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Abstract—This paper deals with the estimation of a blockwise
disparity map in the context of stereoscopic image coding. This
disparity map is used to predict one view using the other view
as reference. It is generally computed according to the Block
Matching algorithm which achieves good performance in terms
of bitrate-distortion. Namely, disparities are selected amongst a
search area by minimizing a local distortion metric modelling the
quality of the prediction. Note that the larger the search area is,
the more often a better disparity can be chosen and the lower the
global distortion is. On the other hand, using large search areas
yield disparity maps containing a higher number of different
disparities, and such disparity maps are generally encoded with
a larger bitrate. In this paper two algorithms are proposed, they
enable to compute collections of good search areas among which
one can find a specific search area minimizing the distortion at
a given bitrate. Simulations results confirms the benefits of both
algorithms.

I. INTRODUCTION

The number of applications, related to 3D contents, has been
growing in the last decades [1], [2] as they allow a greater
immersion in the scene to the viewers. Stereoscopic images
can yield a perception of a 3D scene when the left view is
seen by the left eye and the right view is seen by the right
eye. Such perception arises as objects have a slightly different
location on the right view than that of the left view. This
small displacement is called the disparity, it is not constant as
its value is related to the perception of depth.

Coding a stereoscopic image can be carried out by pro-
cessing seperately each view. Better performance is obtained
by making use of cross-view redundancies, one view being
predicted using the other view. This approach is known as the
disparity compensated coding scheme, it takes the following
steps.
(i) One view (here the left one) is taken as the reference one,

it is independently coded.
(ii) As a mean to predict the right view using the left view,

a disparity map is estimated and losslessly encoded.
(iii) The prediction error between the right view and the

predicted right view is called the residual image, it is
encoded.

The prediction is achieved using a blockwise processing:
both views are divided into non-overlapping blocks and the
disparity map is the collection of all disparities, one for each
block. This disparity map is usually encoded with an entropy-

based coder, while the left view and the residual image are
encoded with Discrete-cosine-transform-based coders.

Research has achieved improvements in bitrate-distortion
performance when coding stereoscopic images by focusing
mainly on three aspects: the estimation of the disparity map
[3], [4], [5], the entropy-coding of the disparity map [6] and
the choice of the transform applied to the left view and to the
residual image [7], [8], [9]. Our work concerns the first aspect.
In this context, a well-known algorithm for disparity map
estimation is the Block-Matching Algorithm (BMA). For each
block of the predicted view, a disparity is selected amongst
a set of disparities by minimizing a local distortion metric
(generally the Sum of Absolute Differences or the Sum of
Squared Differences) computed between the right view and
the predicted view. This set of disparities is called a search
area as this selecting process is indeed searching on a small
area of the left view a block that would be most similar to the
given block of the right view. The larger the search area is and
the better the quality of the predicted image is thanks to more
adequate choices of disparities. But enlarging the search area
can also result in a more expensive disparity map in terms
of bitrate, as the range of the selected disparities may also
increase. Generally search areas have a rectangular shape, our
contribution is to consider any set of disparities contained in a
larger rectangular shape, the choice of the set being based
only on how it enables the BMA to have a good bitrate-
distortion performance. The rest of the paper is organized as
follows. Section II shows how selecting good search areas can
be regarded as an optimization problem. Two algorithms are
proposed in section III. Simulation results are discussed in
section IV and finally section V concludes this work.

II. SELECTING OF GOOD SEARCH AREA: AN OPTIMIZATION
PROBLEM

This section deals with the problem of selecting a search
area in such a way as to minimize the distortion of the
predicted view for a given bitrate associated to the disparity
map. Let us first introduce some notations.

A. Notations

Il represents the left view taken as the reference view and
Ir the right view to be predicted. Both are of size K×L pixels
and are divided into non-overlapping blocks of the same size.



Ik(i, j) (with k ∈ {l, r}) represents the intensity of the pixel
located at position (i, j) in the corresponding view. Each block
of the right view is associated to a unique two-coordinates
disparity d chosen amongst a set of disparities S containing
|S| different disparities. The predicted view is denoted Îr,D
as it depends on the disparity map D containing each selected
disparity for each block. The set of all different disparities in
D is denoted Co(D) as it can be regarded as the codomain of
the mapping function D.

The BMA computes, for a given search area S, the best dis-
parity map D(S) in terms of global distortion of the predicted
view, here measured as the Sum of Squared Differences:

D(S) = arg min
{D|Co(D)⊂S}

K−1∑
i=0

L−1∑
j=0

(
Îr,D(i, j)− Ir(i, j)

)2
(1)

where {D|Co(D) ⊂ S} is the set containing all disparity
maps whose codomain is included in S. This minimization is
achieved in an efficient manner as for each block the disparity
is selected by minimizing a local distortion metric regardless
of the disparities selected for the other blocks. The global
distortion of the predicted view depends also on S in the
following way:

E(S) = min
{D|Co(D)⊂S}

K−1∑
i=0

L−1∑
j=0

(
Îr,D(i, j)− Ir(i, j)

)2
(2)

where {D|Co(D) ⊂ S} is the set containing all disparity
maps whose codomain is included in S. The bitrate of the
disparity map is approximated by the measure of its entropy :

H(S) = −
∑
s∈S

P (d = s) log2 (P (d = s)) (3)

where P (d = s) is the occurrence frequency of the disparity
s in the map D(S).

For practical reasons, the set S is selected among the subsets
of a larger rectangular window denoted W and the set of all
such subsets is denoted P(W ).

B. Problem statement

In the coding context, finding the best search area S is
minimizing the global distortion for a given bitrate b.

S = arg min
S′⊂P(W )

H(S′)≤b

E (S′) (4)

Instead of this intractable optimization problem we address
the following problem, where S is selected as the subset min-
imizing the global distortion being composed of N different
disparities. The entropy constraint is no longer taken into
account. To further reduce the complexity of the problem, we
replace W by the set of different disparities contained in the
disparity map associated to W , that is W0 = Co(D(W )):

S = arg min
S′⊂P(W0)

|S′|=n

E (S′) (5)

(5) can be used to yield a suboptimal solution of (4). Let us
assume we can solve (5) for n ranging from 1 to |W0|, we get a

family of sets Sn having decreasing values of global distortion.
Indeed increasing the number of disparities enable to choose
adequate disparities and to reduce the global distortion. As the
size of Sn increases, it is expected that the entropy increases,
(note that it may not increase). A suboptimal solution of
(4) is obtained by selecting the highest index n∗ for which
H(Sn∗) ≤ b and considering Sn∗ .

The two proposed algorithms to solve (5) are described in
the next section.

III. PROPOSED ALGORITHMS

This section discusses the complexity of finding the optimal
solution of (5) and the proposed algorithms are presented.

A. Optimal solution of (5)

To solve (5), one method consists in processing the BMA
on all possible sets S ∈ P(W0) which are of size n disparities.
The optimal solution is the set S for which the global
distortion of the predicted image is minimized. Depending on
the size of W0 and the value of n, this can rapidly become
a complex combinatorial problem for which this method
would require a long processing time. Let us consider as an
example, a rectangular window W containing 121× 3 = 363
disparities, finding the set of 15 disparities minimizing the
global distortion of the predicted image implies to process(
363
15

)
≈ 1026 sets. Even if this window was replaced by a small

search area W0 containing 33 disparities, we would still have
to process

(
33
15

)
≈ 109 sets. To overcome this issue, two sub-

optimal algorithms are presented in the following subsections.

B. Selecting the set of disparities using BMA H

The first algorithm, called BMA H, consists in processing
the BMA on the window W so as to find the disparity map
D(W ). The disparities contained in D(W ) are sorted by
decreasing order of their occurrence frequency in D(W ). We
define S as the set containing the n first disparities, this set
fullfills the contraint S ∈ P(W0) and |S| = n, and it is the
suboptimal solution of (5) proposed by this algorithm.

This algorithm is interesting in terms of numerical com-
plexity as it requires only little more time processing than that
when using the BMA on W . However when n is much lower
than |W0|, we should not expect good performance in terms
of reducing the global distortion. Indeed assessing the utility
of a given disparity in a given set S depends on the other
disparities of S. It is likely that some of the disparities of an
optimal set for n small may have little occurence frequency
in D(W ) and thus be discarded when using BMA H.

In an attempt to overcome this issue, the following method
is being proposed.

C. Selecting the set of disparities using BMA S

The second algorithm finds a suboptimal solution of (5)
using a sequential reduction of the size of S from |W0| down
to n by considering first S = W0 and at each step by pruning
one disparity, the one for which the global disparity is being
the less increased.



Let us assume that with this algorithm, we have already
found a set S of size |S| = m. There are m subsets of S of
size |S′| = m− 1, there are defined as S\{s} for all possible
disparity s ∈ S. Selecting the best set S′ is solved by

s = arg mins′∈S E (S\{s′})
S′ = S\{s} (6)

Note that even though (6) suggests processing the BMA
m times at each step and hence |W0|! times when using
BMA S to solve (5) for all possible values of n, it is actually
possible to reduce the numerical complexity. Indeed at each
step, it suffices to apply a modified version of the BMA. While
processing each block this modified BMA keeps account not
only of the best disparity and the lowest local distortion, but
it also keeps account of the lowest local distortion in case
this best disparity is being pruned. Once the whole image is
processed, selecting the disparity to be pruned is achieved by
minimizing the lowest increase of the global distortion for each
disparity, using the collected information.

Note that this algorithm is not optimal as the minimization
is computed on a restricted domain, namely {S′ : ∃s ∈
S and S′ = S\{s}} instead of {S′ : S′ ∈ P(W0) and |S′| =
n}. The rationale is that if S is a good choice it is likely to
have a good choice for S′, but just as for BMA H, it remains
possible that a disparity of a set solving optimally (5) for n
small is pruned by the BMA S while processing sets of a
larger size.

IV. EXPERIMENTAL RESULTS

This section presents some simulation results to evaluate
the performance of the two proposed algorithms in comparison
with the BMA in terms of their ability to predict the right view.
We think that such simulations give a basic approximation of
the performance that would be obtained with the complete
disparity compensated scheme. Performance is given as the
Peak Signal-to-Noise Ratio (PSNR) evaluated between the
original and the predicted right views versus the bitrate of
the disparity map in bits per pixel (bpp) approximated by the
measure of its entropy as computed in (3).

Simulations are conducted on colourless stereoscopic im-
ages from the CMU-VASC database [10] using a window W
containing disparities ranging horizontally from −60 to 60
and vertically from −1 to 1. Indeed simulations have shown
that disparities having a negative horizontal component and a
small vertical component could clearly improve performance.
On one hand it seems that the human visual system is able
to cope with such disparities and still perceive depth and on
the other hand sterescopic cameras may not always be that
precise. In the coding context, since such stereoscopic images
are being used, coding schemes should take such redundancies
into account.

A. Comparing BMA H and BMA S and the optimal solution
on a small stereoscopic image

We first consider a small stereoscopic image of size 64×64
pixels extracted from the stereo set ”sand”. Simulations have

been conducted using blocks of size 10 × 10 pixels. Fig. 1
shows the bitrate-distortion performance of both algorithms,
using a dashed curve joining black circles for the BMA H
and a solid line joining red circles for the BMA S. Both
curves start from the same point corresponding to the BMA
which yields a disparity map D(W ) containing 33 disparities.
The circles of each curve show the performance for a given
size of the search area S ranging from 33 to 1. Actually the
simulation is not possible for sets yielded using the BMA H
for sizes below 2 as the BMA cannot process some blocks
of the stereoscopic image for which none of the disparities,
contained in the yielded sets, could be used. Such an error
occurs for exemple when processing blocks on the right side
with sets having only negative disparities. This experiment
shows that the BMA S achieves better performance than the
BMA H.

The blue cross in Fig. 1 shows the performance achieved
with the optimal set of 5 disparities found after processing all
possible sets of 5 disparities amongst the 33 disparities of W0,
meaning that

(
33
5

)
= 237336 sets have been processed! In this

experiment, the optimal set appear to have exactly the same
performance as the one found using the BMA S for n = 5.

B. Comparing bitrate distortion performance using different
sizes of blocks on the stereoscopic image ”house1”

The next experiment compares the performance of both
algorithms with the BMA on the stereoscopic image ”house1”.
Simulations have been carried on using blocks of size 4×4 to
12× 12 pixels. Results are shown in Fig. 2. The performance
of the BMA S is represented by the set of red curves in solid
line joining circles while the performance of the BMA H is
represented by the set of black dashed curves joining circles.
For each algorithm, each curve is obtained using a different
size of blocks and each point of each curve corresponds to a
different size of searching area. Note that for a given size
of block, the curves representing the performance of both
algorithm start from the same point as it corresponds to the
BMA using this size of blocks. The dashed blue line joining
squares represents the performance of the BMA where each
squares corresponds to a specific size of blocks. Note that the
BMA S performs better than the BMA H and BMA in terms
of bitrate-distortion. For a given bitrate of the disparity map,
the BMA S predicts the right view with a greater precision as
compared both to the BMA and the BMA H. For example, at
a bitrate of 0.09bpp, the BMA and the BMA H both leads to
a predicted image of quality 26.4dB while the BMA S yields
to 28.6dB resulting in a gain of 2.2dB.

C. Comparing different predicted right views using different
sizes of blocks on the stereoscopic image ”house1”

We compare the predicted view yielded by processing the
BMA using the different search areas computed with the three
algorithms at a bitrate of 0.09bpp. The original right view
is shown on Fig. 3, the white square frames a specific area.
This area is shown as close-ups of the three predicted views
computed respectively with BMA, BMA H, and BMA S. One



clearly sees that the window of the house is better predicted
using the BMA S.

Note that this higher perfomance is achieved using blocks
of smaller size for BMA S than those used for BMA H and
for BMA as these two algorithms would not have coped with
such small blocks and the bitrate constraint of 0.09dB.

D. Comparing performance as measured by the Bjontegaard
metric on ”house1”

An average PSNR difference can be calculated between
the BMA S and the BMA on one hand, and between the
BMA S and the BMA H on the second hand using the
Bjontgaard’s metric, [11]. The average PSNR difference is
calculated for low and medium bitrates, with target bitrates
measured in bpp and chosen as follows [0.06 0.07 0.08 0.09]
and [0.1 0.25 0.40 0.55]. For each target bitrate, the point
achieving the best performance in terms of PSNR under
the bitrate constraint is retained for the computation of the
Bjontegaard metric for each algorithm. The retained points for
the three algorithms considering the target bitrates mentioned
previously are represented in Fig. 5.

For example, considering a target bitrate of 0.55bpp, the
best points selected for the three algorithms are identical and
correspond to the very first point (at the top right) of each
curve as this is the best point in terms of PSNR under this
bitrate for all algorithms. This point is also considered as
the best one in terms of PSNR for the target bitrate equal
to 0.40bpp as the bitrate of this point (0.36bpp) is inferior to
it.

At low bitrate, the average PSNR difference of the BMA S
as compared to the BMA is of 1.40dB and the average PSNR
difference of the BMA S as compared to the BMA H is of
1.36dB. At medium bitrate, the average PSNR difference of
the BMA S as compared to the two other algorithms is of
0.59dB.

E. Comparing performance as measured by the Bjontegaard
metric on nine stereoscopic images

Table. I contains the relative performance of the algorithms
computed with the Bjontegaard metric at low bitrates and at
medium bitrates. Simulations have been conducted on nine
stereoscopic images from the CMU-VASC database which are:
”whouse”, ”wdc2r”, ”toys”, ’telephone”, ”sphere”, ”rubik”,
”mars1r”, ”house2” and ”house1”. Note the values computed
in the former subsection have been reported on this table at the
last line. The columns ∆BMA at low and medium bitrate give
the average PSNR difference of the BMA S as compared to
the BMA. The columns ∆BMA H at low and medium bitrate
give the average PSNR difference of the BMA S as compared
to the BMA H.

One clearly sees the improvement of the BMA S as com-
pared both to the BMA and the BMA H in terms of bitrate-
distortion performance. Note that the BMA H achieves in
most case better performance than the BMA.

TABLE I
GAIN OF THE BMA S OVER THE BMA AND THE BMA H

Stereo Low bitrate Medium bitrate
Images ∆BMA ∆BMA H ∆BMA ∆BMA H
mars1r 0.30 0.10 0.35 0.20
whouse 0.33 0.21 0.35 0.24
sphere 0.37 0.20 0.47 0.37
wdc2r 0.39 0.12 0.47 0.29
telephone 0.48 0.29 0.46 0.42
rubik 0.52 0.36 0.22 0.22
toys 1.64 0.25 0.56 0.28
house2 1.81 1.21 1.56 1.54
house1 1.40 1.36 0.59 0.59

V. CONCLUSION

Two algorithms have been presented in this paper to take
advantage of a large search area, allowing better prediction of
the right view, while reducing the bitrate required to encode
the disparity map. This is achieved by selecting an appropriate
searching area and by processing the BMA with this specific
searching area.

Simulation results conducted on several stereoscopic images
have shown the benefits of both proposed algorithms as
compared to the BMA with a particular advantage for the
second one, the BMA S.

In future works, the implementation of these two methods in
a complete disparity compensated scheme will be investigated.
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Fig. 2. Rate-Distortion performance on the stereoscopic image ”house1”.

Fig. 3. ”house1” original right image.

Fig. 4. Close-up of the predicted right view using the BMA (left figure), the
BMA H (middle figure) and the BMA S (right figure).
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