
STATISTICAL ATLAS-BASED SUB-VOXEL SEGMENTATION OF 3D BRAIN MRI

Marcel Bosc1,2∗, Fabrice Heitz1, Jean-Paul Armspach2

(1) LSIIT UMR-7005 CNRS / Strasbourg I University,
67400 Illkirch, France

(2) IPB UMR-7004 CNRS / Strasbourg I University,
67085 Strasbourg, France

ABSTRACT

We present a 3D brain MRI segmentation method in which a
high resolution label image evolves under the influence of multi-
ple constraints. The constraints are expressed in a versatile energy
minimization framework which allows for evolutions only at la-
bel boundaries, effectively making it a surface evolution system.
Constraints are defined using atlas-mapped parameters. The atlas,
composed of a reference image and parameter values, is mapped
onto the source image using a multi-resolution deformable image
matching method. Variable scale image constraints are considered.
The prior model currently includes: a relative distribution con-
straint, which gives the probability of observing a label at a given
distance from another label, a thickness constraint and a surface
regularization constraint. Issues related to partial volumes are ad-
dressed by the use of a high resolution label image and an accurate
model of the acquisition process. High resolution segmentations
are thus obtained from standard (eventually low resolution) MRIs.

1. INTRODUCTION

Automatically, and reliably segmenting an MR brain image is a
difficult task [1, 2]. An expert, however, can easily distinguish one
tissue type from another, using extensive prior knowledge on the
shape, relative locations, and other characteristics of each tissue
class. The goal in this automated segmentation system is to intro-
duce strong prior knowledge, thus reducing the space of acceptable
solutions, and increasing reliability. We seek to make prior knowl-
edge explicit and express it in an intuitive manner. In many exist-
ing segmentation methods this knowledge is implicit and deeply
hidden in the internal workings of the algorithm.

We believe that 3D image acquisition will evolve rapidly, chang-
ing the types of artifacts that hinder segmentation, eventually out-
dating methods that are explicitly designed to address a specific
artifact. Therefore we prefer putting the emphasis on developing
prior models that describe the objects we want to segment. Certain
organs have consistent shape characteristics that may be modeled,
however, shapes like cortical folds are challenging, as they display
very important anatomical variability and have a complex geome-
try.

The original approach presented here bears similarity with de-
formable surfaces methods in that surfaces evolve under the in-
fluence of constraints (figure 1). However, no attempt is made to
use parametric or implicit level-set [2, 3] representations of the
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Fig. 1. Segmentation flowchart. A segmentation label image L

evolves under the influence of multiple constraints coded by en-
ergy functions Ei. Constraints are defined using position depen-
dent parameters mapped from a statistical atlas.

surface. Instead, the approach iteratively refines a segmentation
label image L, at label boundaries. The label evolution framework
(section 2) is simple and has the advantage of allowing topolog-
ical changes. The label image is represented at a very high res-
olution, enabling the representation of fine details. Prior knowl-
edge makes it possible to segment details that are smaller than the
resolution of the source images. For example, in low resolution
images (2mm3) the cerebro-spinal fluid (CSF) regions within cor-
tical folds are often too small to appear significantly. However we
know that CSF regions are surrounded by gray matter of a rela-
tively constant thickness. If gray matter regions are correctly po-
sitioned by the system, then CSF position will be implied (section
5.2.1). Note that the resolution of the label image is independent
of the source image resolution. In particular, if the source image
has non-isotropic sampling, this does not change the resolution of
the label image (section 5.1.1).

2. LABEL EVOLUTION FRAMEWORK

At each iteration, labels in the segmentation map L (L : Ω →
{1 · · ·n}, where Ω ⊂ Z

3, figure 2) are changed so as to minimize
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Fig. 2. Label evolution framework: close-up view of label image
L(p). Only labels at boundary voxels (hashed) may be changed.
S1 and S2 are the boundary surfaces of objects O1 and O2. Label
image L is changed at point pmin where energy decrease is maxi-
mal. S′ is the new boundary surface after the label has changed.

a global energy criterion

E(L) ,
X

αiEi(L) + Eb(L), (1)

where αiEi are energy terms related to each constraint (see sec-
tions 3 and 5). The Eb term imposes that changes take place only
at boundaries between labels, thus effectively making this a sur-
face evolution system: Eb = ∞ if there are any isolated values in
L, Eb = 0 otherwise.

At each iteration, for each point p on a boundary between two
regions, we compute the energy change ∆E(p, l), if L(p) were to
change to a different label value l. This gives an energy variation
image ∆E(p, l) for each different value of l. Note that this image
is sparse, containing non zero values only at boundary voxels. We
then change L at the point pmin that minimizes the energy ( that
is, ∆E(pmin, lmin) < ∆E(p, l) for all p, l ).

In theory ∆E should be recomputed on all points for each it-
eration, which would be computationally prohibitive. However,
the impact of a label change has a limited range r on energy vari-
ation, meaning that changing a label at a position p has no sig-
nificant impact on the value of the energy contribution at point p′

if ||p′ − p|| > r (Markovian-like property). Therefore, at each
iteration, possible label changes are sorted in increasing order of
∆E(p, l), and label changes are considered only if they occur at a
position that is more distant than r to any previously changed label.
This ensures that the total energy E(L) decreases at each iteration.
The energy interaction range r may be adjusted, depending on the
constraints that are being considered.

The iterations stop when there are no more points where chang-
ing a label would decrease the total energy (∆E(p, l) > 0 for
all p,l). This represents a local minimum of the energy function
E(L).

3. STATISTICAL ATLAS

Each constraint depends on parameters, which convey information
on the shapes and sizes of the objects being segmented. The rela-
tive weight of each constraint in the final energy is defined by an

influence coefficient αi. Any parameter or influence coefficient
may be chosen to be position dependent. This allows for certain
constraints being more important than others in certain regions of
the image. For example, the relative distribution constraint (sec-
tion 5.2.1) is essential for segmenting cortical folds, but has much
less importance in ventricular regions. Or, in another example,
the parameters expressing the expected width of gray matter may
change for different areas of the brain.

The statistical atlas is made up of a reference MR image, a
(low resolution) segmentation map and a mapping of the differ-
ent parameters and influence coefficients. Statistical shape charac-
teristics such as thickness, curvature are coded using probability
distribution functions estimated from a training data-base. The
statistical atlas is mapped onto the source image using a multi-
resolution deformable image matching method developed by our
group [4]. Probability distributions of shape characteristics have
been estimated from the segmentation of 22 patients. The seg-
mentations were computed semi-automatically using a watershed-
based method [5]. Each patient image was registered on the atlas
reference image using deformable registration [4]. This gives a
series of possible values for a given atlas position, which are then
modeled by parameterized probability distribution functions.

4. PREPROCESSING AND INITIALIZATION

The high resolution segmentation is computed from the unmodi-
fied source image, in its original position. This avoids applying
geometrical transforms which involve re-sampling, particularly for
non-isotropic images.

A non-linear intensity transfer function is fitted on the joint-
histogram of the source image and the registered atlas reference
image. This allows to determine the transfer function V that gives
the mean image value corresponding to each label value (section
5.1.1 ).

The initial segmentation image L(p) is obtained by standard
segmentation techniques (thresholding) for regions that have strong
anatomical variability, and by label mapping from the atlas for re-
gions with low anatomical variability.

5. CONSTRAINTS

For each constraint we will give the expression of the correspond-
ing energy function Ei, and then give the exact, or approximate
expression of the energy variation ∆Ei(p, l) , E′

i−Ei due to the
the label image L changing to l at position p. There are two types
of constraints: image constraints and prior model constraints. Note
that the constraints defined below are actually constraint classes,
and that several instances of a constraint class may be used. For ex-
ample, several relative distribution constraints (section 5.2.1) may
be combined, each one modeling a distribution around a different
label.

5.1. Image Constraint

To guarantee sub-voxel precision, image constraints need an accu-
rate model of the acquisition process.

5.1.1. Image Acquisition Model

The physical acquisition system is modeled as a two step process.
First a mean intensity is associated to a tissue by an intensity map-
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Fig. 3. Acquisition model: L is the current segmentation. I0 is
the acquired image that we are segmenting. I is the image that
is predicted from L by the acquisition model. Image constraints
attempt to minimize the difference between I and I0.

ping V0, then a low-pass filtering f0 is performed. In our system
we will mimic this acquisition process, applying an intensity map-
ping V followed by a low-pass filter f (Figure 3).

Many image segmentation methods, implicitly, or explicitly
compare a segmented image V (L) (which is piece-wise constant)
to the acquired source image I0. This is not accurate, as the ac-
quired image has undergone an acquisition process that involves
low-pass filtering (filter f0). This is the so-called partial volume
effect, producing unclassifiable voxels.

The filter f is a Butterworth low-pass filter whose parameters
are estimated from I0. The intensity mapping function V is esti-
mated as explained in section 4.

Images with non-isotropic sampling are also well modeled in
this framework.

5.1.2. Variable Scale Image Constraint

The energy associated with this constraint is a quadratic energy
term, corresponding to a Gaussian observation model:

E , ‖(I − I0) ∗ h‖2 (2)

h is a smoothing filter that determines the scale of this constraint.
If h is a Dirac δ-function then we obtain a sub-voxel constraint that
allows for precise positioning of the segmentation, but has a very
short range. Its energy profile is very rough and in certain cases it
might converge to a local minimum, far from the global optimum.
Changing the spread of the smoothing filter h allows to smooth the
energy profile and allows for long range image influence. Several
variable image constraints may be used simultaneously.

The associated energy variation is:

∆E(p, l) =
`

V (l) − V (L(p))
´2

‖f ∗ h‖2−

2
`

V (l) − V (L(p))
´ ˆ

(I0 − I) ∗ h ∗ f
˜

(p)
(3)

where V is the function that maps label values to mean image val-
ues. Note that the convolution term [(I0 − I) ∗ f ∗ h] may be
computed in low resolution. The only high resolution computation
involved is the downsampling of V (L).

5.2. Prior Model Constraints

Prior model constraints are independent of the source image. They
describe the shapes and positions of the objects that are being seg-
mented. We will call Ok , {p ∈ Ω | L(p) = k} the object (3D
region) defined by all points of label k.

5.2.1. Relative Label Distribution Constraint

This constraint plays an important role in the segmentation of cor-
tical folds. It is similar in its goal to the coupled surface approach
described in [2]. It models the knowledge that white and gray
matter are distributed in a specific manner around CSF in cortical
folds. This is modeled as the probability of observing a label at a
given distance of an object Ok:

E ,
X

p∈Ω

− log (P (L(p)|Dk(p))) (4)

where Dk is the (chamfer) distance map from object Ok . The
probability P is a parameterized sigmoid function, whose parame-
ters are position dependent. This constraint is also useful to model
the relative positions of other tissues. The approximate associated
energy variation is:

∆E(p, l) = − log

„

P (l|Dk(p))

P (L(p)|Dk(p))

«

(5)

5.2.2. Thickness Constraint

This constraint describes the thickness of an object Ok. Its associ-
ated energy is:

E ,
X

p∈Ok

− log(P (tk(p))) (6)

where tk(p) is the thickness of label k at boundary voxel p. Ok is
the set of all boundary voxels inside Ok. P (t) is the probability of
observing a given thickness t.

Thickness: The thickness of an object Ok at a point x0 could
be defined by using the skeleton of the object. However, this def-
inition would not be reliable, due to the inherent instability of the
skeleton. We therefore propose a modified thickness definition.

Let d be the distance map inside Ok . Starting from point x0 we
extend a path C(x0) = (x0 · · ·xn) where xi+1 is the neighbor of

xi that has the largest value of d(xi+1)−d(xi)

‖xi+1−xi‖
. The path is stopped

when
Pn−1

i=0 ‖xi+1 − xi‖ > d(xn) + λ, where λ is a smoothing
factor that represents the trade-off between precision and stability.
We use λ = 2. The thickness is then defined as tk(x0) = d(xn)
The approximate energy variation is:

∆E(p, l) = ∓ log

„

P (tk(p) ± 1)

P (tk(p))

«

(7)

depending on whether the thickness of the object k is increasing
(l = k), or decreasing (L(p) = k).

5.2.3. Surface Regularization Constraint

This constraint describes the curvature of the surface Sk of an ob-
ject Ok, thus imposing smoothness and orientation. Sk is the set
of all boundary surface elements of Ok . A surface element is the



square that separates neighboring voxels with different values of
L(p). The energy associated to this constraint is:

E ,
X

s∈Sk

− log(P (K(s))) (8)

where K : Sk → R
3 is a robust curvature operator that will be

presented, and P (K(s)) is the probability of observing a given
curvature at surface element s.

Most surface evolution methods include a regularization term
that favors smooth surfaces. Parametric surface representations
(splines) or implicit (level set [3]) representation can compute dif-
ferential values of the surfaces. However differential values are
local, by definition. What is desired in a surface evolution system,
is to control the smoothness of surfaces at a given scale. Impos-
ing strong regularization constraints at a very fine scale leads to
stiffening the surface, and may block any further surface evolution.
Moreover, computing differential properties is inherently unstable.
This led us to introduce a different definition of curvature that is
robust, is well defined for any continuous surface, and whose scale
can be tuned.

For a point O on a surface S we define its curvature as:

K(O, Z) ,
4π

Z2

Z

Z

−−→
OMds (9)

where Z ⊂ S is a surface patch containing O, Z2 is the square of
the area of patch Z, and M is a point on Z. We chose Z = BS(r)

to be a geodesic disk of radius r: BS(r) , {s ∈ S|dS(O, s) < r}

(here, dS is the geodesic distance on S). Note that
R

Z

−−→
OMds =

−−→
OG where G is the center of gravity of Z. It can be shown that
K(O, r) = K(O, BS(r)) correctly estimates surface curvature
for small r. In the test case where S is a sphere of radius R, then
K(O, r) = 1

R
. Note that this does not depend on the size r of

Z. We have also shown that K(O, Z) is fairly independent of the
shape of Z. For correct results O should be close to the geodesic
center of gravity of Z. This is only an issue at surface boundaries.
In our system this may only occur at image edges, and is correctly
dealt with.

The approximate value of the energy variation associated with
this constraint is:

∆E(p, l) = −

»

5P (Kp)

P (Kp)

–T

dC (10)

where dC is the displacement of the center of gravity of all surface
elements surrounding p when the label at point p changes to l, and
Kp is the average curvature on surface elements surrounding p.

6. EXPERIMENTAL RESULTS

The segmentation system has been successfully applied to both
1mm3 and 2mm3 images from different MRI machines. The
images were segmented at label image L resolution of .25mm3,
which was found to be sufficient to represent thin structures in CSF
regions. Figure 4 shows segmentation results after 100 iterations
for a portion of brain containing cortical folds. Convergence was
accelerated by setting r = 0 (section 2) for the first 75 iterations.
With r = 0 boundary surfaces advance rapidly, and then oscillate.
After 75 iterations, r is set to its correct value (1.5 times the grey
matter width) and boundary surfaces evolve smoothly (without os-
cillations) to their final positions. Note that most image features

I0 L0

I L

Fig. 4. Segmentation results for a low resolution (2mm3) image.
The source image I0 and the predicted image I are zoomed with-
out interpolation to emphasize their resolution. The initial seg-
mentation L0 was obtained through rough thresholding, giving a
very bad initialization. The segmentation algorithm converges to
label map L, demonstrating the robustness of the approach.

have correctly converged after only 20 iterations, the remaining
features are ones where the initial segmentation was very far from
the correct solution.

At the time of submission of this paper, a systematic evalu-
ation of the performance of our segmentation approach is under
way, using a data-base of anatomical structures manually labeled
by experts. To this end we generate low resolution MRIs from
manually labeled high resolution MR images and compare the au-
tomatic segmentation of the low resolution images with the manual
segmentation provided by the experts. Receiver Operating Char-
acteristics (ROC) analysis [5] may then be used to assess the accu-
racy of the segmentation procedure.
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