# Introduction aux systèmes de recommandation sociaux

Emmanuel Viennet, Daniel Bernardes, Mamadou Diaby, Raphaël Fournier et Françoise Fogelman-Soulié

L2TI - Université Paris 13

7/10/2016

- Introduction
- Critères de performance
- 3 Bref état de l'art
- 4 Expériences
  - Jeux de données
  - Reproduction des systèmes classiques
- 6 Applications

- «Les clients ayant acheté ceci achètent aussi cela»
- «Recommandé pour vous, Emmanuel »
- «Ces emplois pourraient vous intéresser»
- «Connaissez vous ces personnes ?»

#### Mais aussi

- Recherche d'information personnalisée
- Ciblage publicitaire (bannières)

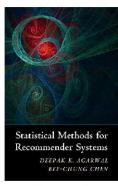
# Quelques ouvrages



Ricci et al. 2015



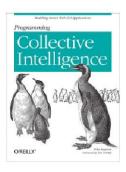
Aggarwal 3/2016



Aggarwal 2/2016

# Quelques ouvrages

Pour tester des idées simples ou des projets étudiants:



(Toby Segaran, 2007)

#### Présentation issue d'un article

# A Social Formalism and Survey for Recommender Systems

Daniel Bernardes, Mamadou Diaby\*, Raphael Fournier, Françoise Fogelman-Soulié, Emmanuel Viennet

Université Paris 13, Sorbonne Paris Cité, L2TI, 93430, Villetaneuse, France. \* Work4 Lebs, 3 Rue Moncey, 75009, Paris, France

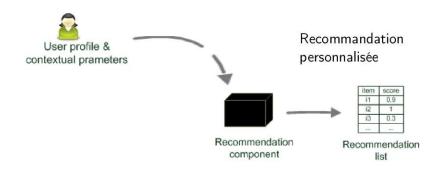
(daniel.bernardes, mamadou.diaby, raphael.fournier, soulie, emmanuel.viennet)@univ-paris13.fr

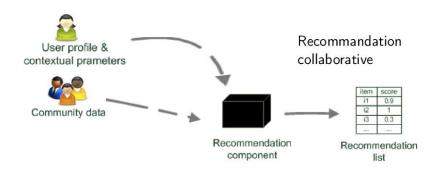
#### ABSTRACT

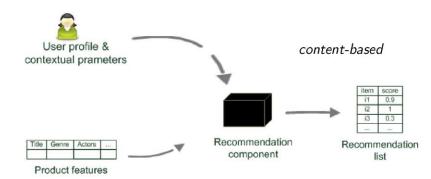
This paper presents a general formalism for Recommender Systems based on Social Network Analysis. After introducing the classical categories of recommender systems, we present our Social Editories formalism and show that it asdemographics), about products (their features) and about user interactions with the products [8, 25], either explicit (rating, satisfaction) or implicit (product purchased, book read, song heard, content clicked etc.) More recently, Social networks and social media (blogs, social tagging sites,

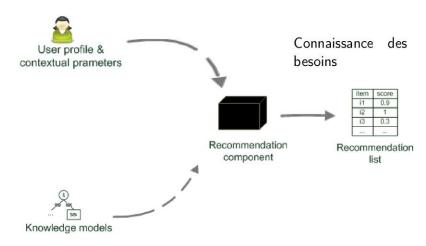
SIGKDD Explorations, Vol. 16, Issue 2, December 2014

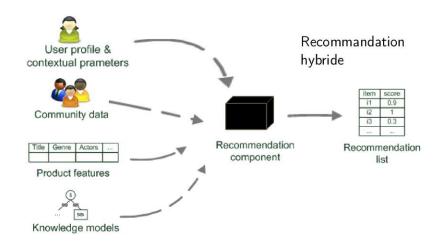












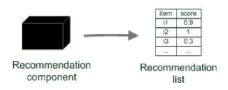
# Approches pour les recommandations

|                | Avantages                  | Inconvénients            |  |  |
|----------------|----------------------------|--------------------------|--|--|
| Collaboratives | Pas besoin de contenu,     | Nécessite interactions   |  |  |
|                | apprend le «marché»,       | (notes, achats) démar-   |  |  |
|                | «sérendipité»              | rage à froid             |  |  |
| Contenu        | Pas besoin d'interactions, | Nécessite descriptions,  |  |  |
|                | comparaison entre items    | pas de surprises, démar- |  |  |
|                |                            | rage à froid pour les    |  |  |
|                |                            | nouveaux utilisateurs    |  |  |
| Connaissances  | Déterministe, ok à froid   | statique, mise au point  |  |  |
|                |                            | coûteuse                 |  |  |

#### Critères d'évaluation:

Le résultat d'un système de recommandation, pour un utilisateur  $\boldsymbol{u}$  est:

- soit un score  $r_{ui}$  associé à chaque item i;
- soit une liste ordonnée de k produits (ou *items*).



#### Critères d'évaluation de la recommandation

- Qu'est-ce qu'une bonne recommandation ?
- Quelle stratégie de recommandation? Lien nécessaire avec le modèle économique

#### Indicateurs possibles:

- chiffre d'affaire
- promotion de certains produits
- taux de clics, durée des visites
- fidélisation des clients
- satisfaction des utilisateurs

#### Critères d'évaluation de la recommandation

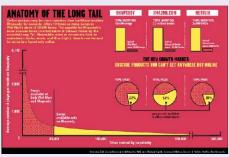
#### Pour l'aide à la recherche d'information:

- réduire le temps de recherche
- fournir des suggestions correctes

(suppose que l'utilisateur sait ce qu'il veut)

#### Pour la recommandation proprement dite:

- suggérer des items auxquels l'utilisateur n'a pas pensé (le surprendre, sérendipité)
- recommander des items rares, dans la queue de la distribution (long tail)



#### Critères d'évaluation de la recommandation

#### En pratique:

- Tests A/B
- Enquêtes de satisfaction
- Académiques: données passées, ensembles de test (précautions: nouveaux utilisateurs, nouveaux items)

#### Critères d'évaluation: Prévision de score

On évalue la proximité entre le score prédit  $\hat{r}_{ij}$  et celui qui sera observé  $r_{ij}$  (en fait rarement observé!)

- AUC Area Under the Curve
- RMSE (*Root Mean Square Error*) et MAE (*Mean Absolute Error*) définies comme:

$$RMSE = \sqrt{\frac{1}{I} \sum_{i,j} (r_{ij} - \hat{r}_{ij})^2}$$

$$MAE = \frac{1}{I} \sum_{i,j} |r_{ij} - \hat{r}_{ij}|$$
(1)

où I est le nombre de scores de l'ensemble d'évaluation.

#### Critères d'évaluation: recherche d'information

Rappel@k et Precision@k définis comme :

$$\begin{aligned} & \mathsf{Rappel@}k = \frac{1}{L} \sum_{a} \frac{Card(R_a \cap T_a)}{Card(T_a)} \\ & \mathsf{Pr\'{e}cision@}k = \frac{1}{L} \sum_{a} \frac{Card(R_a \cap T_a)}{k} \end{aligned} \tag{2}$$

où  $R_a=(i_1^a,i_2^a,...,i_k^a)$  est l'ensemble des k items recommandés à a et  $T_a$  l'ensemble cible pour a. On peut aussi calculer l'AUC de la courbe de Rappel@k en fonction de k.

#### Critères d'évaluation: recherche d'information

Rappel@k et Precision@k définis comme :

$$\begin{aligned} & \mathsf{Rappel@}k = \frac{1}{L} \sum_{a} \frac{Card(R_a \cap T_a)}{Card(T_a)} \\ & \mathsf{Pr\'{e}cision@}k = \frac{1}{L} \sum_{a} \frac{Card(R_a \cap T_a)}{k} \end{aligned} \tag{2}$$

où  $R_a=(i_1^a,i_2^a,...,i_k^a)$  est l'ensemble des k items recommandés à a et  $T_a$  l'ensemble cible pour a. On peut aussi calculer l'AUC de la courbe de Rappel@k en fonction de k.

•  $F_{\beta}$ -mesure :  $F_{\beta}$  prend en compte à la fois le rappel et la précision. La mesure  $F_1$  est la plus courante.  $F_{\beta}$  est définie comme :

$$F_{\beta}@k = \frac{(1+\beta^2) \times prec@k \times rappel@k}{(\beta^2 \times prec@k) + rappel@k}$$
(3)

MAP (Kaggle), ...

# Critères d'évaluation: qualitatifs

 couverture des utilisateurs : proportion de ceux qui reçoivent des recommandations

$$\label{eq:UsersCoverage} \text{UsersCoverage}@k = \frac{\# \text{ Utilisateurs dans Test avec } k \text{ recos}}{L_{\text{test}}}$$

où  $L_{\text{test}}$  est le nombre d'utilisateurs de l'ensemble de test.

nombre moyen de recommandations :

$$\mathsf{AvNbRec}@k = \sum_{K=0}^{k-1} K \frac{\# \text{ Utilisateurs de Test avec } k \text{ recos}}{L_{\mathsf{test}} - \# \text{ Utilisateurs avec } k \text{ recos}}$$

couverture des items :

$${\tt ItemsCoverage}@k = \frac{\#\ {\tt Items\ dans\ les\ listes\ de\ recos}}{C}$$

# Critères d'évaluation: qualitatifs (suite)

Couverture de la tête et de la traîne : Si on ordonne les items par popularité décroissante (nombre d'utilisateur ayant consommé l'item), on peut définir la *tête* comme les 20% items les plus populaires, et la *traîne* comme 80% restant, et on mesure le taux d'items recommandés appartenant à ces deux sous-ensembles :

$$\begin{aligned} & \mathsf{TauxT\^{e}te@}k = \frac{1}{L_{\mathsf{test}}} \sum_{u \in \mathsf{Test}} \frac{\# \; \mathsf{Reco} \; \mathsf{pour} \; u \in \mathsf{T\^{e}te}}{\# \; \mathsf{Reco} \; \mathsf{pour} \; u} \\ & \mathsf{TauxTra\^{i}ne@}k = \frac{1}{L_{\mathsf{test}}} \sum_{u \in \mathsf{Test}} \frac{\# \; \mathsf{Reco} \; \mathsf{pour} \; u \in \mathsf{Tra\^{i}ne}}{\# \; \mathsf{Reco} \; \mathsf{pour} \; u} \end{aligned}$$

où l'on somme sur les  $L_{test}$  utilisateurs de l'ensemble de test.

#### Matrice d'interaction

Matrice d'interaction  $\mathbf{R}$  dans le cas de notes (ici des nombres de 1 à 5).

|      | Monuments<br>Men | Django<br>Unchained | Forrest<br>Gump | Gran<br>Torino | Pulp<br>Fiction |
|------|------------------|---------------------|-----------------|----------------|-----------------|
| Amy  | 3                |                     |                 | 2              | 5               |
| Paul |                  | 4                   |                 |                | 2               |
| Rob  | 5                | 4                   | 1               |                |                 |
| Liz  | 2                |                     | 3               |                |                 |

L utilisateurs et C produits

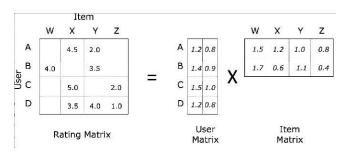
ullet R est extrêmement creuse

# Familles d'approches pour la recommandation

- Basées sur le contenu
  - → définir similarité entre items (TF-IDF, ...)

- Collaboratives
  - Modèles de score:
    - modèles probabilistes (réseaux bayesiens)
    - SVM, NN, ...
    - factorisation de matrices
  - Méthodes à mémoire
    - règles d'associations
    - filtrage collaboratif (CF)

#### Modèles basés sur la factorisation de matrices



- réduction de dimension: ACP
- SVD décomposition en valeurs singulières
- NMF Non-negative matrix factorization

Coûteux mais implémentations distribuées (*Big Data*) + versions *online* 

## Règles d'association

| ran | sactions             |
|-----|----------------------|
| id  | items                |
| 1   | Pain                 |
| 2   | Lait, Beurre         |
| 3   | Pain, Vin, Camembert |
| 4   | Vin, Camembert       |
|     | ***                  |

```
Règles \{ \text{ Vin } \} \Longrightarrow \{ \text{ Camembert } \} \{ \text{ Pain, Vin } \} \Longrightarrow \{ \text{ Camembert } \}
```

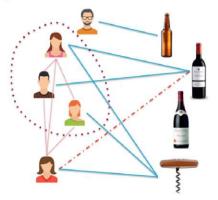
On calcule le support et la confiance de chaque règle.

# Principe général des méthodes à mémoire



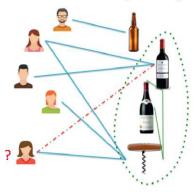
# Principe général des méthodes à mémoire

user-based: comparaisons entre utilisateurs



# Principe général des méthodes à mémoire

item-based: comparaisons entre items (produits)



#### Similarité entre utilisateurs

|      | Monuments<br>Men | Django<br>Unchained | Forrest<br>Gump | Gran<br>Torino | Pulp<br>Fiction |                        |
|------|------------------|---------------------|-----------------|----------------|-----------------|------------------------|
| Amy  | 3                |                     |                 | 2              | 5               |                        |
| Paul |                  | 4                   |                 |                | 2               | ()<br>()               |
| Rob  | 5                | 4                   | 1               |                |                 | 1 } 1 (0               |
| Liz  | 2                |                     | 3               |                |                 | 0.000 <b>.</b> 00 0.00 |

Similarité cosinus:

$$\begin{aligned} \operatorname{Sim}(a,u) &= \cos \left[\overrightarrow{l}\left(a\right), \overrightarrow{l}\left(u\right)\right] \\ &= \frac{\displaystyle\sum_{i=1}^{C} r_{ai} \times r_{ui}}{\sqrt{\displaystyle\sum_{i=1}^{C} (r_{ai})^2} \sqrt{\displaystyle\sum_{i=1}^{C} (r_{ui})^2}} \end{aligned}$$

#### Similarité entre utilisateurs

|      | Monuments<br>Men | Django<br>Unchained | Forrest<br>Gump | Gran<br>Torino | Pulp<br>Fiction |
|------|------------------|---------------------|-----------------|----------------|-----------------|
| Amy  | 3                |                     |                 | 2              | 5               |
| Paul |                  | 4                   |                 |                | 2               |
| Rob  | 5                | 4                   | 1               |                |                 |
| Liz  | 2                |                     | 3               |                |                 |

$$I \} \overrightarrow{l} (a$$

Similarité «Pearson» (PCC):

$$\begin{split} \operatorname{Sim}(a,u) &= \operatorname{PCC}\left[\overrightarrow{l}\left(a\right),\overrightarrow{l}\left(u\right)\right] \\ &= \frac{\displaystyle\sum_{i \in I(a) \cap I(u)} \left[r_{ai} - \overline{l}(a)\right] \left[r_{ui} - \overline{l}(u)\right]}{\sqrt{\displaystyle\sum_{i \in I(a) \cap I(u)} \left[r_{ai} - \overline{l}(a)\right]^2} \sqrt{\displaystyle\sum_{i \in I(a) \cap I(u)} \left[r_{ui} - \overline{l}(u)\right]^2} \end{split}$$

#### Similarité entre utilisateurs

|      | Monuments<br>Men | Django<br>Unchained | Forrest<br>Gump | Gran<br>Torino | Pulp<br>Fiction |
|------|------------------|---------------------|-----------------|----------------|-----------------|
| Amy  | 3                |                     |                 | 2              | 5               |
| Paul |                  | 4                   |                 |                | 2               |
| Rob  | 5                | 4                   | 1               |                |                 |
| Liz  | 2                |                     | 3               |                |                 |

 $\overrightarrow{c}(i)$ 

#### Cosinus asymétrique:

$$\begin{split} \mathsf{Sim}(a,u) &= \mathsf{asym\text{-}cos}_{\alpha} \Big[\overrightarrow{l}\left(a\right), \overrightarrow{l}\left(u\right)\Big] \\ &= \frac{\displaystyle\sum_{i=1}^{C} r_{ai} \times r_{ui}}{\Big[\displaystyle\sum_{i=1}^{C} r_{ai}^2\Big]^{\alpha} \times \Big[\displaystyle\sum_{i=1}^{C} r_{ui}^2\Big]^{1-\alpha}} \end{split}$$

#### Similarités «sociales»

Si  ${\bf R}$  est binaire, le lien entre deux utilisateurs a et u (ou deux items i et j) représente une règle d'association

$$\begin{aligned} \operatorname{Supp}(a \to u) &= \frac{\# \text{ Items cons. by } a \text{ and } u}{\# \text{ Items}} = \frac{1}{C} \sum_{i=1}^{C} r_{ai} r_{ui} \\ \operatorname{Supp}(i \to j) &= \frac{\# \text{ Users who cons. } i \text{ and } j}{\# \text{ Users}} = \frac{1}{L} \sum_{v=1}^{L} r_{ui} r_{uj} \end{aligned}$$

#### Similarités «sociales»

$$\operatorname{Supp}(a \to u) = \frac{\# \text{ Items cons. by } a \text{ and } u}{\# \text{ Items}} = \frac{1}{C} \sum_{i=1}^{C} r_{ai} r_{ui}$$

se généralise au cas où  ${f R}$  n'est pas binaire:

$$\mathsf{Supp}(a \to u) = \frac{1}{C} \sum_{i=1}^{C} r_{ai} r_{ui}$$

qui a la même forme que la similarité cosinus:

$$\cos(a, u) = \frac{\sum_{i=1}^{C} r_{ai} \times r_{ui}}{\sqrt{\sum_{i=1}^{C} (r_{ai})^2} \sqrt{\sum_{i=1}^{C} (r_{ui})^2}}$$

vitiliser le support comme mesure de similarité

L'indice de Jaccard mesure la similarité d'ensembles d'objets en comptant le nombre d'éléments qu'ils ont en commun. Dans le cas binaire, *user-based*:

$$\begin{aligned} \operatorname{Jaccard}(a,u) &= \frac{Card\left[\overrightarrow{l}\left(a\right) \cap \overrightarrow{l}\left(u\right)\right]}{Card\left[\overrightarrow{l}\left(a\right) \cup \overrightarrow{l}\left(u\right)\right]} \\ &= \frac{\# \operatorname{Items Cons. \ par } a \text{ et } u}{(\# \operatorname{Items Cons. \ par } a) + (\# \operatorname{Items Cons. \ par } u) - (\# \operatorname{Items Cons. \ par } a \text{ et } u)} \\ &= \frac{\displaystyle\sum_{i=1}^{C} r_{ai} \times r_{ui}}{\displaystyle\sum_{i=1}^{C} r_{ai} + \displaystyle\sum_{i=1}^{C} r_{ui} - \displaystyle\sum_{i=1}^{C} r_{ai} \times r_{ui}} \end{aligned}$$

# Voisinage K(a)

#### A partir de la similarité:

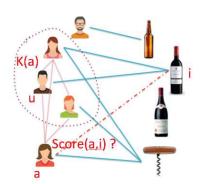
- seuil sur la distance
- k plus proches voisins

#### A partir des graphes:

liens implicites ou explicites (sociaux)

- voisins (premier cercle)
- communauté locale
- communauté globale (issue d'une partition du graphe maximisant la modularité)

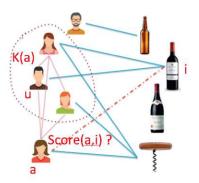
Score rendant compte du «lien» entre l'utilisateur a et l'item i:



$$\mathsf{Score}(a,i) = \sum_{u \in K(a)} r_{ui} \times f \big[ \mathsf{Sim}(a,u) \big]$$

K(a) est un voisinage de a: utilisateurs «proches»

#### Score rendant compte du «lien» entre l'utilisateur a et l'item i:



K(a) est un voisinage de a: utilisateurs «proches»

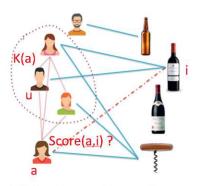
#### Variantes utilisées:

$$\mathsf{Score}(a,i) = \frac{1}{\mathsf{card}\big[K(a)\big]} \sum_{u \in K(a)} r_{ui}$$

$$\mathsf{Score}(a,i) = \frac{\displaystyle\sum_{u \in K(a)} r_{ui} \times \mathsf{Sim}(a,u)}{\displaystyle\sum_{u \in K(a) \cap U(i)} |\mathsf{Sim}(a,u)|}$$

$$\mathsf{Score}(a,i) = \overline{l}(a) + \frac{\displaystyle\sum_{u \in K(a) \cap U(i)} \left(r_{ui} - \overline{l}(u)\right) \times \mathsf{Sim}(a,u)}{\displaystyle\sum_{u \in K(a) \cap U(i)} \left|\mathsf{Sim}(a,u)\right|}$$

Score rendant compte du «lien» entre l'utilisateur a et l'item i:



K(a) est un voisinage de a: utilisateurs «proches»

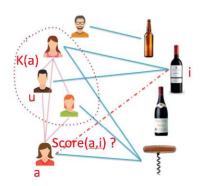
Autre variante (Aiolli 2013):

$$\mathsf{Score}(a,i) = \sum_{u \in K(a)} r_{ui} \times \big[\mathsf{Sim}(a,u)\big]^q$$

ou en user-based:

$$\mathsf{Score}(a,i) = \sum_{j \in V(i)} r_{aj} \times \left[\mathsf{Sim}(i,j)\right]^{q'}$$

Score rendant compte du «lien» entre l'utilisateur a et l'item i:



K(a) est un voisinage de a: utilisateurs «proches»

Puis on recommande k items:

$$\mathsf{Score}(a, i_1^a) \geq \mathsf{Score}(a, i_2^a) \geq \ldots \geq \mathsf{Score}(a, i_k^a)$$

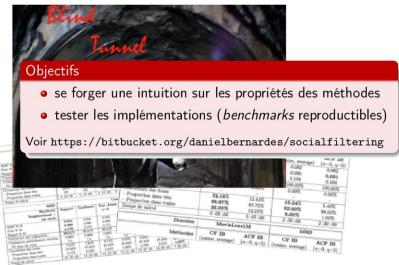
#### Expériences

#### Comparaisons empiriques



#### Expériences

#### Comparaisons empiriques



#### Jeux de données

| Données     | #Evals | Type<br>d'éval. | Util. | Items   | Réseau<br>Social |
|-------------|--------|-----------------|-------|---------|------------------|
| LastFM      | 92 834 | comptes         | 1892  | 17 632  | 25 434           |
| MovieLens1M | 1 M    | notes           | 6 040 | 3 883   |                  |
| Flixster    | 8,2 M  | notes           | 1 M   | 49 000  | 26,7 M           |
| MSD         | 48 M   | comptes         | 1,2 M | 380 000 | -                |







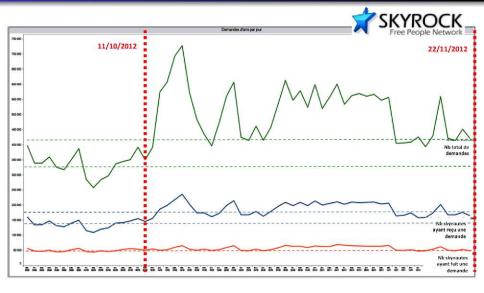


# Systèmes de référence

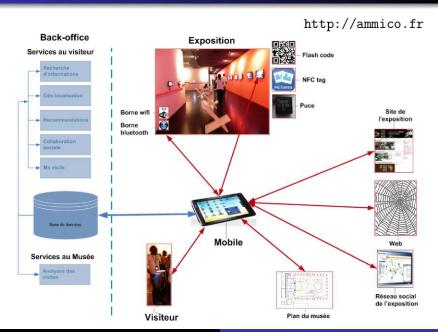
| Données                             | LastFM     |           |         | Flixster   |           |         |
|-------------------------------------|------------|-----------|---------|------------|-----------|---------|
| Méthodes                            | Popularité | Bigrammes | NMF     | Popularité | Bigrammes | NMF     |
| MAP @ 10                            | 0.058      | 0.144     | 0.005   | 0.038      | 0.098     | 0.005   |
| Prec @ 10                           | 0.053      | 0.082     | 0.048   | 0.061      | 0.120     | 0.075   |
| Rappel @ 10                         | 0.165      | 0.260     | 0.161   | 0.092      | 0.126     | 0.116   |
| Couverture des utilisateurs         | 100%       | 52.86%    | 100%    | 100%       | 74.00%    | 79.65%  |
| Utilisateurs partiellement couverts | 0%         | 47%       | 0%      | 0%         | 26.00%    | 20.35%  |
| - Nb moyen de recos                 | 121        | 3.4       | -       | 2          | 2.3       | 2.8     |
| Couverture des items                | 0.46%      | 1.13%     | 2.87%   | 0.06%      | 0.33%     | 0.60%   |
| - Proportion dans traîne            | 0%         | 0%        | 1.95%   | 0%         | 0%        | 0%      |
| - Proportion dans tête              | 100%       | 100%      | 98.05%  | 100%       | 100%      | 100%    |
| Temps de calcul                     | 0:01:00    | 0:05:00   | 1:00:00 | 0:01:00    | 0:05:00   | 4:00:00 |

| Données                             | MovieLens1M |           |         | MSD        |           |         |
|-------------------------------------|-------------|-----------|---------|------------|-----------|---------|
| Méthodes                            | Popularité  | Bigrammes | NMF     | Popularité | Bigrammes | NMF     |
| MAP @ 10                            | 0.097       | 0.149     | 0.008   | 0.022      | 0.135     | *       |
| Prec @ 10                           | 0.150       | 0.206     | 0.141   | 0.017      | 0.042     | *       |
| Rappel @ 10                         | 0.120       | 0.155     | 0.113   | 0.055      | 0.175     | *       |
| Couverture des utilisateurs         | 100%        | 99.50%    | 100%    | 100%       | 0%        | *       |
| Utilisateurs partiellement couverts | 0%          | 0.50%     | 0%      | 0%         | 100%      | *       |
| - Nb moyen de recos                 | -           | 5.0       | 782     | -          | 1.9       | *       |
| Couverture des items                | 0.62%       | 3.47%     | 3.47%   | 0.008%     | 0.001%    | *       |
| - Proportion dans traîne            | 0%          | 0.30%     | 0.01%   | 0.00%      | 0.00%     | *       |
| - Proportion dans tête              | 100%        | 99.70%    | 99.99%  | 100.00%    | 100.00%   | *       |
| Temps de calcul                     | 0:01:00     | 0:05:00   | 2:00:00 | 0:14:52    | 0:30:00   | > 4 day |

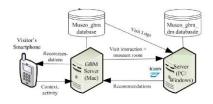
# Recommandation d'amis sur Skyrock



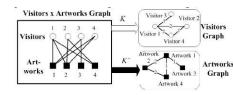
#### Recommandation d'œuvres dans des musées



#### Recommandation d'œuvres dans des musées







Données anonymisées disponibles: 67000 visiteurs, 600 POI, 1,6 millions d'interactions http://www-l2ti.univ-paris13.fr/~viennet/GBM.shtml

Thèse CIFRE de Mamadou Diaby, juin 2015 Recommending jobs to social network users

#### WORK4"

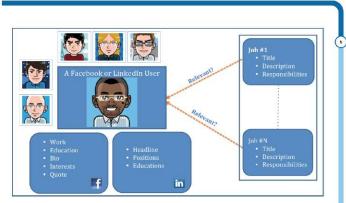


Figure : Modeling of the process of recommending jobs to social network users.

Mamadou Diaby

Motivations

Recommender systems in the literature

Job recommender systems

Datasets for job recommendation

Engines: job recommender

Prediction of the nudience of job ads

Datasets for job aris' performance prediction WorkstOracle: job ads' performance predictors

Factors impacting the popularity of job ads

2

References

# Examples of profiles of users and jobs





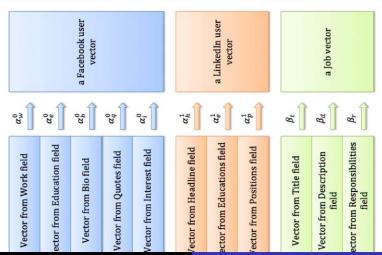
Figure: An example of a job

# Summary statistics

|            |                           | Datasets |            |        |           |  |  |
|------------|---------------------------|----------|------------|--------|-----------|--|--|
|            |                           | ALL      | Validation | Review | Candidate |  |  |
|            | Total number of instances | 86,524   | 54,247     | 14,414 | 17,863    |  |  |
|            | Distinct users            | 41,303   | 27,408     | 7,572  | 9,232     |  |  |
|            | Distinct jobs             | 10,527   | 1,326      | 2,171  | 7,699     |  |  |
| _          | label 0                   | 0.70     | 0.91       | 0.75   | 0.00      |  |  |
| rtior      | label 1                   | 0.30     | 0.09       | 0.25   | 1.00      |  |  |
| Proportion | Facebook users            | 0.44     | 0.27       | 0.30   | 0.97      |  |  |
| ď          | LinkedIn users            | 0.56     | 0.73       | 0.70   | 0.03      |  |  |

Table: Summary statistics of our datasets; we assumed that users only applied to jobs that match their profiles in Candidate dataset.

Job recommender based on a Bag-of-words model



# Job recommender based on a taxonomy-based vector model



Figure: An O\*NET subtree.

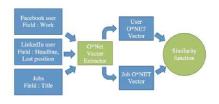


Figure : Scheme of our taxonomy-based job recommender systems.

#### Engines using O\*NET vectors

- Engine-6: O\*NET vector
  - Similarity function: Cosine similarity

#### En guise de conclusion

#### Quelques problèmes difficiles:

- évaluation
- prise en compte du contexte (eg trajectoires, contraintes applicatives)
- prise en compte du temps
- recommandation structurées
- préférences explicites de l'utilisateurs
- explication à l'utilisateur

#### En guise de conclusion

- La recommandation pose de nombreux problèmes théoriques et pratiques (intégration, évaluation, passage à l'échelle);
- les règles "métier" sont plus importantes que le choix de l'algorithme;
- peu de travaux académiques s'intéressent à la recommandation, la plupart se penchant sur l'approximation de notes;
- le formalisme présenté unifie de nombreuses approches présentées de façon séparée dans la littérature, et facilite la conception de nouveaux modèles et leur combinaison efficace.