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ABSTRACT

This paper deals with the block-based matching problem in
a stereoscopic image to estimate the disparity map. In most
cases, matches are chosen according to the minimum mean
square error criterion. However, for matching a block, sev-
eral disparities may be potential candidates as they meet the
minimum distortion. Unfortunately this latter may not be
consistent with the reduction of the stereoscopic image en-
coding cost. To address this problem, an optimization algo-
rithm using an entropy-distortion metric is proposed. The se-
lected disparities reduce not only the distortion of the pre-
dicted image but also the entropy of the estimated disparity
map under a low computational complexity. The developed
algorithm is based on the underlying idea of the generic M -
algorithm where many changes were required and have been
made to fit our problematic. Simulation results on stereo-
scopic images show that our optimization algorithm achieves
better rate-distortion performance than the traditional block-
matching algorithm.

Index Terms— Stereoscopic image, block matching, op-
timization, entropy, disparity

1. INTRODUCTION

The success of 3D-movies, the growing number of 3D-
displays within households and the increasing amount of
3D-content lead to a strong demand for a fast development
of efficient stereoscopic image and video coding solutions.
A stereoscopic image is composed of two views; the left and
right views which are captured from the same scene with
slightly different viewpoints sharing therefore a large amount
of redundancies. As a result, objects from the left view can
be seen on the right view with a little shift called disparity.
Most stereoscopic image coding algorithms provided in the
state-of-the-art rely on the following main steps: (i) coding
the selected reference view, for example the left view; (ii)
estimating and encoding the disparity map; (iii) predicting
the right view using the decoded left view and the estimated
disparity map; and (iv) coding the difference between the
predicted right view and the decoded left view. Although the

bit-rate required to encode the disparity map should not be
overlooked, this stereoscopic encoding strategy is proven to
be better than encoding each view separately. The proposed
paper addresses the problem of estimating the disparity map
that achieves the best view prediction subjected to a given
bit-rate to encode the estimated disparity map.
Most state-of-the-art methods dealing with the estimation of

the disparity map aim at finding the most accurate disparity
map [1, 2]. Generally, these methods are classified into two
main categories, local and global methods. Local methods are
of low computational complexity but are sensitive to some
ambiguous regions such as occluded areas or regions with
uniform textures. Global methods tend to be robust because
they manipulate more information but are computationally
more expensive than local methods. Whether local or global,
these methods differ in the selected primitives (e.g. pixels,
interest points, segments, blocks, edges), theirs attributes
(e.g. gray level, color components, segment position), the
cost function (including similarity measurements of two cor-
responding primitives), the constraints (e.g smoothness, or-
dering, uniqueness), the size of the matching window or the
aggregation area. These methods are also related on different
optimization criteria. Dynamic programming method is the
oldest method [3, 4], at a pixel level, it sequentially finds the
best matching given some constraints (smoothness, ordering
and positiveness). The optimization may also rely on relax-
ation [5], graph cuts [6, 7], or belief propagation [8, 9].
Most papers concerned with stereoscopic image coding es-

timate block-based disparity maps since these maps can be
encoded with lower bit-rates (i.e. each block is predicted with
only one disparity-value). The main estimation technique is
undoubtedly the Block-Matching Algorithm (BMA): each
disparity is selected by minimizing a local distortion metric
which is usually the sum of square differences or the sum of
absolute differences [11], or less frequently correlation [10]
and rank metrics [12]. All of these techniques are local and
do not take into account choices of disparities elsewhere in
the stereoscopic image.

In this paper, the block-based matching optimization ap-
proach proposed in [14] is extended to the case of non-
rectified stereoscopic images . This approach is a global



method where the selected minimization criterion is a joint
entropy-distortion metric. Entropy models the bit-rate that an
entropy coding scheme would require to encode the disparity
map. As a result, disparities are selected based not only on
how the distortion is reduced but also on the disparity encod-
ing bit-rate. The algorithm consists in processing each block
in a raster scanning order and building sequentially a tree, of
which only the M -best retained paths are extended at each
depth in the tree.

The remainder of the paper is organized as follows. Sec-
tion 2 reminds the principles of the Modified-M-Algorithm.
It starts with the formalization of the rate-distortion opti-
mization problem where the joint entropy-distortion metric
is introduced. Followed by the description of the algorithm.
Section 3 presents the modifications made to the MMA to
adapt it to non-rectified stereoscopic images. Section 4 dis-
cusses the provided simulation results. Section 5 concludes
our work.

2. BASICS CONCEPTS OF THE MMA

This section presents the block-based disparity map estima-
tion algorithm for stereoscopic images. Before presenting the
optimization approach, let us introduce some notations.

2.1. Notations

In what follows, the left view is considered as a reference
view and the disparity map is estimated so as to provide a
better prediction of the right view for a given bit-rate. Il
and Ir are respectively the left and the right views of size
K × L of the stereoscopic image. Each view is composed
of X × Y non-overlapped blocks of equal size x × y. The
pair (ip, jp) represents the pixel-coordinates while (ib, jb) the
block-coordinates. The relation between these coordinates is:
ip = ib × x and jp = jb × y. These equations assume that
the position of a block is given by the position of the pixel
located at the top left corner of the block in the considered
view. Ir(ip, jp) (respectively Il(ip, jp)) is the intensity of the
pixel located at position (ip, jp) in Ir (respectively Il). Im-
ages were initially assumed to be rectified so that the blocks
are matched between the same scan lines. Îr is the predicted
right view. The disparity, denoted d(ib, jb), is associated with
the block at position (ib, jb) in the right image. Therefore
all pixels within this block have the same disparity. Figure 1
summarizes these notations.

2.2. Rate-distortion optimization problem

The problem addressed in this paper concerns the estima-
tion of the disparity map, denoted d = {d(ib, jb) with ib =
0, ..., X − 1; jb = 0, ..., Y − 1}, that minimizes the global

Fig. 1. Notations.

distortion of the predicted right view:

Eglobal(d) =

X−1∑
ib=0

Y−1∑
jb=0

EBlock(ib, jb) with EBlock(ib, jb)

=

x−1∑
u=0

y−1∑
v=0

(Îr(ip + u, jp + v)− Ir(ip + u, jp + v))2

where Îr(ip+u, jp+v) = Il(ip+u+, jp+v+d(ip, jp)), (1)

subjected to an entropy constraint H(d) which is an esti-
mate of the bit-rate associated with the disparity map.
This problem is formulated as a Lagrangian minimization:

d̂ = argminJ(λ,d) = argmin(Eglobal(d) + λH(d)), (2)

where λ is the Lagrange multiplier. Minimizing J(λ,d) for
any λ gives the points on the convex hull of all possible Rate-
Distortion (R-D) points.

2.3. The MMA, an entropy-constrained disparity map es-
timation algorithm

This section addresses the issue of estimating the disparity
map associated with the right view of the stereoscopic image
as formalized by equation (2) under the constraint of a low
computational complexity.

To do so, the MMA exploits the underlying idea of the
generic M -algorithm initially developed in communications
field to estimate the transmitted data stream through a noisy
channel using the maximum likelihood criterion [13]. In its
original version, the M -algorithm sequentially built a tree.
At each depth in the tree, the algorithm extends the M -best
retained paths according to the maximum likelihood metric.
Although the research domain is restricted, this sub-optimal
optimization algorithm not only presents good performance



but also reduces the computational load of the optimization
problem. However many changes were required to adapt this
generic M -algorithm to a stereoscopic block-based matching
problem. These changes are shown in the following.

The blocks of the views are processed in a raster order and
are numbered using 1D-coordinates. The depth of the tree is
denoted t. It corresponds to the position of the current block
in the right view which is matched to the blocks in the left
view. This depth depends on the position (ib, jb) of the block
as follows:

t = ib× Y + jb with ib = 0, ..., X − 1 and jb = 0, ..., Y − 1.
(3)

The research area is reduced since a sliding matching win-
dow W of size 1 × N , centered on the origin of the block
of the right view, is introduced. Moreover among the ex-
tended paths, only M -best paths are retained according to a
joint entropy-distortion metric.

The different steps of the proposed optimization algorithm
is developed in the following. Assume that our optimization
algorithm has already matched the blocks up to the block t−1
and that M -best paths have been retained according to their
joint entropy-distortion costs:

Jkt−1(λ, d) = Ekt−1 + λHk
t−1 with k = 1, ...,M, (4)

where Ekt−1 is the cumulative distortion metric and Hk
t−1 is

the disparity entropy both associated with the k-th path at (t−
1)-th depth in the tree. Each path is thus represented by a
disparity map, denoted Sk, gathering t− 1 disparities:

Sk = {dk1 , dk2 , ..., dkt−1} with k = 1, ...,M, (5)

where dkl is the disparity of the k-th path at l-th depth.
Consider now the next depth in the tree, i.e. t-th. Each M

paths is extended by N branches where each branch has its
own disparity w (with w = wmin, ..., wmax such as wmax −
wmin + 1 = N ) and a local distortion Ebwt given by:

Eb
w
t =

x−1∑
u=0

y−1∑
v=0

(Îr(ip + u, jp + v)− Ir(ip + u, jp + v))2

with w = wmin, ..., wmax. (6)

The distortion of each of the M × N extended paths is then
updated:

Emt = Ekt−1 + Eb
w
t form = 1, ..,M ×N

with k = 1, ...,M and w = wmin, ..., wmax. (7)

For a given λ, the Jkt global cost of the k-th path at the t-th
depth is computed as follows:

Jkt (λ, d) = Ekt + λHk
t with k = 1, ...M ×N, (8)

where Hk
t , the k-th disparity entropy, models the entropy de-

rived from the true probability distribution of disparities of

the k-th path (dk1 , d
k
2 , . . . , d

k
t ):

Hk
t = −

wmax∑
w=wmin

pkt (d = w)log2(p
k
t (d = w))

for k = 1, ...M ×N. (9)

However this entropy cannot be calculated since it requires
the true disparity distribution knowledge. The MMA esti-
mates these probabilities (i.e. pkt (d = w)) according to a
finite mixture distribution represented as a sum of weighted
discrete distributions as follows:

p̂kt (d = w|dk1 , dk2 , ..., dkt ) = Ca × pa(d = w) +

Cemp × pkemp(d = w|dk1 , dk2 , ..., dkt−1) +
Cc × pc(d = w|d = dkt ), (10)

where the coefficients Ca, Cemp and Cc satisfy the following
condition: Ca+Cemp+Cc = 1, withCa = βa

βa+b+c ; Cemp =
b

βa+b+c and Cc = c
βa+b+c . These coefficients depend on the

current depth, i.e. on the number of blocks processed and are
parametrized as follows:

a = X × Y − t; b = t and c = 1. (11)

pa is the probability density assumed to be a discrete uniform
distribution on the selected matching window W given by:

pa(d = w) =
1

N
(12)

β is a constant parameter smaller than 1. It provides a free
parameter to adjust the weight of pa in the finite mixture
distribution (in equation (10)). The empirical probability
pkemp(d = w|dk1 , dk2 , ..., dkt−1) is calculated from the retained
disparities until the (t − 1)-th depth (i.e. dk1 , d

k
2 , ..., d

k
t−1).

The probability pc(d = w|d = dkt ) is the probability related
to the choice that the algorithm makes when it selects at depth
t the branch with disparity wc among the other branches:

pc(d = w|dkt = wc) =

{
1 if w = wc
0 if w 6= wc

. (13)

Note that ”a” decreases linearly while ”b” increases linearly.
Indeed as the image is being processed and as t increases, pa
is less and less needed. Therefore the estimation is more and
more close to the true probability distribution.

The costs Jkt , given by equation (8), are then computed
and sorted in a decreasing order and the M -best paths are re-
tained. TheM disparity maps (i.e. Sk) are also updated. This
process is iterated until processing the last block of the right
view. At that point, the first path contains the best disparity
map in terms of entropy-distortion.

The optimization algorithm is summarized in Figure 2 and
an illustration is given by Figure ?? usingM = 2 andN = 5.



Input: Left image Il and right image Ir of size X × Y
Output: Estimated block-based disparity map associated with Ir
1. Set initial values: λ; M ; wmin; wmax; β; ib = −1; jb = −1;
2. Increment by 1 the row index ib;
3. Increment by 1 the column index jb;
4. Set the sliding matching window on the pixel Il(ip, jp);
5. Extend all M -best current paths of the tree to depth t;
6. Compute the distortions of M ×N branches;
7. Update the distortions of the extended paths;
8. Estimate the disparity probabilities of each path;
9. Deduce the disparity entropy of each path;
10. Compute the entropy-distortion cost of each path;
11. Sort the paths in a decreasing order of entropy-distortion cost;
12. Select among the M ×N paths, the M -best paths;
13. Update the M disparity maps;
14. Start again from step 3 if jb < Y otherwise continue;
15. Start again from step 2 if ib < X otherwise continue;
16. Select the best dense disparity map associated with Ir .

Fig. 2. Entropy-distortion optimization algorithm

3. EXTENSION OF THE MMA TO THE CASE OF
NON-RECTIFIED STEREOSCOPIC IMAGES

In this section, the modifications brought to the MMA so that
it can be used also for non-rectified stereoscopic images are
presented. First, we need to redefine some notations. The
blocks to be matched do not necessarily belong to the same
scan lines, so that disparity vectors have now two compo-
nents. Let d(ib, jb) = (dx, dy) be the disparity associated
to the block at position (ib, jb) in the right image, dx being its
vertical component and dy its horizontal component as repre-
sented in Figure 3. The rate-distortion optimization problem
introduced in section 2.2 remains unchanged. However, the
expression of the global distortionEglobal(d) of the predicted
image is adapted to take into account the two components of
the disparity vectors:

Eglobal(d) =

X−1∑
ib=0

Y−1∑
jb=0

EBlock(ib, jb) with EBlock(ib, jb)

=

x−1∑
u=0

y−1∑
v=0

(Il(ip+u+dx, jp+v+dy)−Ir(ip+u, jp+v))2

(14)
To match the blocks of the two views, the MMA relies

on a sliding matching window which is now extended to con-
sider also vertical displacements. Let W be the window of
size N ′ = Wx ×Wy centered on the origin of the block to
be matched in the right view as shown in Figure 3. The dif-
ferent steps of the MMA remains unchanged, but some mod-
ifications have been made to the MMA to take into account
choices of 2-D disparity vectors. These changes are listed be-
low:

• At each depth of the tree, the M best retained paths
are extended by N ′ branches. Each branch is associ-
ated to a choice of disparityw = (wx, wy) wherewx =
{wx min, . . . , wx max} andwy = {wy min, . . . , wy max}
(such as wx max − wx min + 1 = Wx and wy max −
wy min + 1 =Wy).

• The local distortion Ebwt of each branch is computed
as:

Eb
w
t =

x−1∑
u=0

y−1∑
v=0

(Îr(ip + u, jp + v)− Ir(ip + u, jp + v))2

where Îr(ip+u, jp+v) = Il(ip+u+wx, jp+v+wy)),
(15)

• The probability pa(d = w) is modified to compute the
entropy associated to each path according to:

pa(d = w) =
1

N ′
(16)

Fig. 3. Notations.

4. EXPERIMENTAL RESULTS

This section discusses the performance of the extended
MMA. The Peak Signal-to-Noise Ratio (PSNR) is evalu-
ated between the original and the predicted right views versus
the approximated bit-rate given by the entropy of the empiri-
cal distribution of the estimated disparity map converted into
bit per pixel (bpp).

Simulation results are compared to the traditional BMA
which finds the best match for each block by minimizing
the Sum of Square Differences (SSD). The provided simu-
lations have been performed on stereoscopic images from
Middlebury and CMU stereo dataset [15, 16].



Figure 6 shows the performance of the BMA on the
stereoscopic image ”Sand” from [16], taking blocks of size
8 × 8. Experiments have been conducted using several sizes
of symmetrical windows, Wx×Wy , centered on the origin of
the block to be matched (as shown in Figure 3) , with Wx =
{1, 3, 5, . . . , 41} and Wy = {1, 3, 5, . . . , 301}. For each size
of windows, a disparity map is estimated by the BMA and
the quality of the predicted image using this map is measured
with the PSNR. Each point of the figure 6 corresponds to
the performance of the BMA using a given size of window
: the pixel at position (i, j) (with i = {0, 1, 2, . . . , 20} and
j = {0, 1, 2, . . . , 150}) represents the PSNR achieved using
a window of size Wx ×Wy = (i × 2 + 1) × (j × 2 + 1).
Values of PSNR obtained by varying the window size are
represented using a grayscale where black color correponds
to the lowest quality achieved by the BMA (14dB) and the
white color corresponds to the highest quality (24dB). It can
be noticed that in this experiment, increasing the vertical
component Wx of the window also increase the PSNR of the
predicted image up to a certain point. When increasing Wx

beyond 20, no significant gain is achieved in the quality of
the reconstructed image.
In the next experiment performed on the same stereoscopic
image, window with vertical component Wx ≥ 20 are not
considered. Figure 5 depicts the performance of the BMA
and the extended MMA using blocks of size 8×8 and 10×10
(represented respectively with the red dashed curves and the
blue solid curves), and several window sizes (1× 30, 10× 30
and 20 × 30 represented respectively using ’o’, ’×’ and ’+’
symbols). The performance of the BMA is given by the very
first point on the top right of each curves, which also corre-
sponds to the performance achieved by the extended MMA
taking λ=0, as both algorithms only intend to minimize the
distortion of the predicted image. From all of these points
starts a curve representing the performance of the extended
MMA plotted for several values of λ. Using a window of size
1× 30 and blocks of size 8× 8, the BMA gives the R-D point
(14.6dB, 0.07bpp), while the MMA can still reach this qual-
ity of reconstruction for a bitrate much lower (0.02bpp) for
a given value of λ, thus allowing a gain of 71% for the same
PSNR. By extending vertically the searching window, which
is more adapted to this non-rectified stereoscopic image, the
BMA yields to the R-D point (21.4dB, 0.14bpp). Allowing
a little decrease of the predicted image quality (21.1dB), the
extended MMA reduces the bitrate to 0.03bpp (corresponding
to a decrease of 79%). It can also be noted that using blocks
of size 10 × 10, the BMA gives a predicted image quality
of 21.2dB for a bitrate of 0.09bpp. For the same bitrate, the
extended MMA acheives a gain of 0.2dB over the BMA using
smaller blocks of size 8× 8.
Figure 7 shows the performance of the BMA and the MMA on
the stereoscopic image ”Tsukuba” from Middlebury dataset,
using blocks from 4×4 to 8×8, and a window of size 3×30.
Performance of the BMA are given by the circles joined by

the red dashed line, each circle corresponding to a different
size of block. From each of these circles starts a blue curve
(in solid line) representing the performance of the extended
MMA for the same size of block and several values of λ. The
BMA gives a reconstructed image of quality 25.3dB for a
bitrate of 0.36bpp using blocks of size 4 × 4. The extended
MMA allows to reduce the bitrate up to 0.19bpp for a just lit-
tle lower PSNR of 25.2dB. The extended MMA also achieves
a gain in the quality of the predicted image for the same bi-
trate. As an example, at 0.15bpp, the BMA gives a PSNR
of 24.2dB for the predicted image while for the same bitrate,
the extended MMA yields to 25.0dB, resulting in a gain of
0.8dB. Simulations on other stereoscopic images confirm the
benefits of our approach with respect to the BMA.

5. CONCLUSION

An extension of the disparity map estimation algorithm called
MMA has been presented for non-rectified images. The orig-
inal MMA is related to the generic M -algorithm which con-
sists to sequentially build a tree where only M -best paths are
retained at each depth. The optimization algorithm is based
on a joint entropy-distortion metric. The extended MMA still
ensure a better predicted image in terms of PSNR while also
reducing the bitrate required to encode the estimated dispar-
ity map compared to the traditional BMA in the case of non-
rectified stereoscopic images.

Fig. 4. Rate-distortion optimization on ”Wood2”.
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Fig. 6. Rate-distortion optimization on ”Wood2”.

0 0.1 0.2 0.3 0.4 0.5
21

22

23

24

25

26

27

28

29

bits per pixel (bpp)

PS
NR

 (d
B)

fen30, Malgo, Baby1, fi1

Fig. 7. Rate-distortion optimization on ”Baby1”.

6. REFERENCES

[1] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation
of Dense Two-Frame Stereo Correspondance Algorithms,” In-
ternational Journal of Computer Vision, IJCV, vol. 47(1), pp.
7–42, Apr. 2002.

[2] M. Kaaniche, R. Gaetano , M. Cagnazzo, and B. Pesquet-
Popescu ”Disparity Estimation Techniques,” Emerging Tech-
nologies for 3D Video : Creation, Coding, Transmission and

Rendering, First Edition, John Wiley and Sons, pp. 81–101,
2013.

[3] Y.-M. Ohta and T. Kanade, “Stereo by Intra- and Inter-
Scanline Search Using Dynami c Programming,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PAMI,
vol. 7(2), pp. 139–154, Mar. 1985.

[4] O. Veksler, “Stereo Correspondence by Dynamic Program-
ming on a Tree,” IEEE Conference Proceedings of Computer
Vision and Pattern Recognition, CVPR, vol. 2, pp. 384–390,
San Diego, United States, Jun. 2005.

[5] N. M. Nasrabadi, “A Stereo Vision Technique Using Curve-
Segments and Relaxation Matching,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI, vol. 14(5),
pp. 566–572, May. 1992.

[6] Y. Boykov, O. Veksler and R. Zabih, “Fast approximate en-
ergy minimization via graph cuts.,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI, vol. 23(11),
pp. 1222–1239, Nov. 2001.

[7] M. Bleyer and M. Gelautz, “Graph-based surface reconstruc-
tion from stereo pairs using image segmentation,” Video-
metrics VIII, vol. SPIE-5665, pp. 288–199, San Jose, United
States, Jan. 2005.

[8] J. Sun, “Stereo Matching Using Belief Propagation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI, vol. 25(7), pp. 787–800, Dec. 2003.

[9] Y.-C. Tseng, N. Chang and T.-S. Chang, “Low memory cost
block-based belief propagation for stereo correspondance,”
2007 IEEE International Conference on Multimedia and Expo,
IEEE, pp. 1415–1418, 1998.

[10] Pan WH, Wei S, Shang-Hong L, “A hybrid motion estima-
tion approach based on normalized cross correlation for video
compression.,” IEEE International Conference ICASSP, pp.
1037–1040, 2008.

[11] Schreer O, Kauff P, Sikora T, “3D video communication,”
John Wiley & Sons, 1998.

[12] Zabihand R, Woodfill J., “Non-parametric local transform for
computing visual correspondence.,” 2007 Proceedings of the
Third European Conference on Computer Vision, pp. 150–158,
1994.

[13] F. Jelinek, “Fast sequential decoding algorithm using a stack,”
IBM J. Res., Develop. 13, 1969, pp. 675–685.

[14] A. Kadaikar, G. Dauphin and A. Mokraoui, “Sequential
block-based disparity map estimation algorithm for stereo-
scopic image coding,” Elsevier Journal, Signal Pro-
cessing : Image Communication, September 2015, DOI
10.1016/j.image.2015.09.007 (In press).

[15] “http://vision.middlebury.edu/stereo/data/”.

[16] “http://vasc.ri.cmu.edu/idb/html/stereo/”.


