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ABSTRACT
This paper deals with the stereo matching problem to estimate
a dense disparity map. Traditionally a matching metric such
as mean square error distortion is adopted to select the best
matches associated with disparities. However several dispari-
ties related to a given pixel may satisfy the distortion criterion
although quite often the choice that is made does not necessar-
ily meet the coding objective. An entropy-constrained dispar-
ity optimization approach is developed where the traditional
matching metric is replaced by a joint entropy-distortion met-
ric so that the selected disparities reduce not only the disparity
entropy but also the reconstructed image distortion. The algo-
rithm sequentially builds a tree avoiding a full search and en-
suring good rate-distortion performance. At each tree depth,
the M best retained paths are extended to build new paths
which are assigned entropy-distortion metrics. Simulations
show that our algorithm provides better results than dynamic
programming algorithm.

Index Terms— Stereoscopic images, matching, disparity,
entropy, optimization

1. INTRODUCTION

Stereoscopic image (3D image) is composed of an image pair
captured by a stereo camera which provides the same scene
for the right and left eye. Hence it requires twice amount of
information to be transmitted or stored compared to a tradi-
tional image (2D image). Therefore to compress efficiently
stereoscopic image, the developed coding algorithms exploit
inter-view redundancies since the stereo camera captures the
same scene. The underlying idea consists to extract the spatial
displacements between the left and right image to estimate
the disparity map. Its efficient estimation ensures a reliable
reconstruction of the original stereoscopic image.

The state of the art performed on the estimating prob-
lem of the disparity map shows that many studies already ad-
dressed this problem and several stereoscopic matching algo-
rithms have been deployed. The stereoscopic matching prob-
lem is generally formulated as the minimization problem over
the overall image of an energy function (global cost) result-

ing in global approaches or several energy functions (local
costs) resulting in local approaches. These methods, as sum-
marized in [1, 2], differ in the choice of : (i) the primitives
(e.g. pixels, interest points, segments, regions, edges) and
their attributes (e.g. gray level, contrast, color components,
segment position, segment orientation) to be matched ; (ii)
the global cost of correspondence including the local match-
ing costs which measure the dissimilarity between two cor-
responding primitives and the constraint cost for all corre-
spondences (e.g. uniqueness, ordering, smoothness); (iii) the
matching window size; (iv) the aggregation area ; and (v) the
optimization method.

The main objective of the optimization methods is to min-
imize the global or local cost to ensure a high matching accu-
racy. The most naive method is the greedy search which per-
forms an exhaustive search for the best matching. For its high
computational load, this method has not been retained. Dy-
namic programming technique has been the first optimization
method introduced in stereo matching context where smooth-
ness constraints have been added to optimize matches in scan
lines [3]. However among different developed versions, Vek-
sler imposed smoothness in both horizontal and vertical di-
rections with the objective of recovering the real disparity
map [4]. Many other optimization methods such as relax-
ation [5], graph cut [6, 7] and believe propagation [8, 9] have
been also exploited.

Among the stereoscopic matching approaches developed
in literature, this paper focuses on pixel-based matching al-
gorithms. Mean Square Error (MSE) and Mean Absolute Er-
ror (MAD) are usually used as matching criterion. Some-
times, for a given pixel it is possible to get not only one cor-
respondence but also a set of correspondences satisfying the
criterion. Nevertheless, some solutions are more expensive
than others in terms of bit-rate. To address this problem, we
propose to replace the traditional matching metric by a joint
entropy-distortion metric so that the selected disparities re-
duce not only the predicted image distortion but also the dis-
parity entropy. This problem is formalized by the Lagrangian
minimization where the cost function is exploited as the new
matching metric. To avoid computational load related to a full
search solutions, we rely on a tree which is sequentially con-



structed. At each tree depth, the algorithm retains the M best
paths which will be extended in the next step.

The remainder of the paper is organized as follows. Sec-
tion 2 first introduces notations and assumptions, then states
the optimization problem which is formulated by the La-
grangian minimization. The proposed entropy-constrained
dense disparity map algorithm is then developed. Section 3
discusses simulation results. Section 4 concludes the work.

2. PROPOSED ALGORITHM

Assumptions and notations are introduced before describing
the proposed optimization algorithm. Images of the left and
right view of the stereoscopic image are assumed to be recti-
fied. Il and Ir represent respectively the left and right image
of size K × L. Ir(i, j) (respectively Il(i, j)) is the intensity
of the pixel located at position (i, j) in Ir (respectively Il).

In what follows, the proposed algorithm is described so
that it estimates the disparity map related to the right view Ir
using the left view Il as reference image.

2.1. Rate-distortion optimization problem

The problem addressed in this paper concerns the estimation
of the disparities field that minimizes the global distortion
cost of the reconstructed right image expressed by:

Eglobal =
K−1∑
i=0

L−1∑
j=0

(Îr(i, j)− Ir(i, j))
2

with Îr(i, j) = Il(i, j + d(i, j)), (1)

subject to a given entropy constraint H (i.e. number of bits
spent to encode a disparity). d(i, j) is the spatial displacement
associated with the pixel Ir(i, j).

This problem is formulated by the Lagrangian minimiza-
tion which consists to find the points on the convex hull of all
possible Rate-Distortion (R-D) points:

Jmin(λ, d) = min(Eglobal + λH), (2)

where λ is the Lagrange multiplier and d the disparities field.

2.2. Entropy-constraint dense disparity map based on M-
algorithm

This section deals with the optimization problem formulated
by equation (2) where the main objective is to estimate an
efficient dense disparity map associated with one view of the
stereoscopic image in terms of entropy-distortion.

The underlying idea of the developed algorithm is related
to the generic sequential decoding M -algorithm deployed in
[10]. This algorithm has been also exploited in communica-
tions to estimate the transmitted data stream through a noisy
channel according to the maximum likelihood criterion. This

algorithm is a sub-optimal optimization method based on a
tree-search technique parsing only a part of the tree. However
many changes have been made to this algorithm to be adapted
to stereo matching problem.

To reduce the computational load of the optimization
problem, the proposed algorithm limits the matching search
process while trying to ensure good performance in terms of
entropy-distortion. A sliding matching window W of size N
centered on the pixel located at position (i, j) on the right
image Ir is introduced.

The t-th depth of the tree depends on the row index i, the
column index j and the number of columns of the image Ir.
It is expressed as follows:

t = i×L+ j with i = 0, ...,K−1 and j = 0, ..., L−1. (3)

At (t − 1)-th depth of the tree, assume that the M best
retained paths are sorted in a decreasing order according to
the entropy-distortion cost Jk

t−1(λ, d) given by:

Jk
t−1(λ, d) = Ek

t−1 + λHk
t−1 with k = 1, ...,M, (4)

where Ek
t−1 is the cumulative distortion metric and Hk

t−1 is
the disparity entropy both associated with the k-th path at (t−
1)-th depth. At this stage M best disparity maps, denoted Sk,
are retained:

Sk = {dk1 , dk2 , ..., dkt−1} with k = 1, ...,M, (5)

where dkl is the disparity of the k-th path at l-th depth.
On the next depth, i.e. t-th, each M selected path is then

extended by N branches. Each branch is affected by a dispar-
ity equal to w (with w = −n, ..., n depending on the sliding
matching window W ) and a local distortion (Eb

w
t ) given as

follows:

Eb
w
t = ((Il(i, j)− Ir(i, w + j))2 with w = −n, ..., n. (6)

The distortion of each of the M × N extended paths is then
updated according to:

Em
t = Ek

t−1 + Eb
w
t for m = 1, ..,M ×N

with k = 1, ...,M and w = −n, .., n. (7)

For a given λ, the Jk
t (λ, d) cost on the t-th depth is com-

puted as given below:

Jk
t (λ, d) = Ek

t + λHk
t with k = 1, ...M ×N, (8)

where Hk
t is the entropy associated with disparities (i.e.

dk1 , d
k
2 , ..., d

k
t ) of the k-th path at t-th depth provided by

Hk
t = −

n∑
w=−n

pkt (d = w)log2(p
k
t (d = w))

for k = 1, ...M ×N. (9)



However this entropy can not be calculated since it requires
the probability distribution knowledge of disparities. For this,
we propose to estimate these probabilities (i.e. {pkt (d = w)})
according to a finite mixture distribution represented as a sum
of weighted discrete distributions as follows:

p̂kt (d = w|dk1 , dk2 , ..., dkt ) = Ca × pa(d = w) +

Cb × pkexp(d = w|dk1 , dk2 , ..., dkt−1) +

Cc × pc(d = w|d = dkt ), (10)

where the coefficients Ca, Cexp and Cc satisfy the following
condition:

Ca + Cexp + Cc = 1, (11)

with Ca = β × a
a+b+c ; Cexp = b

a+b+c and Cc = c
a+b+c .

These coefficients depend on the current depth, i.e. on the
number of pixels processed and are parameterized as follows:

a = K × L− (i× L+ j); b = i× L+ j and c = 1. (12)

β is a constant parameter smaller than 1. It provides a free-
dom degree to adjust the first probability density (in equation
(10)) assumed to be a discrete uniform distribution on the se-
lected matching window given by:

pa(d = w) =
1

2n+ 1
=

1

N
with w = −n, ..., n. (13)

The probability pkexp(d = w|dk1 , dk2 , ..., dkt−1) is calculated
from the retained disparities until the (t − 1)-th depth (i.e.
dk1 , d

k
2 , ..., d

k
t−1).

The probability pc(d = w|d = dkt ) is the probability re-
lated to the choice that the algorithm makes when it selects at
depth t the branch with disparity wc among other branches:

pc(d = w|dkt = wc) =

{
1 if w = wc

0 if w ̸= wc
(14)

The Jk
t costs are then sorted in a decreasing order and M best

paths are retained. The M disparity maps (i.e Sk) are also
updated. This process is iterated until scanning the complete
reference image. Therefore the first path contains the best dis-
parity map in terms of entropy-distortion. Figure 1 illustrates
an example for M = 2 and N = 5.

The different steps of the proposed optimization algo-
rithm are summarized below.

Algorithm 1: Entropy-distortion M -algorithm
Input: Left image Il and right image Ir of size K × L
Output: Estimated dense disparity map associated with Ir;
1. Set initial values: λ; M ; N ; β; i = −1 and j = −1;
2. Increment by 1 the row index i;
3. Increment by 1 the column index j;
2. Set the sliding matching window on the pixel Ir(i, j);
3. Extend all M best current paths of the tree to depth t;
4. Compute the distortions of M ×N branches;
5. Update the distortions of the extended paths;

6. Estimate the disparity probabilities of each path;
7. Deduce the disparity entropy of each path;
8. Compute the entropy-distortion costs of each path;
9. Sort the paths in a decreasing order of rate-distortion cost;
10. Select among the M ×N paths, the M best paths;
11. Update the M disparity maps;
12. Start again from step 3 if j < L otherwise continue;
12. Start again from step 2 if i < K otherwise continue;
13. Select the best dense disparity map associated with Ir .

3. SIMULATION RESULTS

In this section, simulation results are presented to evaluate the per-
formance of the proposed optimization algorithm. Comparisons are
carried out with the dynamic programming algorithm provides by
the computer vision system toolbox of Matlab [12]. This algorithm
exploits not only block matching metric as the cost function but also
constrains the disparities to change very slightly between adjacent
pixels. Middlebury stereo dataset is used [11].

Simulations provided in this paper are performed on Poster
stereoscopic image using im6.ppm (respectively im2.ppm) for the
right (respectively left) view presented by Figure 2. The spatial res-
olution of these images is equal to 383×435 pixels. In the provided
results, the right view is reconstructed. The performance in terms of
distortion is measured in terms of PSNR calculated between the
original and reconstructed images using the luminance component.

Figure 3 concerns the reconstructed right view using our esti-
mated disparity map with the following parameters: M = 4; β =
0.04; λ = 200000 and N = 30. The evaluated PSNR is equal
to 29.31dB with a bit-rate equal to 3.47bpd (bits per disparity).
Figure 4 is related to the reconstructed right view according to dy-
namic programming disparity map using the same window size (i.e.
N = 30) as in our algorithm. The evaluated PSNR is equal to
23.17dB with 3.51bpd. For an equivalent bit-rate (3.47ppd and
3.51ppd), we obtain a gain of 6dB in terms of PSNR. This is con-
firmed by what we observe on the reconstructed images. Indeed we
clearly see that the reconstruction of ”newspaper” part in the Poster
image is of lower quality for dynamic programming disparity map.

Figure 6 (respectively Figure 5) shows the estimated disparity
map used to reconstruct the right view given by Figure 3 (respec-
tively Figure 4). The distribution of disparities is completely differ-
ent and is provided by Figures 8 and 9.

Figure 11 provides the rate-distortion optimization given for dif-
ferent values of λ with the following parameters: M = 4; β = 0.04
and N = 30. Even if the bit-rate involved by the dynamic program-
ming technique is divided by 2 (i.e. 1.67bpd), a gain of more than
3dB in terms of PSNR (26.55dB) can still be reached. For bit-rates
up to at least 1.1bpd, the reconstruction quality is still better com-
pared to that obtained with dynamic programming disparity map.

For low entropies, without applying any smoothness constraint,
the estimated disparity map is nevertheless smooth. An example is
provided by Figure 7 in which the entropy is equal to 0.9bpd. This is
also confirmed by the disparity distribution illustrated by Figure 10.
Therefore for future investigations, it would be interesting to mod-
ify the estimated dense disparity map using a relevant division into
blocks so as to increase the performance of our optimization algo-
rithm. Another track would be to adapt our algorithm so that the
entropy would be calculated on the difference between consecutive



disparities rather than on disparities.

4. CONCLUSION

This paper addressed stereo matching problem where a pixel-based
approach is adopted to estimate a dense disparity map. The op-
timization problem of selecting the best disparities in terms of
entropy-distortion is formulated by the Lagrangian minimization. In
order to reduce the computational load associated with a full search
solutions, this optimization problem statement is solved according
to the developed algorithm which sequentially builds a tree avoiding
a full search and ensuring good rate-distortion performance. Indeed
at each tree depth, only the M best retained paths are extended to
build new paths for which entropy-distortion metrics are assigned.
Simulations performed on stereoscopic images clearly show the
advantage of our algorithm compared to the dynamic programming
technique in the particular context of coding.
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Fig. 1. Entropy-constrained dense disparity map estimation
algorithm with M = 2 and N = 5.

Fig. 2. Original right image.
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