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ABSTRACT
This paper deals with the block-based disparity map estima-
tion of stereoscopic image. While most existing algorithms
estimate this map by minimizing a dissimilarity metric, the
proposed optimization algorithm aims at minimizing the rate-
distortion compromise where the disparity map yielded by the
traditional block matching algorithm is used as an initial re-
ference map. The algorithm analyzes the performance impact
of the permutation of each disparity of the reference map with
all possible disparities. The retained disparity is one that im-
proves the joint rate-distortion metric. This process is repea-
ted as long as improvements are observed. Moreover, a par-
ticular attention is given to the updating process of the joint
metric so that the computational cost of the algorithm is not
affected. Simulation results clearly show that our approach
achieves better performance than the traditional block mat-
ching algorithm in terms of rate-distortion compromise.

Index Terms— Block matching algorithm, Optimization,
Disparity estimation, Entropy, Distortion.

1. INTRODUCTION

A growing number of 3D-applications have emerged in
the last decade such as free viewpoint television and 3D vi-
sioconferencing [1–3]. Such applications require efficient
coding solutions that exploit the redundant information of-
ten shared among different views of the same scene. Indeed
same objects in both views are slightly shifted. This shift is
referred as the disparity and is considered as a cue for the
depth perception. Here, disparity is used to take advantage of
the redundant information as in most stereoscopic image co-
ding approaches. Disparity compensated coding approaches
generally achieve better performance than encoding separa-
tely each view. Usually these approaches are based on four
main steps: (i) coding the base view (known as a reference
view in the literature); (ii) estimating the disparity map; (iii)
reconstructing the predicted view with the disparity map; and
(iv) coding the residual image (i.e. difference between the
predicted view and base view).

Many disparity estimation algorithms exploit primitives to

match corresponding pixels from both views. Finding the best
match is addressed as an energy-function minimization pro-
blem, and solved locally in [4] or globally in [5, 6]. In the co-
ding context, the Block Matching Algorithm (BMA) remains
the most widespread thanks to its implementation simplicity
and its coding efficiency. It yields a blockwise disparity map
by selecting for each block a disparity that locally minimizes
a dissimilarity measure, usually the Sum of Absolute Diffe-
rences (SAD) or the Sum of Square Differences (SSD) [7].
Other methods have been introduced using a regularization
constraint in the energy function ( [8–10]), or a joint entropy-
distortion metric in [11].

This paper proposes a block-based disparity estimation
algorithm using the disparity map provided by the BMA as
an initial reference disparity map. The developed algorithm,
denoted R-algorithm, aims at minimizing the rate-distortion
compromise which consists of updating the reference map as
long as improvements in terms of rate-distortion are observed.

The remainder of the paper is organized as follows.
Section 2 introduces the principle concepts where the rate-
distortion compromise is formalized as a Lagrangian minimi-
zation of a cost function. Section 3 deals with the proposed
sub-optimal rate-distortion approach, referred as R-algorithm,
where the proposed strategies not only improve the rate-
distortion performance but also update the cost function
without affecting the computational cost of the algorithm.
Section 4 discusses simulation results. Finally, Section 5
concludes this work.

2. PRINCIPLE CONCEPTS OF THE PROPOSED
BLOCKWISE DISPARITY MAP ESTIMATION

This section focuses on the principle concepts of the pro-
posed algorithm. This algorithm estimates a blockwise dispa-
rity map where the left view is considered as the base view
and the right view as the predicted view. Disparities are es-
timated by matching blocks under the assumption that these
matching blocks are found along the same scan lines either
thanks to a rectifying algorithm or because particular care
was given in the shooting. Therefore all pixels within a block
of the image to be predicted have the same disparity. Intro-



duce below some notations to define the location, size, pixel-
intensity and disparity of blocks.

2.1. Block notations

The left and right images (respectively Il and Ir) are of
size K × L pixels and are divided into T = X × Y non-
overlapped blocks, each of size NX ×NY pixels. Each block
is represented by its block-coordinate (ib, jb) and its pixel-
coordinate (ip, jp) indicating the top left pixel of the block.

Pixel-coordinates are linked to block-coordinates as fol-
lows : ip = ib×NX and jp = jb×NY . Therefore pixels inside
a block have the following coordinates (ip + u, jp + v) with
u = 0, . . . , NX−1 and v = 0, . . . , NY −1. Il(ip+u, jp+v)
and Il(ip + u, jp + v) are respectively the pixel intensity on
the left and right views.

A disparity d(ib, jb) is assigned to each block. The block-
wise disparity map, denoted d, is thus given by:

d = {d(ib, jb) with ib = 0, ..., X−1; jb = 0, ..., Y −1}. (1)

For better accuracy, the considered disparities (i.e. d(ib, jb))
are not necessarily integers. Therefore the set W of all pos-
sible disparities is defined with a precision of 1

α where α ∈
{1, 2, 4, 8} and is given as follows:

W = {wmin, wmin + 1/α, ..., wmax − 1/α,wmax}, (2)

where wmin and wmax are the searching region bounds cor-
responding to a length, denoted N , equal to N = wmax −
wmin + 1 pixels. Note that the size of the set W is different
from its length N and is given by (N − 1)× α+ 1.

As a result, the pixel-intensities related to non-integer co-
ordinates in the left view are interpolated using weighted in-
tensities of neighbouring pixels. The left interpolated view is
denoted Ilint. Intensities of pixels located at positions (ip +
u, jp + v) inside a block of the right view are thus predicted
according to:

Îr(ip + u, jp + v) = Ilint(ip + u, α(jp + v + d(ib, jb))) (3)
with u = 0, ..., NX − 1 and v = 0, ..., NY − 1.

2.2. Rate-distortion optimization problem

This section is concerned with the problem of estimating
the disparity map (i.e. d) achieving the best compromise in
terms of rate-distortion (i.e. minimizing the distortion for a
given bitrate, or minimizing the bitrate for a given quality).
Before presenting the formalization of the rate-distortion op-
timization problem, we first define the necessary information
to solve our problematic.

The required bitrate to encode the disparities is measured
with the entropy, denoted H(d), which is deduced from the
empirical probabilities of each disparity within the map d (see

equation (1)) and is given as follows:

H(d) = −
∑
w∈W

V (d, w)
T

log2

(
V (d, w)
T

)
, (4)

where V (d, w) is the number of occurrence of each disparity
w within the blockwise disparity map; T is the total number
of blocks; and V (d,w)

T is thus the empirical probability of the
disparity w within the disparity map d.

The Global distortion, denoted EG(d), of the predicted
view Îr is calculated as follows:

EG(d) =
∑X−1
ib=0

∑Y−1
jb=0EL((ib, jb), d(ib, jb)), (5)

depending on Local quadratic distortionsEL((ib, jb), d(ib, jb)).
Each distortion is measured between the block (ib, jb) in the
original view Ir and its prediction according to the assigned
disparity d(ib, jb) given by:

EL((ib, jb), d(ib, jb)) = (6)
NX−1∑
u=0

NY −1∑
v=0

(Îr(ip + u, jp + v)− Ir(ip + u, jp + v))2.

The rate-distortion optimization problem is formalized as
a Lagrangian minimization:

d̂ = argminJ(λ,d) = argmin(EG(d) + λH(d)), (7)

where λ is the Lagrangian multiplier. Equation (7) shows that
the global cost J(λ,d) to be minimized is a joint entropy-
distortion metric. Minimizing J(λ,d) for all λ values yields
to all the points on the convex hull of all possible bitrate-
distortion cost.

3. SUB-OPTIMAL RATE-DISTORTION SOLUTION:
THE PROPOSED R-ALGORITHM

This section proposes a sub-optimal solution of the joint
entropy-distortion metric minimization problem expressed by
equation (7). The developed optimization algorithm, denoted
R-algorithm, starts with the disparity map yielded by the tra-
ditional BMA as an initial Reference disparity map. At each
stage of the algorithm, this reference map is modified gra-
dually as long as improvements are observed. The complete
process is explained below.

3.1. Raster scanning notations

Before describing the proposed algorithm, introduce some
notations. Blocks of each view are processed in a raster scan-
ning order. For the sake of simplicity, block-coordinates
(ib, jb) are now replaced by a 1-D coordinate, denoted t:

t = ib × Y + jb with ib = 0, ..., X − 1 and jb = 0, ..., Y − 1. (8)



As a result, t ranges from 0 to T − 1 where T is the total
number of blocks in the right image (i.e. X × Y ). The block
disparity of coordinate t is now denoted dt. The Local distor-
tion induced by this disparity is EL(t, dt).

The initial reference blockwise disparity map provided by
the traditional BMA is defined as follows:

dR = {dR0 , dR1 , ..., dRt , ..., dRT−1}, (9)

where dRt is the disparity of the t-th block.

3.2. Blockwise disparity map based on the joint entropy-
distortion criterion

Assume that the optimization R-algorithm has already
modified the reference disparity map by processing blocks
ranging from 0 to t − 1. Therefore the updated reference
blockwise disparity map dR becomes:

dt−1 = {d0, d1, . . . , dt−1, dRt , . . . , dRT−1}, (10)

where d0, d1, . . . , dt−1 are the disparities that may have been
changed when the algorithm has processed blocks ranging
from 0 to t − 1 and dRt , . . . , d

R
T−1 are the unchanged dispa-

rities of the initial reference map dR. The selected disparity
map dt−1 generates the best global cost expressed as:

J(λ,dt−1) = EG(dt−1) + λH(dt−1), (11)

where EG(dt−1) is the global distortion induced by the pre-
dicted image and H(dt−1) is the entropy both related to the
disparity map dt−1.

Note that the algorithm changes the disparity of at most
one block at the time. Consider the next block, i.e. the t-
th block, to be matched. The disparity dRt associated to this
block is replaced by each of the (N − 1)×α other disparities
w ∈W \{dRt } thus generating (N−1)×α different disparity
maps dt(w):

dt(w) = {d0, d2, ..., dt−1, w, dRt+1, ..., d
R
T−1}. (12)

For each modified disparity map, a global cost J(dt(w))
is computed as follows:

J(λ,dt(w)) = EG(dt(w)) + λH(dt(w)), (13)

where EG(dt(w)) and H(dt(w)) represent respectively the
updated global distortion and entropy related to the choice
of dt(w). The global costs J(λ,dt(w)) are then sorted in an
increasing order. The disparity w = dt which is associated
to the smallest J(λ,dt(w)) is then retained and the disparity
map according to the process of the t-th block becomes:

dt = {d0, d1, ..., dt−1, dt, dRt+1, ..., d
R
T−1}. (14)

Based on this principle, the R-algorithm continues until
processing the last block (i.e. (T −1)-th block). A new dispa-
rity map dT−1 is then estimated introducing a minimal global
cost J(λ,dT−1).

To further improve the rate-distortion performance, the R-
algorithm iterates the described process where the disparity
map dT−1 is now considered as a reference disparity map.
This process is repeated as long as improvements in terms
of rate-distortion are observed. Figure 1 summarizes the dif-
ferent steps of the proposed optimization R-algorithm.

3.3. Entropy and distortion recursive equations

To avoid being faced with a heavy computational load
due to the calculation of EG(dt(w) and H(dt(w), the R-
algorithm proposes to reuse the previous results obtained after
processing the (t− 1)-th block.

The global distortion is thus updated according to the fol-
lowing recursive equation:

EG(dt(w)) = EG(dt−1)− EL(t, dRt ) + EL(t, w), (15)

where EL(t, dRt ) and EL(t, w) being the local distortion in-
duced respectively by the disparities dRt and w for the t-th
block:

EL(t, d
R
t ) =

NX−1∑
u=0

NY −1∑
v=0

(Îr(ip + u, jp + v)− (16)

Ilint(ip + u, α(jp + v + dRt )))
2,

and

EL(t, w) =

NX−1∑
u=0

NY −1∑
v=0

(Îr(ip + u, jp + v)− (17)

Ilint(ip + u, α(jp + v + w)))2.

Note that the permutation of disparity w with dRt , in-
creases the number of occurrence V (dt, w) of one unit as
compared to V (dt−1, w), while V (dt, dRt ) has decreased of
one unit as compared to V (dt−1, dRt ). Hence, the entropy of
the modified disparity map is also updated according to the
following equation:

H(dt(w)) = H(dt−1)

+
(
V (dt−1,dRt )

T

)
log2

(
V (dt−1,dRt )

T

)
−
(
V (dt−1,dRt )−1

T

)
log2

(
V (dt−1,dRt )−1

T

)
+
(
V (dt−1,w)

T

)
log2

(
V (dt−1,w)

T

)
−
(
V (dt−1,w)+1

T

)
log2

(
V (dt−1,w)+1

T

)
.

(18)

4. PERFORMANCE EVALUATION

This section discusses simulation results conducted on
different stereoscopic images, from Middlebury and Deimos
datasets [12, 13], to evaluate the performance of the propo-
sed optimization R-algorithm. It is compared first with the



Input: Left image Ilint and right image Ir
Output: Estimated blockwise disparity map associated with Ir
1. Estimate the disparity map using the traditional BMA;
2. Improve the reference blockwise disparity map:
a. Set initial values: λ; wmin; wmax; ib = −1; jb = −1; α;
b. Increment by 1 the row index ib;
c. Increment by 1 the column index jb;
d. Set the sliding matching window on the pixel Ilint(ip, jp);
e. Replace the disparity of the current block by each of the other
disparities w;
f. Update the global distortion induced by the predicted image
for each choice of w;
g. Update the entropy for each choice of w;
h. Compute the global entropy-distortion cost for each w;
i. Sort the costs in a decreasing order.
j. Select the disparity w minimizing the global cost.
k. Update the disparity map;
l. Start again from step c if jb < Y otherwise continue;
m. Start again from step b if ib < X otherwise continue;
n. Start again from step 2 if the final global cost is smaller than
the initial cost, otherwise continue;

3. End

Fig. 1. Proposed optimization R-algorithm

traditional BMA. Then some additional results are provided
to carry out comparisons with the Modified M-Algorithm
(MMA) developed in [11].

The base image is considered as the left one. The pre-
dicted image is the right one which is derived from the un-
compressed left image and the estimated blockwise disparity
map using the developed R-algorithm. The bitrate associated
to the disparity map is estimated by the entropy expressed in
bits per pixel (bpp). The Peak Signal-to-Noise Ratio (PSNR)
measures the quality of the predicted right image. For all algo-
rithms, estimated disparities have the same quarter-pixel pre-
cision ranging from −30 up to 29 + 3/4. The interpolated
right image is computed using the same filters employed in
the H.264 standard [14].

Figure 2 provides simulation results conducted on the
stereoscopic image ”Tsukuba” (Middlebury dataset) of size
288× 384. The curve with circles (o) illustrates the PSNR in-
volved by the BMA disparity map versus bpp for 13 different
block sizes (4 × 4 up to 16 × 16). For the sake of visibility,
circles are joined with a dashed line.
The curves with red solid line show the performance in terms
of PSNR involved by the R-algorithm disparity map versus
bpp. Each curve is related to a given block size and plotted for
different values of λ. Note that each curve at its right end is
connected to a circle recalling that for λ = 0, the R-algorithm
and the BMA have the same performance. The analysis of
these curves clearly shows the advantage of our approach
compared to the traditional BMA. Indeed significant gains in
terms of rate-distortion are observed.

Table 1 compares the performance using four stereosco-
pic images ”Tsukuba”, ”Sawtooth”, ”Teddy” (from Middle-

bury dataset) and ”Stereo 13” (from Deimos dataset) for low,
medium and high bitrates with 3 different block sizes (4× 4,
6×6 and 8×8). Note that the R-algorithm achieves a signifi-
cant reduction in terms of bpp for a small reduction of the re-
construction quality. Hence, when processing ”Tsukuba” ste-
reoscopic image using blocks of size 4×4, the BMA requires
0.338bpp to ensure a reconstruction quality equal to 35.12dB,
while the R-algorithm requires only 0.188bpp for a very si-
milar reconstruction quality equal to 34.98dB. This important
bitrate reduction is obtained by a different choice of dispari-
ties yielding a lower entropy.

For equivalent PSNR (see first line of Table 1), the BMA
disparity map histogram, provided by Figure 3, is compo-
sed of many bars of medium or small height. While the R-
algorithm disparity map histogram, in Figure 4, contains less
bars of increased height resulting in a reduction of the dispa-
rity map entropy.

Figure 5 shows the original right image ”Tsukuba”, it in-
dicates with a white box the corresponding location of the
close-up views of Figure 6, showing among other items, the
upper part of a lampshade. This figure shows two reconstruc-
tions of the right image with the BMA on the left and with
the R-algorithm on the right. Both require the same bitrate
0.14bpp, the BMA uses blocks of size 6 × 6, whereas the
R-algorithm uses blocks of size 4 × 4. When measuring the
distortion of the whole image in PSNR, we can note that the
R-algorithm achieves an improvement on the BMA of 1.5dB:
34.5dB as compared to 32.9dB. With a closer look we can see
a better reconstruction quality with the R-algorithm as a gray
block is lacking on the upper left corner of the lampshade on
the left image.

The following results are provided to compare the perfor-
mance of the R-algorithm with the MMA. This latter sequen-
tially estimates a block-based disparity map by building a tree
as each block is being matched. Only M-best paths are retai-
ned and explored at each depth of the tree. The MMA relies on
the minimization of a similar joint entropy-distortion metric
to select the best disparities. Those in the unprocessed area
are assumed to follow some specific distribution. Figure 7
shows results of simulations conducted on the stereoscopic
image ”Stereo 13”. Disparities are selected amongst the set
[−30, . . . , 29+ 3

4 ] for all the algorithms. The dashed curve joi-
ning circles depicts the performance of the BMA using sizes
of blocks ranging from 4× 4 to 14× 14 pixels. Results obtai-
ned with the R-algorithm (resp. the MMA) are given by the
set of solid lines in red joining the ”x” symbols (resp. the set
of solid lines in blue joining the ”+” symbols). Each of these
curves is obtained with a given size of blocks and by varying
the parameter λ. For better clarity, the performance of both
algorithms have only been plotted for three block sizes (4×4,
6 × 6 and 8 × 8). It can be noted that both algorithms per-
form better than the BMA for a given bitrate as well as for
a given quality of reconstruction. Therefore, the R-algorithm
achieves better performance than the MMA with a gain of up



to 0.2dB in terms of PSNR over the MMA (at the bitrate of
0.13bpp).
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Fig. 2. Rate-distortion performance on ”Tsukuba”.

−30 −20 −10 0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

Disparity

Pr
ob

ab
ilit

y

Fig. 3. BMA blockwise disparity map histogram.
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Fig. 4. R-algorithm blockwise disparity map histogram.

5. CONCLUSION

This paper focused on block-based disparity map for ste-
reoscopic image . This problem has been formalized as an
optimization problem based on the minimization of a joint
entropy-distortion metric. The developed R-algorithm is a
sub-optimal algorithm relying on the reference disparity map
provided by the traditional BMA. This reference map is mo-
dified as long as improvements in terms of rate-distortion

Fig. 5. ”Tsukuba” original right image.

Fig. 6. Close-up views of the reconstructed image using the
BMA (left figure) and the R-algorithm (right figure).
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Fig. 7. Rate-distortion performance on ”Stereo 13”.

are observed. Moreover, this algorithm has been concerned
with reducing the computational load when updating the glo-
bal distortion and entropy. Simulation results conducted on
stereoscopic images confirm that the proposed R-algorithm
performs better results in terms of rate-distortion than the
traditional BMA and also the MMA. The integration of this
approach in a complete disparity compensated coding scheme
will be considered in future investigations.



Stereo BMA R-algorithm
Images Block Size PSNR Bitrate PSNR Bitrate

Tsukuba
4x4 35.12 0.338 34.98 0.188
6x6 32.95 0.138 32.88 0.084
8x8 32.08 0.074 32.00 0.046

Stereo 13
4x4 30.57 0.430 30.48 0.317
6x6 29.35 0.180 29.27 0.124
8x8 28.88 0.097 28.80 0.065

Sawtooth
4x4 33.37 0.362 33.30 0.285
6x6 31.79 0.154 31.74 0.126
8x8 30.69 0.085 30.62 0.069

Teddy
4x4 26.14 0.416 26.06 0.266
6x6 25.10 0.177 25.03 0.110
8x8 24.37 0.095 24.31 0.062

Table 1. Comparison of rate-distortion performance.
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