm

1. Compute the proximity matrix
2. Let each data point be a cluster
3. \textbf{Repeat}
4. Merge the two closest clusters
5. Update the proximity matrix
6. \textbf{Until} only a single cluster remains

\Rightarrow \text{How to compute the distance between two clusters ?}
Hierarchical clustering

Agglomerative algorithm

1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

How to compute the distance between two clusters?
Validity of a clustering

For supervised classification we have a variety of measures to evaluate how good our model is. For instance:

- Accuracy, precision, recall

For cluster analysis, the analogous question is how to evaluate the “goodness” of the resulting clusters?

- But “clusters are in the eye of the beholder”!
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
Similarity matrix

Order the similarity matrix with respect to cluster labels and inspect visually

See https://gmarti.gitlab.io/ml/2017/09/07/how-to-sort-distance-matrix.html
Conclusion

We presented two simple clustering algorithms

• Very useful to understand and summarize the data

• Can also be used to segment the samples and then design local models

• Quality assessment is hard: depend on the application.
Quizz

1. Cite one application of clustering for marketing.
2. Cite one application of clustering in image processing?
3. What do we need to apply hierarchical clustering to genetic data?
4. What criteria does k-means algorithm optimize?
5. Is the result of k-means deterministic? Why?
6. What is the best value for k?
7. Can you give an estimate of agglomerative hierarchical clustering complexity?
References

Books

Papers
• L. Bottou, Y. Bengio. Convergence properties of the K-means algorithms. NIPS’94.
• G. Hamerly. Making k-means even faster. SIMA, 2015.

Tutorials
• Introduction for beginners: https://www.surveygizmo.com/resources/blog/regression-analysis/
• Scikit-learn, software tools & tutorials: https://scikit-learn.org/stable/modules/clustering.html