
PROXIMAL SPLITTING METHODS FOR DEPTH ESTIMATION

Mireille El Gheche1,2, Jean-Christophe Pesquet1, Joumana Farah2,
Mounir Kaaniche1,3 and B́eatrice Pesquet-Popescu3

1 Universit́e Paris-Est
LIGM and UMR-CNRS 8049,

77454 Marne-la-Valĺee cedex, France
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ABSTRACT

Stereo matching is an active area of research in image pro-
cessing. In a recent work, a convex programming approach
was developed in order to generate a dense disparity field. In
this paper, we address the same estimation problem and pro-
pose to solve it in a more general convex optimization frame-
work based on proximal methods. More precisely, unlike pre-
vious works where the criterion must satisfy some restrictive
conditions in order to be able to numerically solve the min-
imization problem, this work offers a great flexibility in the
choice of the involved criterion. The method is validated ina
stereo image coding framework, and the results demonstrate
the good performance of the proposed parallel proximal algo-
rithm.

Index Terms— Stereo vision, disparity estimation, con-
vex programming, variational methods, parallel proximal al-
gorithm, proximity operator.

1. INTRODUCTION

A stereo vision system generates two views, called left and
right images, by recording two slightly different view angles
of the same 3D scene. An important task in stereo vision
is to find corresponding pixels which result from the projec-
tion of the same 3D point onto the two image planes. The
displacement between the pixel coordinates of these points
is called disparity. This information plays a crucial role in
many application fields such as 3D reconstruction, interme-
diate view synthesis, obstacle detection, and stereo/multiview
image compression [1].
The disparity estimation problem has been extensively stud-
ied in computer vision [2]. Traditionally, disparity estimation
algorithms are basically classified into two categories: local
methods and global ones. Algorithms in the first category,
where the disparity at each pixel depends only on intensity
values within a local window, perform well in highly textured
regions. However, they often produce noisy disparities in tex-
tureless regions and fail at occluded areas. These problems

can be reduced by using global methods which aim at find-
ing the disparity field that minimizes a global energy func-
tion over the entire image. For this purpose, several energy
minimization algorithms have been proposed. The most com-
mon approaches are dynamic programming [3], graph cuts
[4] and variational methods [5]. While dynamic program-
ming and graph cuts methods operate in a discrete manner,
variational techniques work in a continuous space. Therefore,
they possess the advantage of producing a disparity field with
ideally infinite precision. Among these global approaches,
it has been shown in [5] that variational-based disparity esti-
mation methods are among the most competitive techniques,
for their preservation of depth discontinuities. In [5], the
dense disparity estimation problem has been formulated as a
convex programming problem within a global variational ap-
proach. More precisely, a convex quadratic objective function
has been employed and minimized subject to some appropri-
ate convex constraints. The used optimization algorithm is
able to handle a wide range of constraints. However, in order
to satisfy the conditions of convergence of this algorithm,the
cost function must be quadratic and strictly convex.
In the present work, we reformulate the problem introduced
in [5] and we develop a parallel proximal algorithm which al-
lows us to efficiently solve the problem over feasibility sets
determined by multiple constraints modelling prior informa-
tion. Our main contribution is to extend the approach in [5]
to a more general framework by relaxing the limitations on
the choice of the similarity measure. The proposed algorithm
offers a great flexibility in the choice of the convex cost func-
tion to be minimized, which, for example, may be based on
theℓ1-norm, anℓp-norm withp > 1 or the Kullback-Leibler
divergence. The remainder of this paper is organized as fol-
lows. In Sec. 2, we present the stereo matching problem for-
mulated as a constrained optimization problem. In Sec. 3,
an efficient iterative solution is proposed based on a parallel
proximal method. Experimental results, showing the accu-
racy of the resulting disparity maps as well as their applica-
tions to stereo image coding, are given in Sec. 4. Finally,
some conclusions are drawn in Sec. 5.



2. PROBLEM STATEMENT

The process of stereo matching amounts to finding for each
pixel in the left imageIL a corresponding pixel in the right
imageIR. The matching problem is then equivalent to search-
ing for the disparity fieldu which minimizes an error mea-
sure:

J(u) =
∑

(x,y)∈D

φ(IL(x, y)− IR(x− u(x, y), y)) , (1)

whereφ is assumed to be a proper lower-semicontinuous con-
vex function fromR to ] −∞,+∞] andD is the considered
image domain. Similarity measures often used in literature
are the Sum of Square Differences (SSD) and the Sum of Ab-
solute Differences (SAD).

2.1. Cost function

Despite the convexity ofφ, note thatJ is non-convex with
respect to the fieldu. To circumvent this difficulty, we as-
sume that an initial estimatēu of u is available and that the
magnitude difference of the fieldsu andū is small enough so
that we can perform a Taylor expansion of the nonlinear term
IR(x− u, y) around an initial estimatēu as follows:

IR(x− u, y) ≃ IR(x− ū, y)− (u− ū) IxR(x− ū, y) , (2)

whereIxR(x− ū, y) is the horizontal gradient of the disparity
compensated right image. (For simplicity, we have dropped
the dependence on(x, y) of u andu). Inserting linearization
(2) in (1), we end up with the following convex cost function:

J(u) =
∑

(x,y)∈D\O

φ(T (x, y) u− r(x, y)) (3)

where

T (x, y) = IxR(x− ū(x, y), y), (4)

r(x, y) = IR(x− ū(x, y), y) + ū(x, y) T (x, y)− IL(x, y)
(5)

andO denotes the occlusion area. Indeed, the occluded pix-
els, which correspond to points visible only in one image of
the stereo pair need to be discarded [5].

Optimizing this criterion is an ill-posed problem as the
components of T may locally vanish. Thus, to solve the
problem in a reliable manner, it is necessary to incorporate
additional constraints. This can be performed by formulating
the problem within a set theoretic framework [6].

2.2. Convex constraints

The goal of set theoretic estimation is to obtain a feasi-
ble solution satisfying various constraints. Typically, each
constraint is described by a closed convex setSi with i ∈

{1, ...,m}, in a Hilbert image spaceH. The intersectionS
of all them sets, the feasibility set, constitutes the family of
admissible solutions [5]. In this context, the stereo match-
ing problem can be formulated as a constrained optimization
problem where the cost function given by (3) is minimized
over the feasibility set. We have then to

Findu ∈ S =

m
⋂

i=1

Si such thatJ(u) = inf J(S). (6)

Constraint sets can generally be modelled as lower level sets:

∀i ∈ {1, ...,m}, Si = {u ∈ H | fi(u) ≤ δi} , (7)

wherefi : H → R is a convex function andδi ∈ R.

As mentioned before, the construction of convex con-
straints is derived from the properties of the field to be esti-
mated. An example of possible prior knowledge is the range
of the disparity values. We can restrict the variation of the
values within the specific range[umin, umax]. This can be
expressed by the following constraint setS1:

S1 = {u ∈ H | umin ≤ u ≤ umax} . (8)

Most importantly, other constraints can be incorporated inor-
der to enforce the smoothness of the disparity field in the ho-
mogeneous areas while preserving edges. First, we can use
the Total Variation (TV) measure which attracted much atten-
tion in image recovery problems [7]. Hence, a total variation
based regularization constraint amounts to impose an upper
boundτ > 0 on the TV:

S2 = {u ∈ H | TV(u) ≤ τ} . (9)

Alternatively, we can adopt a wavelet domain approach to
construct a smoothness constraint based on 2D separable
wavelet coefficients. Inspired from the recent work in [5], we
consider the Besov spaceB1

1,1 as being appropriate to model
images containing discontinuities. The convex set associated
with a semi-norm of this space is given by

S3 =
{

u ∈ H |
∑

j≥1,k∈Z2,o∈{H,V }

|cBj,k,o| ≤ κ
}

(10)

whereκ > 0 and the coefficients ofu ∈ H in a wavelet ba-
sis or redundant frame are denoted by(cBj,k,o(u))k∈Z2 , o ∈
{H,V,D} being the orientation parameter andj ∈ N the res-
olution level.

3. PROPOSED ALGORITHM

3.1. Motivation

The objective of this section is to develop an iterative algo-
rithm to solve the stereo matching problem as formulated by
(6). The proximal method we propose allows us to find an op-
timal solution by using direct projections of the estimate onto
the different constraint sets.



3.2. Optimization background

In Problem (6), let us assume thatH = R
K and that each

constraint setSi with i ∈ {1, . . . ,m} can be expressed as
L−1
i (Ci) whereCi is a non-empty closed convex subset of

R
Ni andLi is a matrix inRNi×K . Let us further assume that

the projection onto each convex setCi takes a closed form
(in the sense that it can be computed in a finite number of
operations). The considered optimization problem then takes
the following generic form:

minimize
Liu∈Ci,i∈{1,...,m}

J(u). (11)

An algorithm allowing us to solve this problem is the al-
gorithm described below. It basically consists of iterating
computations of the proximity operator ofJ and projections
onto convex sets.
We recall that the proximity operator of the proper lower-
semicontinuous convex functionJ is proxJ : H → H : v 7→
proxJv where proxJv is the unique minimizer ofu 7→
J(u) + 1

2‖u − v‖2. This operator generalizes the notion of
projection sinceproxιC = PC whereιC is the indicator of a
nonempty closed convex setC andPC denotes the projection
ontoC. For more details, the reader is referred to [8].

3.3. PPXA+ algorithm

We propose to employ the PPXA+ (Parallel Proximal Algo-
rithm) detailed in [9], and which constitutes a generaliza-
tion of some recent parallel proximal algorithms [8, 10]. As
shown in Algorithm 1, it consists of computing parallel pro-
jections onto the sets(Ci)1≤i≤m and the proximity operator
of a scaled version ofJ , followed by a certain averaging pro-
cedure taking into account the matrices(Li)1≤i≤m.
Suppose that the following assumptions hold.
•
∑m

i=1 L
⊤
i Li + I is an invertible matrix.

• ∃ ǔ ∈ R
K such that(∀i ∈ {1, . . . ,m}) Liǔ ∈ ri(Ci) and

ǔ ∈ ri(dom J).1

• (λn)n∈N is a sequence such that (∀n ∈ N) λ̃ ≤ λn+1 ≤
λn < 2, whereλ̃ ∈]0, 2[.
Then, the sequence(un)n∈N generated by Algorithm 1 con-
verges to a solution to Problem (6) provided that such a solu-
tion exists.

4. SIMULATION RESULTS

Experiments were carried out on synthetic stereo images “cor-
ridor” and “teddy” taken from2.

1dom J is the domain ofJ and the relative interior of a setC is denoted
by riC.

2http://cat.middlebury.edu/stereo/scenes2005/

[Initialization]
(w1, ..., wm) ∈]0,+∞[m,γ > 0
(zi,0)1≤i≤m+1 ∈ R

N1 × . . .× R
Nm × R

K

Q = (
∑m

i=1 wiL
⊤
i Li + γI)−1

u0 = Q(
∑m

i=1 wiL
⊤
i zi,0 + γzm+1,0)

For n = 0, 1, . . . do
For i = 1, . . . ,m do

pi,n = PCi
(zi,n)

end For
pm+1,n = prox J

γ
(zm+1,n)

cn = Q(
∑m

i=1 wiL
⊤
i pi,n + γpm+1,n)

For i = 1, . . . ,m do
zi,n+1 = zi,n + λn(Li(2cn − un)− pi,n)

end For
zm+1,n+1 = zm+1,n + λn(2cn − un − pm+1,n)
un+1 = un + λn(cn − un)

end For

Algorithm 1: Projective version of PPXA+.

In order to show the performance of the proposed method
using anℓ1 error measure and the constraint setsS1 andS2

(here designated by “DDE-L1”), it has been compared with
a block-based disparity estimation (“BDE”) technique using
the fixed size block matching method. For PPXA+ algorithm,
we setw1 = 100, w2 = 10, γ = 200 andλn ≡ 1.5. We
have also tested the approach recently proposed by Miledet
al. (“DDE-L2”) which uses a cost function based on theℓ2-
norm and the same constraints. At this stage, it is worth point-
ing out that it was shown in [5] that the quality of the results
provided by the latter approach is comparable with state-of-
the-art methods, such as those based on graph cuts and dy-
namic programming [11]. Fig. 1 shows the generated dis-
parity maps using the different mentioned methods. It can be
seen that “DDE-L2” and “DDE-L1” produce smooth dispar-
ity maps. Furthermore, they are much less sensitive to noise
than “BDE”. Now, if we focus on the two dense disparity esti-
mation methods, it can be observed that our approach “DDE-
L1” better preserves the discontinuities around object bound-
aries. Numerical results are given by computing the PSNR
values between the estimated disparity map and the ground
truth. In order to emphasize the benefit from using the pro-
posed method, we also evaluated its performance when used
in a stereo image coding application. A straightforward ap-
proach consists of independently coding each image by using
existing still image coders. However, most of the existing
works rely on disparity compensation techniques [1]. The
first step in these techniques consists of estimating the dis-
parity map. Then, one image is considered as a reference
image and the other is predicted in order to generate a predic-
tion error referred to as a residual image. Finally, the disparity



PSNR= 34.20 dB PSNR= 34.83 dB PSNR= 35.23 dB

PSNR= 30.10 dB PSNR= 37.08 dB PSNR= 37.39 dB

Fig. 1. Dense disparity maps for “corridor” and “teddy” stereo pair. From left to right: left image, “BDE” method, “DDE-L2”
method, “DDE-L1” method .

field, the reference image and the residual one are encoded. In
our experiments, the disparity maps are encoded by employ-
ing the coding module integrated in the H.264/AVC standard.
Concerning the reference and the residual images, they are en-
coded by applying a 5/3 wavelet-like transform. Thus, dispar-
ity estimation constitutes a key step in stereo image coding.
In this context, DDE raises an important problem: the cost of
transmission/storage of the disparity field in terms of bitrate.
In order to alleviate this problem, we apply a quadtree coding
of the estimated dense maps [1]. Fig. 2 illustrating the scal-
ability in quality of the reconstruction procedure, shows that
the proposed method outperforms “DDE-L2” by 0.1-0.3 dB.

5. CONCLUSIONS

We have presented a new parallel proximal algorithm for es-
timating disparity maps which has the advantage of allowing
the use of various convex similarity measures and constraints.
In particular, we have shown the benefit in coding applica-
tions which can be drawn from using anℓ1 cost function in-
stead of theℓ2 one employed in previous DDE methods [5].
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