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Abstract—The recent pandemic of COVID-19 has proven to
be a test case for Unmanned Aerial Vehicles (UAVs). UAVs have
shown great potential for plenty of applications in the face of
this pandemic, but their scope of applications becomes limited
due to the dependency on ground pilots. Irrespective of the5

application, it is imperative to have an autonomous path planning
to utilize UAVs to their full potential. Collision-free trajectories
are expected from the path planning process to ensure the safety
of UAVs and humans on the ground. This work proposes a path
planning technique where collision avoidance is mathematically10

proven under an uncertainty prerequisite, that the UAV follows
its requested moving position within some threshold distance.
This scheme ensures UAV safety by considering the underlying
control’s system overshoots. Obstacles play a guiding role in
selecting collision-free trajectories. These obstacles are modeled15

as rectangular shapes with interest points defined around their
corners. These points further define collision-free permissible
edges, and later we apply the Dijkstra algorithm to these edges
before having the desired trajectory. Regardless of the size of
deployment area, our proposed scheme incurs low computational20

load due to the dependency on pre-defined interest points
only thereby making it suitable for real-time path planning.
Simulation results obtained using MATLAB’s UAV Toolbox show
that the proposed method succeeds in getting short collision-free
trajectories.25

Index Terms—Control of a UAV network, collision-free trajec-
tories, non-heuristic motion-planning, Unmanned Aerial Vehicle
(UAV), UAV motion-planning.

I. INTRODUCTION

OWING to rapid technological advancements, Unmanned30

Aerial Vehicles (UAVs) are emerging as a reliable choice
in various application domains. This is substantiated by emer-
gence of recent UAV deployments in a wide range of appli-
cations. In addition to the military domain, UAVs are playing
their part in the realm of civil, public, and personal [1]–[5].35

Transportation of medical equipment, lab sample collection,
spraying over different areas, and public space monitoring with
guidance are novel use cases during the ongoing pandemic
of COVID-19 [6], [7]. There are numerous other applications
that are not limited to surveillance, post-disaster assessment,40

and rescue operations [8]–[11]. The future may see UAVs
delivering goods and collect data from the Internet of Things
(IoT) devices as in [66]. Minimizing energy consumption is
one of the major research goals in recent research efforts
[12] and [13]. In the future, UAVs may be used to provide45

additional computing resources [14].
In many countries, rules and regulations for flying aerial

UAVs in public areas are still in the phase of development [15].

Nonetheless, a pilot on the ground or UAVs with an autopilot
system on-board should be capable of avoiding flying over 50

unsafe, risky, and no-fly zones [16], [17]. Smart autonomous
path planning and navigation become inevitable because it is
not always possible to keep the flying UAV in the line of sight
of a pilot. Furthermore, the use of autonomous navigation also
reduces the probability of human errors from the system. 55

Path planning is an important issue which must be consid-
ered during UAV mission planning [18]. Many of the currently
deployed applications for UAVs have autopilot functionalities
along with the capability to fly them according to the pre-
planned path or even make real-time decisions in case of 60

any unforeseen scenario [19], [20]. However, some of the
commercially used UAVs still use off-board pilots and fixed
trajectories. In the literature, researchers have proposed three-
dimensional path planning approaches to navigate UAVs in the
presence of obstacles. 65

In this work, we focus on the ability of a UAV to travel to a
target while avoiding obstacles. Some of these methods used
to achieve this objective have a learning capacity and may
adapt to unknown obstacles and to specific UAV navigation
capabilities. They may even discover by themselves navigation 70

techniques using a method such as Reinforcement Learning
(RL) [21] [22]. These RL based navigation techniques gener-
ally use Markov decision processes along with time-difference
or Monte-Carlo methods and the information learned is stored
in a Look Up Table (LUT). Hsu et al. [66] also used RL for 75

collision avoidance.
As surveyed in [23] and demonstrated in [24] and [13],

neural networks, (NN), have also been used to improve
reinforcement learning because they improve performance,
replace the LUT, and support high-dimensional inputs. Samir 80

et al. [68] used the Actor-Critic (AC) algorithm of the deep RL
algorithm to direct the flight route of UAVs on highways with-
out communication infrastructure. To successfully optimize
vehicular coverage, the given framework comprehends the
dynamics of the vehicular environment and the ideal trajectory 85

of the deployed UAVs. It is precisely their ability to adapt to a
wide variety of contexts, that makes their behavior difficult to
predict, and, in the same way, it makes their use inappropriate
in addressing collision avoidance as a safety issue.

Other methods, grouped into two classes, formulate path 90

planning as an optimization problem in [25], [26], [66],
[69]. Heuristic methods are those wherein the optimality
of the solutions compromises for better computational time
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efficiency. We include in this first class, techniques using NN,
RL, AC when they are derived from an optimization problem95

as in [66], [69]. Non-heuristic approaches, however, provide
optimal solutions but demand high computational resources.
In these techniques, the process starts by breaking down the
whole detected area or map into computational domains via
tool such as matrix decomposition. This data is utilized further100

in developing possible UAV trajectories [8].
Path planning is a way to find a feasible, optimal/near-

optimal, shortest, smooth, and a low-cost path between a
starting point and the desired destination point by considering
specific operational constraints [19]. These constraints usually105

involve velocity, acceleration, environmental disturbances such
as wind, sensor uncertainties, and flying over restricted areas.
From a control view point, we distinguish two kinds of UAVs
depending on whether they have a minimum speed (i.e. fixed
wings, as described in [54], [55]). We focus on UAVs with110

hovering capacities as in [17] using quadrotors. Generally,
path planning consists of two stages, namely, graph building
and pathfinding [16]. A graph construction considers the start
and end points, and all available vertices obtained by matrix
decomposition or area tessellation.115

Different tessellation resolutions result in a different number
of vertices which in turn determine the computational work
needed [8]. A higher number of vertices require a high
computational load, while a lower value requires a smoothing
process to get stable trajectories [19]. This smoothing process120

is necessary to avoid having any acute angle turns within
a path. The pathfinding process assigns the respective cost
of each vertex and selects a flight path with a minimum
overall cost. In this context, Dijkstra, A* or genetic algorithms
are applied to these vertices to get optimal trajectories [16].125

By considering the entire environment during the tesselation
process, these algorithms incur a higher computational load
for the existing works.

While on a mission, a UAV may collide with other UAVs
or nearby obstacles. UAVs must have an obstacle avoidance130

mechanism to prevent collisions by maintaining a safe distance
from nearby objects. The efficiency of this mechanism highly
relies on the accurate operation of positioning sensors. These
sensors help UAVs in the navigation process by providing
positioning information during the entire flight duration. The135

Global Navigation Satellite System (GNSS) is the most com-
monly used sensor in this regard [27]. The precision of
GNSS is greatly influenced by the multipath effect and by the
blockage of the received satellite signal. GNSS operates well
in open areas, whereas these conventional methods cannot be140

relied upon in urban areas having large buildings with a higher
probability of signal blockage. UAVs employed for civilian
application need to pay more attention to the precision of local-
ization values which, on the other hand, could prove to be very
dangerous for the safety of humans on the ground [28], [29].145

Many existing works [30]–[32] have proposed a collaborative
architecture of GNSS with active sensors, such as LiDAR,
to mitigate the multipath effect. However, these architectures
incur high deployment costs and have high computational load
and memory needs [33].150

Environmental disturbances or sensor uncertainties and,

specifically, their role in UAV path planning is an outstanding
research field that needs further investigation. These uncertain-
ties may arise from GNSS values, wind speed, or variation
in the velocity of UAVs [34]. In this paper, we assume 155

that uncertainties related to the environment, the sensors, and
the navigation capabilities are modeled into an uncertainty
prerequisite, that is, the existence of a threshold distance
between the UAV and its requested moving position. We
propose a collision-free path planning technique that reduces 160

the computational load required by replacing area tessellation
with interest points connected into a graph. This computational
load reduction is a desired feature for applications requesting
the UAV to reach targets whose locations are provided with an
ongoing flow of information. These interest points are located 165

around each corner of rectangles, each modeling an obstacle
and all together model the environment. It is worth noting that
obstacles with complex shapes can also be approximated by a
union of overlapping rectangles.

We summarize the main research contributions of this work 170

as follows:
• We model uncertainties arising due to environmental

disturbances as an uncertainty prerequisite and we con-
sider them in the UAV path planning process to design
collision-free trajectories. This uncertainty prerequisite as 175

a guard distance and protects the UAV from collision even
if the underlying control system fails to meet its defined
overshoot limitations.

• The proposed path planning method considers obstacles
in an environment as rectangles because a tool like a 180

visibility graph allows modeling of the environment as
a graph. We seek guidance from obstacles by including
their corners as graph nodes into the area where the
tesselation process occurs instead of considering the
entire environment, thus reducing the computational load 185

on the path planning process.
• We demonstrate the efficacy of the proposed scheme,

in terms of reduced computational load, shorter and
collision-free trajectories, through simulations carried out
using the MATLAB’s UAV Toolbox. 190

We organize the rest of the paper as follows. Section II
presents related works on UAV path planning and in particular
in the presence of obstacles. Section III describes the problem
statement and main contributions of this work, followed by
Section IV which presents the mathematical model of our 195

proposed scheme. Section V describes the testbed used and
experimental procedures. Section VI discusses the results
obtained. Finally, Section VII concludes the paper.

II. RELATED WORK

A robust UAV path planning strategy must possess impor- 200

tant attributes which should provide a computationally efficient
solution while complying with the given constraints. The
strategy development depends on different planning require-
ments such as real-time planning, performance optimization,
risk minimization, and obstacle avoidance [35], [36]. Many 205

path planning techniques are available in the literature that
leverage results from other research fields such as potential
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field algorithms from physics, probabilistic approaches from
mathematics, and graph-based solutions from the computer
science field. Many traditional path planning techniques have210

been proposed such as artificial potential field, probability
roadmap, and rapidly exploring trees methods [34].

The Artificial Potential Field (APF) [37] path planning
is a popular method to avoid obstacles having a concise
mathematical model and simple algorithm structure [27]. It215

creates an attractive and repulsive field for destination and
restricted areas, respectively, and the route by displacement is
planned based on the resultant force. [38] is one of the first
publications on APF path planning. Besides its application for
single UAV, the APF approach applies to multi-UAV systems220

as well. The APF approach faces local minima and destination
unreachable scenarios due to closely spaced obstacles and the
presence of an obstruction between the destination and a UAV
respectively.
Many improvements [39]–[42] have since been made to the225

original APF. In [43], the authors developed an APF based
reactive controller for UAVs to avoid collision with terrain
as well as from each other. Their scheme models obstacles
as points with latitude, longitude, and altitude information
provided by a Digital Elevation Map. To address the issue230

of local minimum in APF, the authors of [44] present an
improved artificial potential field that finds an optimal path and
avoids collisions with obstacles. In [45], the authors proposed
a hybrid model involving APF and optimal control theory.
The additional force introduced is an optimization variable235

that transforms path planning into an optimization problem.
The optimal control law is applied to solve the optimization
problem after converting the constrained problem into an
unconstrained optimization problem.

Probabilistic RoadMap (PRM) and Rapidly Exploring Trees240

(RRT) come under the domain of sample-based path planning
algorithms [46]. In PRM, at first, sampling of the configuration
space is done using a probabilistic model. A connected graph
is created by applying a local planner which connects the con-
figuration sampled to the nearest configuration space. At last,245

any graph search algorithm can be applied to the connected
graph to get a possible path from a start point to the desired
endpoint. The authors of [47] proposed a PRM based 3D path
planning approach for a complex environment. The octree
algorithm divides the configuration space into voxels. The250

PRM random method selects samples from all the available
voxels. The connected graph produced by the local planar is
utilized further by the A* algorithm to have a feasible path.
RRT is another path planning method that uses random spatial
sampling for high-dimensional spaces. RRT grows a tree with255

its roots at the start configuration. With each sample taken,
the tree grows to include more feasible trajectories. Many
RRT-based path planning approaches have been reported in
the literature [48]–[51].

Graph-based search techniques are extensively explored260

in many fields and are popular in the UAV path planning
domain [46]. In these approaches, a grid map represents the
entire environment. Depending on the presence of obstacles,
each cell in the grid represents either an occupied or a free cell.
Any graph exploration algorithm can be applied to the graph265

to find a feasible path between the start and destination cell.
Fast searching capabilities make these algorithms very useful
for real-time path planning, but the generation of non-smooth
trajectories renders them inefficient for large environments.
Dijkstra algorithm finds the shortest path between the start 270

cell and the destination cell [52], and many graph-based
path planning techniques, in conjunction with the Dijkstra
algorithm, have been implemented [53]–[56]. A* is another
graph traversal or path search algorithm which has attributes
of optimality and completeness [57]. The performance of the 275

A* algorithm highly depends on the heuristic function used.
Recent works such as [16], [27] are the few path planning
implementations involving the A* algorithm. Several other
graph-based algorithms are available in the literature that finds
smooth flight trajectories by incorporating some smoothing 280

process [19], [35].
Furthermore, some studies have improved path planning of

UAVs in a Vehicular Ad Hoc Network (VANET) environment.
For instance, Samir et al. in [67] investigate RL based trajec-
tory planning for UAVs in a specific roadway segment. The 285

authors carefully evaluated the unknown area and mapped out
the trajectory with the fewest possible UAVs to provide net-
work connectivity for vehicles while minimizing UAV energy
usage. To further this investigation, Samir et al. in [68] used the
Actor-Critic algorithm of the Deep Reinforcement Learning 290

(DRL) algorithm, in particular, to manage the flight route of
UAVs on highways without communication infrastructure. To
successfully optimize vehicular coverage, the given framework
comprehends the dynamics of the vehicular environment and
the ideal trajectory of the UAVs deployed. Jiang et al. [69] 295

discussed path planning and collision avoidance for UAVs in
a 3D environment. In this study, the authors first modeled
the path planning as a constraint optimization problem and
later drone to drone collision avoidance is modeled as Markov
Decision Process (MDP). Recently, Tu et al. in [70] used RL 300

for path planning and obstacle avoidance for a single UAV
in the 3D environment. This work primarily focuses on how
UAVs fly and address the application of UAV for sea farming.
Moreover Zhou et al. [65] also studied a path planning for
UAVs in 3D environment. The authors developed a real UAV 305

autonomous obstacle avoidance path planning experimental
platform in which a flight test for UAV obstacle avoidance
path planning based on real-world conditions is conducted.

The computational needs of path planning algorithms grow
exponentially with an increase in the dimensional size of 310

the configuration space along with the reduction in the op-
erational time [27], [58]. Moreover, in algorithms such as
APF, an improper definition may lead to a local minimum
or unreachable destination scenarios [59]. Most path planning
techniques rarely consider environmental disturbances and 315

sensor uncertainties. In [27], the authors considered position-
ing errors that require an additional map of predicted satellite
positions generated by a 3D building model. All path planning
approaches, including that do consider positioning error maps
in their UAV path designs, still rely entirely on the UAV’s 320

control system to track the desired trajectory. None of the
existing approaches have addressed overshooting of a UAV
beyond its desired control system’s limitations. To address
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TABLE I
SUMMARY OF VARIOUS PATH PLANNING METHODS FOR UAVS

Reference Research objective Approach Strengths Weaknesses

Oland et al. 2013. [43] Collison and terrain avoidance
with multiple UAVs

Kinematic model with
dynamic feedback linearization
using APF

Maintaining rigid formation
and low altitude flight in a
rolling terrain
Uniformly stable controller

Need of a digital elevation map
Need of precise definition for APF

Lifen et al. 2016. [44] Address local minima issue
in APF

Collision free trajectories
using APF with change in
repulsive potential function

Optimal path especially in
complex environment

Dependent on obstacle size
Need of precise definition for APF

Chen et al. 2016. [45]
Solution to additional control
force in APF to deal with
time varying variable

Remodeling the functional
optimization model by taking
the additional control force as
an independent variable

Solution to dead-end problem
in APF
Shorter and smoother trajectories
with irregular obstacles

Dependent on precise definition
of repulsive and attractive potential

Yan et al. 2013. [47] Path planning in 3D environment
with less time complexity

Octree algorithm to divide
the work space into voxels
and random selection of
free voxels

Allows UAVs to fly through
narrow-passage areas

Random selection of voxel may
lead to longer paths

Maini et al. 2016. [53] Obstacle free paths satisfying
UAV kinematic constraints

Visibility graph to represent
environment and validation
for maximum steering angle

Suitable for on-line implementation
Easy validation of the steering
angle constraint

No tolerance for sensor
uncertainties
No definition as how to add
points of obstacles as vertices
Steering angle constraint may
result in longer paths

Zhu et al. 2021. [12]
Traveling salesman problem
and path planning in the context
of energy minimization

Actor-critic algorithm,
sequence-to-sequence
learning approach,
recurrent neural network

Significant decrease
in energy consumption

High computational complexity
calling for the use of
Google Cloud Platform with
a NVIDIA TESLA P100
Graphical Processing Unit (GPU)

Our proposed method
Collision-free trajectories
taking environmental
disturbances into consideration

Defines interest points
around rectangular obstacles
while taking environmental
disturbances into consideration

Shortest possible linear paths
Low configuration space
complexity
Tolerant to sensor uncertainties
Suitable for real-time path
planning
Is aware if the underlying control
system fails to track the desired
trajectory within the UAV’s control
system’s overshoot limitations

Does not incorporate UAV
kinematics into the path planning
model (will be addressed in
our future work)

these shortcomings, in this article, we propose a simple yet
robust path planning method. We model obstacles as rectan-325

gles, and for the configuration space, instead of involving the
entire environment, we only include interest points defined
around corners of the rectangles1. Additionally, we consider a
disk-based uncertainty scheme to make our model resilient to
uncertainties arising as a result of environmental disturbances.330

Table I provides a summary of various path planning ap-
proaches for UAVs. For each approach, this table enlists
the research objective, the method adopted, strengths, and
weaknesses.

III. PROBLEM STATEMENT AND RESEARCH335

CONTRIBUTIONS OF THIS WORK

Intended Use Case
Our proposed path planning technique assumes that ob-

stacles and the target are static and are well-known before
departure. It also assumes the navigation’s system ability340

to maintain itself at a distance no greater than ρ from a
moving point, while being robust to environment disturbances,
direction changes and avoiding moving objects of small sizes.
By executing the following steps, the proposed technique could

1Most obstacles (buildings, no fly-zones) can be approximated by rect-
angles [16], [44], [53], and tools like visibility graphs [60] allow us to view
polygonal obstacles as graphs. We can successfully represent a polygone (e.g.
triangle) by a set of thin rectangles, one for each side)

nonetheless be used in the following use case wherein the UAV 345

needs to travel to a known target while avoiding unknown
static obstacles all with limited energy availability.

1) The target is defined by some GNSS coordinates and
it is assumed to be at a safe distance denoted by ρ of
any neighboring obstacles. Obstacles are assumed to be 350

static, except for objects (such as birds) of small size
that are not moving too fast. The UAV is equipped with
a GNSS sensor and a front camera.

2) Several photos are captured while remaining at the
same position and rotating on itself. The shapes and 355

sizes of all obstacles that are in the line-of-sight visible
and within a horizon-distance denoted by ρh are then
extracted as described in [61]. These estimates and their
precision are converted into a 2D-map composed of a
set of temporary rectangles covering all possible obstacle 360

positions.
3) If the actual target appears outside this 2D-map or if it

is contained or is too close to any temporary rectangle,
a temporary target is defined according to the Bug1-
algorithm [62]. If no obstacles prevent reaching the 365

actual target, then the temporary target is defined as the
actual target’s closest point. If there is an obstructing
obstacle, then it is defined as the closest point among
the points being ρ-distant from the obstacle’s contour.

4) The UAV checks if it has sufficient energy to reach the 370

temporary target and get back to its starting position. If
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it does not, it returns right away to recharge its battery.
5) The computer system inside the UAV applies the pro-

posed technique to yield a path leading to the temporary
target.375

6) During the flight and until reaching the temporary target,
the UAV’s navigation system follows the path at a
constant speed, it also uses its camera to avoid birds,
while always keeping a distance no greater than ρ from
the path. ρ should be set large enough to allow the380

navigation system to ensure this and all other adversities.
7) If the point reached is a temporary target different from

the actual target, then we go back to step 2, else the
mission is accomplished.

Problem Statement385

The main objective of this work is to develop a robust
and computationally low UAV path planning technique. We
model obstacles as rectangles, and unlike other methods, we
seek guidance from the interest points defined around their
corners. These interest points are defined by considering the390

threshold distance in the uncertainty prerequisite. Contrary
to existing path planning techniques, wherein every cell of
the grid environment represents the vertex of a graph, our
model only considers defined interest points as vertices. Fig. 1
shows how a graph-based path planning technique configures395

the environment compared to our proposed approach. Fig. 1
depicts a 15 × 16 square units environment wherein the left
side of the figure shows the configuration space adopted by
the graph-based technique. It divides the entire area into 240
cells that constitute the vertices of a graph. The right side400

of Fig. 1 shows how the proposed scheme delineates interest
points around the obstacles. It selects only 20 interest points
that become vertices of a graph. Permissible obstacle-avoiding
edges are defined, which in collaboration with the Dijkstra
algorithm formulate a path. Fig. 2 shows the uncertainty405

prerequisite modeling a disk, centered on the requested moving
position and, whose radius is the threshold distance. The dotted
line in Fig. 2 shows the desired trajectory between the start
and the goal point. This trajectory is planned by including two
interest points, i.e., P1 and P2. The UAV is assumed to be410

present within a disk area of radius ρ centered on each point
of the trajectory. In Fig. 2, the two solid lines surrounding
a dotted line shows the location of the UAV. As these lines
are quite far from any obstacle, it exemplifies the underlying
mechanism ensuring collision avoidance.415

IV. PROPOSED SCHEME

This section describes our proposed scheme, corresponding
to items 4 and 5 described in section III. Subsection IV-A
defines the way we model obstacles as rectangles and the
selection criteria for interest points. Subsection IV-B intro-420

duces a suboptimal solution that finds admissible collision-
avoiding trajectories while employing the Dijkstra algorithm.
This section concludes with a discussion on the location of
interest points defined.

A. Optimization Problem Statement 425

The design of the trajectory is regarded as an optimization
problem, that of leaving from a starting point A at t = 0 and
reaching the fastest way to an ending point B, while avoiding
all obstacles modeled as rectangles of different widths, lengths
and orientations. These rectangles are denoted R1 . . .RR and 430

defined as the set of points inside and on their borders. The
first assumption we are making here is that A, B, Rr are
all known to the UAV before its departure. We make use of a
time-dependent virtual point denoted as V (t) defined on [0, T ]
where T is the time of flight. This virtual point moves at a 435

speed no greater than v.

∀t1, t2 ∈ [0, T ], d(V (t2), V (t1)) ≤ v |t2 − t1| (1)

where d is the usual Euclidean distance. The second assump-
tion, illustrated in Fig. 3, states that the UAV navigation system
can follow V (t) by staying at a distance strictly below ρ during 440

the time of the flight.

∀t ∈ [0, T ], d(V (t), D(t)) < ρ (2)

The collision of the UAV with an obstacle is modeled as:

∃r ≤ R, ∃t ∈ [0, T ], D(t) ∈ Rr (3)

Using assumption 2, equation (3) is derived into a constraint 445

on V (t) ensuring collision avoidance.

∀r ≤ R, ∀t ∈ [0, T ], d (V (t),Rr) ≥ ρ (4)

We denote the border of each rectangle Rr as ∂Rr, it is the set
of points on one of the four line segments bordering Rr. The
following theorem shows why the problem statement concerns 450

only the borders of the rectangles.

Theorem 1: Let M(t) be a continuous mapping from [0, T ]
to R2 and R a rectangle with ∂R as border.

d (M(0),R) > 0
∀t ∈ [0, T ] d (M(t), ∂R) ≥ ρ

}
⇒ ∀t ∈ [0, T ] d (M(t),R) ≥ ρ 455

We present a sketch of the proof in appendix A. Each rectangle
border ∂Rr is also defined by its four line segments denoted as
C4r−3D4r−3, C4r−2D4r−2, C4r−1D4r−1, and C4rD4r. The
collection of all line segments is denoted CiDi with i ∈ I. In
order to apply theorem 1, we add a third assumption, that the 460

beginning position is far enough from all obstacles.

∀r ≤ R,d(A,Rr) ≥ ρ (5)

with ρ > 0. We considered a set of admissible trajectories
denoted as V . Fig. 4 illustrates an example of an admissible
trajectory. 465

V =
{
V ∈

(
R2

)[0,T ]∣∣∣∣∣∣∣∣
V (0) = A
V (T ) = B

∀t1, t2 ∈ [0, T ], d(V (t2), V (t1)) ≤ v |t2 − t1|
∀i ∈ I, ∀t ∈ [0, T ], d

(
V (t), CiDi

)
≥ ρ


(6)

TV operates on V and yields the time of flight.

TV(V ) = min {t > 0 |V (t) = B } (7)

The optimization problem is finding:

V ∗ = argmin
V ∈V

TV(V ) (8) 470
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Fig. 1. Comparison of configuration space using the graph-based approach (on the left) and our proposed scheme (on the right)

ρ

Obstacle

Obstacle

Obstacle

Sta
rt

Obstacle

P2 P1

Goal

Fig. 2. Illustration of the trajectory designed by the proposed scheme with
the uncertainty model

ρ z

z

Fig. 3. Disk centered on V (t) where the UAV is assumed to be according
to assumption 2.

B. Suboptimal solution with the Dijkstra algorithm

To make the optimization problem more tractable, we make
a fourth assumption. The trajectory is a set of connected line
segments joining A and B, where the segment ends are chosen
among a predefined set of points denoted as (Pj)j∈J and V (t)475

moves at a speed v on each line segment. Denoting V ′ ⊂
V as the mappings fulfilling this third assumption, we get a
weighted graph representation of V ′ as Fig. 5 shows. This
graph is denoted as ((Pj)j , E ,TE).

C1D1

C2D2

C3D3
C4D4

C5D5

C8D8 C6D6

C7D7

A

B

ρ
ρ

Fig. 4. V (t) is on the line joining A and B. The contour surrounding this
line delineates the set of all points at a distance below ρ, where the UAV
adheres to assumption 2.

• A ∈ {Pj |j ∈ J } is the root. 480

• B ∈ {Pj |j ∈ J } is the sink.
• (Pj1 , Pj2) ∈ E is an admissible edge connecting Pj1 and

Pj2 if the line segment Pj1Pj2 is at a distance equal to
or greater than ρ of any obstacle.

(Pj1 , Pj2) ∈ E ⇔ ∀i ∈ I, d(CiDi, Pj1 , Pj2) ≥ ρ (9) 485

• Each edge is given a value which is the time of travel.

TE((Pj1 , Pj2)) =
1

v
d (Pj1 , Pj2) (10)

The following theorem shows the equivalence between finding
the suboptimal solution V̂ = argmin

V ∈V′
TV(V ) and finding the

least weighted path joining A and B. The latter is precisely 490

what the Dijkstra algorithm solves efficiently.

Theorem 2: A mapping V in V ′ is a path Pj1Pj2 . . . PjN of
((Pj)j , E ,TE) joining A and B and its time of flight is the
sum of all weights of the edges traversed. 495

TV(V ) =

N∑
n=2

TE((Pjn−1
, Pjn)) (11)

We present a sketch of the proof in appendix B.
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P1

P3B
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B

P2 P3P4 P1

Fig. 5. Four paths joining A and B consistent with assumption 3, shown on
the left as positions of V (t) and on the right using a graph structure.

Fig. 6. Five loci of predefined points corresponding to, 3π
2
− π

5
, 3π

2
− π

10
, 3
2
π,

3π
2

+ π
10

, 3π
2

+ π
5

, when counting outwards. At the center is the horizontal
obstacle of length l = 1 and ρ = 0.1. The proposed predefined points are
C−, C+, D−, D+.

C. Location of the predefined points

The appropriate choice of (Pj) is crucial to the performance
of the algorithm and their number is a trade-off between com-500

putational complexity and performance. Interest points (Pj)
should be located near each obstacle’s line-segment’s end and
organized to allow paths enclosing each obstacle. Considering
a specific predefined point P and a unique obstacle CD, not
colliding line segments joining P have a range of valid angles,505

and the size of this range is denoted as ∆Θ.

∆Θ =

∣∣∣∣∣
{
Θ

∣∣∣∣∣ ̂
(

→
MP,

→
CD) = θ ⇒ d(MP,CD) ≥ ρ

}∣∣∣∣∣ (12)

Fig. 6 shows a horizontal obstacle of length l = 1 and five
different locus of predefined points, each associated with a
specific value of ∆Θ: 3π

2 − π
5 , 3π

2 − π
10 , 3

2π, 3π
2 + π

10 , 3π
2 + π

5 .510

It is worth noting that smaller values of ∆Θ are associated
with predefined points closer to the obstacle. Our proposition
considers four predefined points for each obstacle which are
sufficient to bypass the obstacle, located at a distance of ρ

√
2

of each segment end and having an angle of ±π
4 . These points,515

denoted as C−, C+, D−, D+ are located on the intermediate
locus associated with ∆θ = 3π

2 as Fig. 6 shows.

∠(
→
DC,

→
CC−) = π

4 CC− = ρ
√
2

∠(
→
DC,

→
CC+) = −π

4 CC+ = ρ
√
2

∠(
→
CD,

→
CD−) = −π

4 CD− = ρ
√
2

∠(
→
CD,

→
CD+) = π

4 CD+ = ρ
√
2

(13)

The following theorem states that any path joining a predefined
point with some appropriate angle ensures a safe distance from 520

the obstacle.

Theorem 3: Let (C,D) be an obstacle, and
C−, C+, D−, D+ be its associated predefined points
and M be a given point. 525

∠(
→
CD,

→
C−M) ∈ [π

2
, 2π] ⇒ d(CD,C−M) ≥ ρ

∠(
→
CD,

→
C+M) ∈ [0, 3π

2
] ⇒ d(CD,C+M) ≥ ρ

∠(
→
CD,

→
D−M) ∈ [−π, π

2
] ⇒ d(CD,D−M) ≥ ρ

∠(
→
CD,

→
D+M) ∈ [−π

2
, π] ⇒ d(CD,D+M) ≥ ρ

(14)

It is worth noting that all four statements are consistent with
∆Θ = 3π

2 because∣∣∣[π
2
, 2π

]∣∣∣ = ∣∣∣∣[0, 3π2
]∣∣∣∣ = ∣∣∣[−π,

π

2

]∣∣∣ = ∣∣∣[−π

2
, π

]∣∣∣ = 3π

2

We present a sketch of the proof in appendix C. 530

D. Computational complexity of the proposed technique

The computational complexity of the proposed technique
is related to the number of obstacles, |I|. Indeed, the graph
is composed of v = 2 + 4|I| vertices and at most e =
1
2 (2 + 4|I|)(1 + 4|I|) edges. With an optimized implemen- 535

tation, the Disjkstra algorithm has a complexity, as calculated
in [63], of O(e + v log(v)), that is, O(|I|2) or less. An
interesting point is the low memory requirement (i.e., roughly
O(|I|2)) as compared to when using a grid. We note that the
proposed technique is often thought to be less computationally 540

intensive because it depends on the number of obstacles
instead of the number of grid points representing the area.

Furthermore, as section V-A has explained, our proposed
technique does not require iterative evaluations in a hyperpa-
rameter space to meet some given constraints. 545

V. SIMULATION TESTBED AND EXPERIMENTAL
PROCEDURES

We conducted simulations under different environmental
conditions by varying the number of obstacles and their
dimensions, simulation area, UAV turning angles, UAV speed, 550

start, and destination locations. We implemented the schemes
we compared our proposed with using the MATLAB-R2021a’s
UAV Toolbox2. We used different grid sizes ranging from a

2https://www.mathworks.com/products/uav.html
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TABLE II
SIMULATION PARAMETERS AND HARDWARE/SOFTWARE ENVIRONMENT

Parameter and hardware/software Value
Grid size 400× 600 – 20000× 20000
Number of obstacles 4 – 19
ρ 10 m [43]
UAV model multirotor
UAV speed limit 5 – 9 m/s [64]
Gain for heading controller 2
Roll angle limit 45°
Number of simulations 250 – 300
CPU Intel(R) Core(TM) i5-6200U 2.30 GHz
RAM 12 GB
Operating system Microsoft Windows 10 Pro

smaller configuration space of 400× 600 to a larger one with
20000 × 20000 cells. Similarly, to evaluate schemes under555

a different number of obstacles, we varied the number of
obstacles from a smaller value of 4 to a higher value of 19.
We considered the multirotor UAV model to determine the
trajectory tracking effectiveness of the proposed scheme. In all
simulation environments, the start and destination locations are560

shown by solid red and green circular points, respectively. The
rectangular obstacles with solid blue circular points represent
interest points proposed by our path planning technique.
Table II presents the simulation parameters along with the
operating system parameters.565

A. Setting hyper-parameters
Both, our proposed technique and the APF, each has a

hyperparameter: ρ and λ. It is worth noting that the difference
in the way they ought to be set.

• Our proposed technique is a hierarchical two-layer con-570

trol system: the navigation system and the proposed path
planning technique. The parameter ρ sets the amount of
freedom granted to the navigation system and constrains
on the path planning technique. Its value is independent of
the location and number of obstacles and targets. It con-575

siders the size of the UAV itself, the accuracy of GNSS,
the uncertainty caused by environmental disturbances up
to a threshold above which the proposed technique should
not be used to direct UAVs. Another factor that must be
considered is the tracking of errors near turning points as580

section VI-B has described. It is worth pointing out that
these different parameters must be taken together because
the corresponding events are generally independent. For
the sake of simplicity in the simulations, we used the ρ
value used in [43].585

• The APF and many similar algorithms optimize contra-
dicting objectives namely, reducing the path length and
moving away from obstacles. This trade-off is adjusted
by a parameter denoted as λ which is a weight in
a cost function that must be minimized. However, the590

appropriate λ-value can only be set once the locations and
number of obstacles and targets are known. Instead of a
universal relationship between λ and the minimal distance
between the UAV and any obstacle, each relationship is
generally a non-decreasing functions.595

In our simulation tests, to make fair comparisons, we
have conducted simulations for several λ-values and we
selected the one which minimizes the path length based
on the UAV being able to maintain a ρ-distance from any
obstacle at all times. 600

B. Performance metrics

We used the following performance metrics in our perfor-
mance evaluation tests:

• Total distance traveled by a UAV from a start point to
the endpoint. 605

• Trajectory tracking error with the variation in UAV’s
turning angles.

• Trajectory tracking error with the variation in UAV’s
moving speed.

• Algorithm’s computational load by observing the pro- 610

gram’s execution time.

VI. RESULTS AND DISCUSSIONS

This section presents experimental results for the proposed
pathfinding technique along with the artificial potential field
method. We compare our proposed scheme with the APF 615

method, which is known to have a precise mathematical
model with a low computational load and is suitable for real-
time applications [27]. Like most other previously proposed
approaches [44], [45], [53], this APF method does not consider
a specific uncertainty model. Instead, it uses a free parameter 620

to balance the trade-off between obstacles and reducing the
path length. We have used a specific parameter value and
considered only the experiments for which the APF technique
is successful.

A. Total distance traveled by the UAV 625

A path planning technique should keep a balance between
the length of a planned trajectory and a collision avoidance
algorithm. A path planning algorithm looking for the shortest
path may cause a collision with an obstacle. In contrast, when a
collision avoidance algorithm is used, this will result in longer 630

trajectories. In this context, to evaluate the performance of
the proposed scheme, we performed 2600 experiments with
different numbers of obstacles varying in sizes, orientations
and locations. Fig. 7 illustrates trajectories designed by the
compared schemes under different simulation scenarios. The 635

red contour surrounding the desired proposed black line tra-
jectory is the region within which the UAV is expected to take
during its flight. It can be inferred from the figure that APF
takes a longer curved paths compared to the proposed method
that uses pre-defined interest points to get a linear, shorter path 640

to reach the destination.
The experiments concern complex environments with obsta-
cles of varying sizes, locations, and orientations significantly
obstructing the direct path. In each experiment, the ending
point was chosen to be far enough from any obstacle so that 645

when using the APF technique the field has a unique global
minimum. In many experiments the APF technique yields a
path leaving the known environment. Among the remaining
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(a) (b) (c)
Fig. 7. Trajectories for the schemes compared (a) 4 obstacles, 500 × 500 grid size (b) 5 obstacles, 500 × 500 grid size (c) 6 obstacles, 5000 × 5000 grid
size

Fig. 8. Measured probability in complex environment for the APF to reach
the target.

experiments, for some implementation choices and parameter
values, we observed numerically instable trajectories unable650

to find the reaching point. Fig. 8 displays the experimental
probabilities for the APF to succeed in finding the reaching
point as a function of the number of obstacles. In all these
experiments, our method was able to find a target avoiding all
obstacles. Fig. 9 concerns the experiments for which the APF655

implementation succeeded in reaching the target. It shows with
a straight horizontal line the Shortest Direct Distance (SDD)
and in a green slightly increasing curve the length of the path
yielded by our proposed method. The upper irregular red curve
shows the lengths of the path yielded with the APF method.660

For clarity reasons, we ordered the experiments in ascending
order of the path length of our proposed method, because we
think that it gives an appropriate indication of the complexity
of the environment. We see an important reduction in the
distance traveled using our method as compared to using665

APF.

Fig. 9. The flat blue line is the distance between the starting point and the
target. The green slowly increasing line is the length of the path yielded by
our proposed method. The irregular red curve is the length of the path yielded
with the APF method. The experiments are ordered so that the intermediate
green line is non-decreasing.

This important reduction in the distance traveled implies a
corresponding reduction in energy consumption.

An important issue is also to compare the energy con-
sumption of the two methods. And many factors contribute 670

significantly to energy loss: navigation (distance travelling
at a given speed, manoeuvring a bend and withstanding
some wind), computing (memory- and CPU-processing),
and communication (downlink and uplink). The following
more detailed analysis of this energy consumption shows 675

that our method reduces also the consumed energy.
In [71], 188 quadcopters have been tested across a

range of speeds with small packages (0.5kg). It was
experimentally found that most of the power is consumed
for hovering while ground speed and wind strength impact 680

little the power consumed. A striking consequence is that
the use of a higher speed to reach the destination reduces
the energy consumption. It has been measured that on



10

average the consumption is of 80 Joules per meter. To
have a rough estimation of the energy consumed while685

travelling we multiplied the average length of the path by
its energy consumption per meter. For the experiments
shown in figure 9, we get a consumption of 701.2 Joules
for our proposed method and of 3155.2 Joules for the APF
method.690

In [73] and [72], we can find the power consumption
of floating point operations and data movements in 2008
and in 2012 for high-performance computing. Both arti-
cles explain that power consumption has now become a
dominant constraint as it limits the possibility to increase695

the clock frequency, and this power consumption is mainly
caused by data movements. The power consumption of
a floating point operation is below 10−10 Joules, that of
reading a byte from memory is below 10−8 Joules. To
have a rough estimation of this energy consumption, we700

first computed the number of operations Matlab can do
in one second on our computer. We then multiplied the
average execution time by that number of operations and
by the energy consumed when reading four bytes from
memory. For the experiments shown in figure 9, we get a705

consumption of 0.8 Joules for our proposed method and
of 2.4 Joules for the APF method.

From a networking viewpoint, step 5 of the intended
use case requires as only exchange of information, the
reception at the beginning of the locations of A, B,710

and the locations, orientations, sizes of all obstacles.
In [74], we can find an old estimation of the per-byte
transmission time (1µs) and the power consumed when
receiving messages (0.9W), when using IEEE 802.11b.
We derive a rough estimation of the energy consumed715

when receiving the locations of A,B and the obstacles
modeled as rectangles, we first get a number of bytes
to transmit: preamble and header of the physical layer
(24 bytes in 802.11b), MAC header (38 bytes), IP header
(20 bytes) and payload (two times the number of locations720

and six times the number of obstacles, a total of 124 bytes
for experiments with 20 obstacles). And then we multiply
that number by the power consumed and the per-byte
transmission time. The received messages are the same
for both methods and their energy cost is of 2×10−4

725

Joules.

B. Trajectory tracking error versus UAV’s turning angles

This subsection demonstrates our claim for designing
collision-free trajectories for various UAV turning angles.
Fig. 10 shows the scenario we considered which includes730

five obstacles and the UAV speed is 7 m/s. The dashed
arrow in Fig. 10 indicates the interest point around which we
considered different turning angles. Fig. 11 shows zoomed-
in parts for various UAV turning angles around the vertex
represented by the dashed arrow. We observe, from the figure,735

that the tracked trajectory points remain within the defined
limits, i.e., within the red contour. As can be inferred from
Fig. 11, the UAV trajectory deviates widely when the UAV
turning angle increases in order to stay within its dynamic

Fig. 10. Simulation scenario with 75° turning angle

constraints. Fig. 12 presents the trajectory tracking errors for 740

various UAV’s turning angles. This figure also substantiates
that the tracking error increases as we move from 0 degrees to
75 degrees. However, it is worth mentioning that the trajectory
deviation remains within limits and validates our collision-free
trajectory design claim. 745

C. Trajectory tracking error versus UAV’s moving speed

This section analyzes the effect of UAV speed on trajec-
tory tracking. As Fig. 13 shows, we consider a simulation
scenario with five obstacles and we vary the UAV speed.
Fig. 14 presents the trajectory tracking errors for different UAV 750

speeds. The tracking error for 5 m/s is the lowest among all
and increases when the UAV speed approaches 9 m/s because
the UAV’s control system output stabilizes faster at lower
speed values. The tracking errors for the various UAV speed
tests stay within the defined contour threshold and validate 755

collision-free trajectory tracking for the proposed scheme.

D. Computational Load Comparison

We estimate the computational load associated with the
proposed scheme corresponding to items 4 and 5 described
in section III. 760

To this end, we simulated different scenarios by varying the
distance between the start and the destination location and the
simulation grid size. Fig. 15 presents the computational load
results obtained with the path planning techniques in terms
of execution times under varying simulated grid sizes. Both 765

schemes incur comparable load until 6000 × 6000 grid size,
after which APF incurs higher execution time. As Fig. 15
shows, in terms of execution time, the proposed method is
not affected by the variation in the grid size. This is because
APF considers the entire environment during the path planning 770

process whereas the proposed scheme only considers the
interest points. Fig. 16 plots the execution time with respect
to the distance between the start and destination locations.
As Table III shows, this experiment uses different destination
points while keeping the same start position. Fig. 16 plots 775
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(a) (b) (c) (d) (e)
Fig. 11. Zoomed-in plots with arrow pointing toward vertices with angles (a) 0° (b) 30° (c) 45° (d) 60° (e) 75°

Fig. 12. Tracking error for different turning angles

Fig. 13. Scenario considered to determine tracking error under different UAV
speeds

the average results for each start and destination combination.
The proposed scheme has an execution time with a mean
value of 2.22 and a standard deviation of 0.07. APF, on
the other hand, has a mean value of 163.96 and a standard
deviation of 4.67. From the figure, we observe that although780

both schemes are unaffected by the variation in the distance,
but it is worth mentioning here that our proposed method

Fig. 14. Tracking error for different UAV speeds
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Fig. 15. Impact of simulation grid size on execution time [19 obstacles]

outperforms APF in terms of execution time. There could be
various reasons that explain the high execution time of APF:
high memory consumption, implementation choices assuming 785

that there are few moving obstacles of small size, and trade-
off when selecting the parameter values between performance
and numerical instabilities requiring a larger grid.
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Fig. 16. Impact of the distance between the start and destination location on
execution time [grid size 20000× 20000, 19 obstacles]

TABLE III
DESTINATION POINTS AND DISTANCE BETWEEN START AND DESTINATION

POINTS (START POINT [10 , 50])

Destination point Distance between start and destination point (m)
[2500 , 2500] 3493
[5000 , 5000] 7028
[7500 , 7500] 10564
[10000 , 10000] 14100
[12500 , 12500] 17635
[15000 , 15000] 21171
[17500 , 17500] 24706
[19000 , 19000] 26828

VII. CONCLUSION

A collision-free path planning is of paramount importance790

to ensure the safety of UAVs and humans on the ground.
Our proposed UAV path planning technique works by taking
advantage of interest points defined around the rectangular
obstacles. We used the disk-based uncertainty model to elim-
inate the chances of a collision by considering the environ-795

mental disturbances and the tracking errors that may appear
at turning points. This uncertainty model which is based on
a threshold distance provides an extra layer of safety to the
underlying control system, i.e., to act as a guard assuming the
control system does not exceed its defined overshoot limits.800

Moreover, due to the low computational demand regardless of
the deployed environment dimensions, our approach becomes
promising for real-time path planning.

Regarding our future work, one idea is to replace the
Dijkstra algorithm used in our proposed technique with some805

other graph algorithm such as A* in order to evaluate path
planning computational complexity under different scenarios.
Simulations have shown that given a turning point of a given
angle, increased speed induces higher tracking errors yielding
the necessity to use a higher value for ρ which constrains810

the selection of the path. To reduce these constraints, we
are considering the possibility of assigning a reduced speed
in the neighborhood of turning points, a first step towards

integrating UAV kinematics into the path planning method.
This work is also applicable to scenarios where we have 815

multiple destination locations, with each location as a new
interest point. In our future work, we plan to develop a
UAV-based network comprising roadside units to provide new
interest points at run-time. Our proposed technique cannot be
directly applied to unconstrained moving objects. Nonetheless 820

we propose in future work to adapt our technique to obstacles
and targets whose complete motion is known prior to depar-
ture, replacing the 2D geometry with a space-time geometry:
moving obstacles are represented by oblique prisms, interest
points and vertices by line segments, edges by polygons, and 825

weights by time-dependent functions.
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APPENDIX A
SKETCH OF PROOF OF THEOREM 1

Let us first prove theorem 1 for a specific rectangle centered
and of size 2×2 denoted R∗ with M(t) a continuous mapping
from [0, T ] to R2 such that d (M(0),R) > 0 and for t ∈ [0, T ], 835

d (M(t),R) ≥ ρ. We define t 7→ f(t) on [0, T ] as
f(t) = d(M(t),R∗) if d(M(t),R∗) > 0

f(t) = − d(M(t), ∂R∗) if d(M(t),R∗) < d(M(t), ∂R∗)

f(t) = 0 if d(M(t), ∂R∗) = 0

It is the following analytic expression of both distances which
shows that f is well defined, continuous and that the first
condition happens when M(t) is outside the rectangle, the 840

second condition when M(t) is inside the rectangle and the
third condition when M(t) is on its border.

ξ(x) = (| |x| − 1|) 1R\[0,1](x) η(x) = (| |x| − 1|) 1[0,1](x)

d (M(t),R∗) =
√

ξ(x)2 + ξ(y)2

d (M(t), ∂R∗) =
√

ξ(x)2 + ξ(y)2 + min (η(x), η(y))

where x and y are the coordinates of M and 1S(x) = 0 if x ̸∈
S and 1S(x) = 1 if x ∈ S, S being any set. Based on the first 845

assumption, we have f(0) > 0 and if the implication we are
proving was false, then there would exist t ∈ [0, T ] such that
f(t) ≤ 0 which would imply the existence of t′ ∈ [0, T ] with
f(t′) = 0 meaning that d(M(t), ∂R∗) = 0 and contradicting
the second assumption. We extend this proof to any rectangle 850

R by considering a transformation T that is a combination of
translation, rotation and rescaling, whose inverse is denoted
T −1. It fulfills the following conditions with τ > 0.

M ∈ R ⇔ T (M) ∈ R∗

M ∈ ∂R ⇔ T (M) ∈ ∂R∗

d(T (M), T (M ′)) = τ d(M,M ′)

M(t)continuous ⇔ T (M(t))continuous

These conditions prove that 855

d(M,R) = min
M ′∈R

d(M,M ′) = min
T (M ′)∈R∗

d(M,M ′) =

1

τ
min

T (M ′)∈R∗
d(T (M), T (M ′)) =

1

τ
d(T (M),R∗)
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C+

C-

D+

D-

ρ

ρ ρ√2 C D
M

<(CD,C-M )

Fig. 17. Graphical construction illustrating theorem 3. As ∠(CD,C−M) =
3π
4

, M is on the left of a half-plane delineated by line (C−C+) located at
a distance of ρ of the obstacle CD.

and in the same way that d(M,∂R) = 1
τ d(T (M), ∂R∗).

Hence the theorem proven for R∗ is also true for R.

APPENDIX B
SKETCH OF PROOF OF THEOREM 2860

The proof is based on these four statements.
• The weighted partial sums of a given path are time stamps

of the corresponding mapping V ∈ V ′.

tn =
1

v

n∑
k=2

d(Pjk−1
, Pjk) (15)

• The weight of a path is the time of flight of a mapping865

in V ∈ V ′.

TV(V ) =
1

v

N∑
k=2

d(Pjk−1
, Pjk) (16)

• Each traversed edge is a line segment of the trajectory
traveled at speed v.

n ∈ {2, . . . , N}, t ∈ [tn−1, tn] ⇒
−−−−−→
Pjn−1

V (t) =

t− tn−1

tn − tn−1

−−−−−−−→
Pjn−1

Pjn

(17)870

• Based on equation (9), edges traversed by the path define
line segments in the trajectory that remain at a safe
distance from any obstacle.

∀n ∈ {2, . . . , N}, (Pjn−1
, Pjn) ∈ E ⇔

∀i ∈ I, d(V (t), CiDi) ≥ ρ
(18)

APPENDIX C875

SKETCH OF PROOF OF THEOREM 3

As the four statements are similar, we exhibit only the proof
of the first statement and assume that M is located such that
θ = ∠(

→
CD,

→
C−M) ∈ [π2 , 2π]. Figure 17 illustrates the two

following arguments.880

• If θ ∈ [π2 ,
3π
2 ], then M is located in the left half-plane

delineated by line (C−C+) which is located at a distance
of ρ from the obstacle CD. As this property is shared too

by C− and using convexity, we get that d(CD,C−M) ≥
ρ. 885

• If θ ∈ [ 3π2 , 2π], then M is located in the left half-
plane delineated by line (C−D−) which is located at
a distance of ρ from the obstacle CD. As this property
is shared too by C− and using convexity, we get also that
d(CD,C−M) ≥ ρ. 890
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2021. “Bézier curves-based optimal trajectory design for multirotor UAVs
with any-angle pathfinding algorithms,” Sensors, vol. 21, p. 2460.

[20] V. San Juan, M. Santos, J. M. Andújar, 2018. “Intelligent UAV map
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