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a b s t r a c t

Human action recognition is still attracting the computer vision research community due to its various
applications. However, despite the variety of methods proposed to solve this problem, some issues still
need to be addressed. In this paper, we present a human action detection and recognition process on large
datasets based on Interest Points trajectories. In order to detect moving humans in moving field of views,
a spatio-temporal action detection is performed basing on optical flow and dense speed-up-robust-
features (SURF). Then, a video description based on a fusion process that combines motion, trajectory
and visual descriptors is proposed. Features within each bounding box are extracted by exploiting the
bag-of-words approach. Finally, a support-vector-machine is employed to classify the detected actions.
Experimental results on the complex benchmark UCF101, KTH and HMDB51 datasets reveal that the pro-
posed technique achieves better performances compared to some of the existing state-of-the-art action
recognition approaches.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Action recognition is an active research field in computer vision.
It represents a wide range of applications such as video surveil-
lance, gesture interpretation, robotic vision, video search/retrieval
and human-machine interaction. Recognizing human actions in
videos is a challenging task due to the large intra-class variations
of complex actions, poor quality and camera motion. In order to
overcome these issues, a relevant video description based on divid-
ing it into small sequences is required. In the following, we intro-
duce our approach and provide a brief critical literature survey of
the different methods developed for each component of the com-
mon video description and analysis system dedicated to human
action detection and recognition.

Temporal segmentation of videos may be performed in different
ways. Some methods are based on the trajectory of interest points
(IP) [1,2]. Various trajectory based descriptors has been proposed
in the last decades [3,4]. These descriptors are extracted either

from optical flow [5,6], or by matching IP in different frames
[4,5]. For such, the number of frames involved in setting the trajec-
tory length depends on the used approach. In [4], the trajectory
length is within a fixed interval while in [7] it is based on a fixed
frame number in order to extract a displacement vector.

In some scenarios, action recognition is pre-processed by a
motion segmentation step [8]. Thus, its performance is highly
related to the segmentation algorithm. Pixel-wise techniques,
namely background subtraction and temporal differencing [9],
are the most straightforward methods. However, they are only
effective under the consideration of static cameras. When dealing
with moving cameras, these models are likely to fail as the back-
ground is continuously varying in addition to the target’s motion.
A recent study [10] revealed that optical flow (OF) based methods
[11] are one of the most effective techniques in motion segmenta-
tion. Horn and Schunck [12] and Lucas and Kanade (L&K) [13] are
the oldest yet most employed optical flow-based algorithms.
Regarding their limitations toward accuracy and illumination
changes, some improvements have been proposed [14]. Our
method is also based on the computation of OFs of detected inter-
est points (IP).

As for interest points detectors, SIFT (Scale Invariant Feature
Transform) [15] and SURF (Speed-Up-Robust-Features) [16]
descriptors are widely employed. Jurie and Triggs [17] revealed
that using a regular dense grid for sampling local image patches
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enhances the use of interest points. Moreover, a recent evaluation
of dense sampling proposed by Uijlings et al. [18] proved that
dense SIFT and dense SURF descriptors may be extracted more
quickly with no loss of accuracy. Dense sampling is shown to
improve or produce comparable performance in different applica-
tions such as image classification [19]. In the same direction, Wang
et al. [20] evaluated the use of dense sampling at regular positions
in space and time for action recognition.

In practice, the complexity of dynamic scenes is considered as
the biggest challenge facing motion segmentation. In fact, objects’
motion is combined with both the camera and background
motions. In this case, camera motion compensation is crucial. Ear-
lier approaches to camera motion compensation relied on estimat-
ing the camera motion as a 2D affine transform or homography
[21,22]. Other methods performed motion compensation at trajec-
tory level [23]. All these works support the potential of motion
compensation. However, in some cases it is almost impossible to
separate the foreground and the background when there are close
up captures of the human activity.

In this paper, we propose a motion segmentation algorithm
based on the computation of optical flows of detected dense fea-
tures. We propose to compensate the camera motion by determin-
ing the camera flow direction using the k-Nearest Neighbor (KNN)
clustering algorithm and the affine motion model. Finally, humans/
objects are segmented using temporal difference between two
motion compensated frames. A bounding box is drawn around
each detected object. Thereafter, the discriminative video segmen-
tation is performed based on the extracted bounding boxes (BB).

To describe actions in videos, spatio-temporal (ST) local fea-
tures are widely exploited [24]. ST descriptors are extracted by
extending the 2D interest point to the temporal domain (1D)
[25]. Willems et al. [26], proposed a method based on the exten-
sion of the Hessian matrix to the temporal domain to extract IP.
Laptev et al. extended the volumetric features corner detector to
extract space-time local structures [27]. Local descriptors were
also extended to the temporal domain such as the histograms of
oriented 3D spatio-temporal gradients [28], E-SURF [26] and the
3D-SIFT [29]. Noguchi et al., proposed a spatio-temporal SURF
using Lucas-Kanade optical flow [30]. However, in [5,7], it was pro-
ven that the previous techniques suffer from inaccuracy due to the
use of spatial and temporal information in a common 3D space. In
fact, spatial information has different characteristics from tempo-
ral information, so associating them differently in a new scheme
deserve to be more investigated and might be the cue of success
of action detection in big datasets. That is to detect spatio-
temporal features, various works are based on IP tracking upon a
video sequence. Indeed, Sun et al., in [31], performed efficient
action recognition by leveraging the motion information of trajec-
tories. Authors in [32] proposed to describe interest point neigh-
borhood through the distribution of the motion angles. They
proposed to split optical flow components to extract the distribu-
tion of the motion trajectory orientation in the planes ðt; xÞ and
ðt; yÞ. The generated histograms describe, for every SURF based
patch, its trajectory orientation angle and its displacement. Megrhi
et al., in [6], proposed a method based on trajectory tracking of the
SURF interest points into a frame packet. One of the latest work is
proposed in [5] where descriptors based on appearance (his-
tograms of oriented gradients), motion (histograms of optical flow)
and trajectories are proposed to characterize shape (point coordi-
nates). These approaches provided excellent performances for
action recognition.

The representation of video objects as a dictionary of visual
words [33,34] is, also, widely used in the task of action recognition.
The distribution of the visual words is described by a histogram.
The latter is then used in classification framework to separate dif-

ferent classes. In this paper, we exploit the BOVW method using a
v2 Kernel Support vector machine (SVM).

The ultimate goal of thiswork is to introduce an efficientmethod
to achieve accurate and fast action detection and recognition in big
dataset. For action recognition, we focus on the trajectory tracking.
We propose a video description based on a fusion process that com-
binesmotion, trajectory and visual descriptors. The overall proposal
of the spatial-temporal segmentation and the associated architec-
ture are shown in Fig. 1. Our work has already been partially
described in [6,35]; here, we give new and more detailed explana-
tions on the different parts of the proposed approach.

The remainder of the paper is organized as follows: The related
literature is presented in Section 2. Section 3 is dedicated to the
description of the motion segmentation proposed approach. Sec-
tion 4 describes the selective segmentation of video sequences
while the feature extraction approach is drawn in Section 5. Exper-
iments and results are presented in Section 6. Finally, a conclusion
is given in Section 7.

2. Literature review

Motion is the most important cue for studying humans actions.
Thus, motion segmentation is a good way to reduce the amount of
data involved in this task. However, it gets more challenging when
dealing with moving cameras where the scene necessarily involves
the motion of the background. At this level, camera motion com-
pensation becomes compulsory. In the literature, some attempts
have been proposed. Ikizler-Cinbis and Sclaroff [36] applied video
stabilization using homography-based motion compensation
approach. Nga and Yanai [37] subtracted the estimated camera
flow multiplied by the camera direction from the flow of each
extracted spatio-temporal keypoint. However, in this work, only
camera translation in both horizontal and vertical directions is
considered. Different works, such as in [21,38,22], considered 2D
polynomial affine motion models to compensate camera motion.
In [21,38], a model was employed to separate dominant motion,
supposed to represent the camera motion, from residual motion
in videos with dynamic scenes. More recently, Jain et al. [22] con-
sidered the same model. The compensated flow is computed as the
difference between the original and the affine flow vectors of each
point. Thereby, each vector is compensated by its own affine flow
and not by the camera movement.

Video segmentation is followed by the features extraction step.
In fact, to recognize human actions, different works based on local
spatio-temporal (LST) features extraction have been developed [5].
Almost all existing LST descriptors are derived from the extension
of a 2D spatial features or detectors to the temporal domain. Nie-
bles et al. [39], summarized the video by space-time interest
points. The Cuboids descriptor was proposed in [40], while 3D-
SIFT was introduced in [29] to recognize actions in video volumes.
In the same spirit [41] proposed the C2-shape features. Histogram
of oriented gradient and Histogram of optical flow (HoG-HoF)
based method has been presented in [34]. Authors in [26] intro-
duced the spatio-temporal Hessian detector and the extended
SURF. Other interesting works such as HOG3D [28], the local Tri-
nary Patterns [42] and Space Time SURF [30] have been proposed.

Recently, a special focus was put on video description by track-
ing interest points motion [43]. This allows exploring several
motion cues such as velocity [44,45], orientation [46,47], location
[48], trajectory curves [49], trajectory parts [3] or different motion
cues combinations [6]. Moreover, Sun et al. [4], encode the SIFT
trajectory to extract spatio-temporal context models. Trajectory
patterns can be extracted using a tracker such as the KLT
(Kanade-Lucas-Tomasi) tracker [13] which is commonly employed
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in videos [50]. Authors in [31] used both SIFT and KLT features to
extract long duration trajectories. Wang et al. proposed dense tra-
jectory tracking to encode temporal information [7]. They sug-

gested to use dense optical flow to densely track detected
interest points [5]. They proved that trajectory tracking is an intu-
itive and successful approach in several public datasets.

Fig. 1. Overview of the proposed approach. The framework is composed from two parts: motion detection and segmentation (PART ONE) and action recognition (PART TWO).
The shot is taken from the UCF101 dataset for ‘‘Fencing” category.
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Trajectory segmentation is another critical task for trajectories
description. To segment the trajectory, some methods based on
trajectory clustering [51,52] and moving object trajectory tracking
have been proposed. In order to detect ‘‘phoning” and ‘‘standing-
up” actions, authors in [53] used a sliding window classifier to
extract temporal information and a human tracking process to
extract trajectory information.

More recently, in [5], a new scheme is proposed to characterize
dense trajectories in order to preserve trajectory smoothness. The
trajectory attributes are then extracted by concatenating interest
points trajectory in successive frames with a limited length of 15
frames. Finally, a trajectory shape descriptor which characterizes
the displacement is computed.

In our work, we proceed clearly differently from the previous
works. In the proposed approach, the frames length are set based
on a simple yet efficient, automatic selective snippets segmenta-
tion to define actionlets temporal extents in order to avoid manual
labeling as done in [54,53]. This allows to work only on snippets
containing significant motion and allows also to reduce the cost
of computing trajectory shape descriptors. Furthermore, the trajec-
tory orientation is exploited to ensure relevant description of
motion and displacement of moving objects/humans. The spatio-
temporal feature coordinates describe the location of the trajec-
tory, and henceforth, captures space-time attributes of an
actionlet.

Another challenging issue is to ensure robustness of extracted
features to camera motion and varying background. The insight
behind the success of several proposed video descriptors is the
use of static camera and uniform background [55,56]. Although,
many schemes have been proposed to reduce camera motion
[57,22], this problem remains unsolved in some cases. It is the pur-
pose of this work to develop a video presentation which discards
camera motion without sacrificing significant human action cues.

To this end, the motion boundaries histogram descriptor (MBH),
derived from the optical flow gradient, is used as done in [58]. It
removes constant motion and preserves significant one. MBH
was employed in various action recognition schemes [5,7]. It pro-
vides more interesting results when applied to video containing
important camera motion. MBH is certainly not dedicated to
remove camera motion, but combined with the spatio-temporal
SURF (ST-SURF) proposed by [6], it contributes significantly to
compensate camera motion.

Descriptors extraction step is followed by a classification task
based on code-book generation. Many approaches were proposed
to extract a code-book for action recognition. A code-book can be
generated using various techniques including, but not limited to,
Random forest [59,60], Sparse code-book learning [61,62] or bag
of visual words (BOVW) [33,34,5]. The BOVW approach achieved
good results in action recognition in both image [63] and video
analysis [64]. This is owing to the orderless feature presentation
of BOVW that discards features spatial position and inter-
relationship between the extracted visual words. However, the
accuracy of BOVW decreases when the size of the database is huge
in the case of more realistic scenes with many actors and rich back-
ground. Therefore, to incorporate spatial information, spatio-
temporal pyramid is a relevant choice [34,65,5]. This approach
has been introduced for analyzing and recognizing natural scenes
categories [66]. The basic idea is to divide the image into increas-
ingly size sub-regions then extract histograms of local features
detected inside each sub-region.

To overcome these problems, we propose, for compensating the
camera motion, to first determine the direction and magnitude of
the dominant motion using a clustering of optical flow vectors,
then applying the affine motion model. Once this step is achieved,
we may process as if the camera is static.

In our work, spatial information is injected in the video descrip-
tion by a pattern called Motion Distance (MD). Consequently, there
is no need for extra computation to add spatial information into
the BOVW approach.

3. The proposed human motion detection and segmentation
scheme

In order to reduce the amount of data involved in the task of
action recognition, the proposed approach aims to detect and seg-
ment moving objects in a moving field of view. To reach this goal,
interest points are first densely detected and extracted with a tem-
poral step of N frames. Second, optical flows of detected keypoints
between two frames are computed by the iterative Lucas & Kanade
optical flow using a pyramidal representation [14]. Then, the
resulting vector field is submitted to a flow clustering process
which splits the list of flow vectors into clusters having similar
flow direction and different from the direction of vectors in other
clusters. Based on the clustering results, camera motion direction
is determined and compensated in order to extract foreground
features.

3.1. Computation of optical flow

In a given image, some parts, such as the sky or the roof, have
almost the same color distribution. These parts do not, generally,
contribute with useful information and add noise in the estimated
optical flow. In order to overcome this drawback while preserving
the most important structural features, image edges are first
detected using the canny edge detector [67]. As follows, all steps
of the motion segmentation process will be applied on the edge
frame. Once the set of interest points densely extracted from the
edge frame is defined, we track them over the next edge frame
using the iterative Lucas & Kanade (LK) optical flow using a
multi-resolution scheme. Fig. 2 draws an example of LK optical
flow before and after edge detection. It is clear that employing
the edge detection phase leads to discard various erroneous OF
vectors. Optical flow computation results in a set of four-
dimensional vectors V:

V ¼ fV1 � � �VNjVi ¼ ðxi; yi; ai;miÞg ð1Þ

where xi and yi are the image coordinates of keypoint i; ai andmi are
respectively the motion direction and magnitude of i. Note that ai
(respectively mi) corresponds to the direction of the vector (respec-
tively the distance) from (respectively between) keypoint i in frame
t and its corresponding feature in the next frame. Generally, optical
flow is computed between two successive frames. However, the
result may be unstable when objects either move too fast, too
slowly or stop between successive frames. In this paper, we propose
to extract keypoints and compute optical flow with a temporal step
size of N frames. In fact, the choice of the temporal step value varies
according to the type of the video. For example, in sports videos
such as running or swimming, motion is large-scale. In this case,
in order to obtain more information about the motion, it is better
to choose small value of N. On the other hand, in videos of everyday
activities such as talking or writing, motion is rather small. In such
videos, N could be chosen to be large.

The computation of optical flow vectors also allows the removal
of static features that correspond to pixels with optical flow com-
ponent magnitudes lower than a threshold T in both the x and y
directions. Based on several observations, we empirically set the
minimum motion magnitude to 0.5 pixel per frame.
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3.2. Detection and compensation of camera motion

Once the number of extracted dense keypoints and their associ-
ated motion vectors are obtained, we separate local motions
belonging to moving objects from the camera motion. In this part
of the study, the problem of camera motion compensation is solved
by checking the existence of camera motion based on motion vec-
tors. If camera motion is detected, the direction and magnitude of
this camera motion are determined before moving to the next step.
Then, camera motion is compensated by applying affine transfor-
mations to the original frame.

Camera motion detection: In order to find out how the camera
moves at each frame, our approach is based on the assumption that
if most points shift to the same direction, camera motion exists and
has the same direction as the moving points. The detection of cam-
era motion is derived from analyzing optical flows between two
frames in a frame set. Therefore, a clustering of optical flow vectors
is proposed in order to eliminate outliers and determine the direc-
tion of camera motion. In view of our real-time requirements, it is
desirable to have a low number of clusters with similar optical flow
vectors. It’s worth to notice here that we do not seek to group
motion vectors having the same magnitude or deviation. We are
interested only on the direction of the motion. Fig. 3 depicts the
eight possible directions of the camera motion: six in the horizon-
tal direction: forward (up, down or right) or backward (up, down or
left), and two in the vertical direction (up or down). In order to seg-
ment flow field into different groups, the k-Nearest Neighbor
(KNN) clustering algorithm is employed.

After performing the KNN clustering, several small clusters may
appear. These clusters do not belong to a dominant cluster and are
not relevant to the purposes of the study. Therefore, clusters with a
size lower than a certain threshold are discarded. Fig. 4 presents
examples of optical flow clustering using KNN. Each of the eight

directions of the camera is represented by a different color. In these
representations, it is easy to distinguish the moving objects from
the background as well as determining the direction of camera
motion. In the first three images, the camera is moving in a differ-
ent direction than the humans. In the last one, the man on the left
has the same motion direction as the camera (presented in the
same color), but their velocities are different. Therefore, the camera
motion compensation should be performed.

Since we assumed that camera motion exists if most points
move in the same direction, we determine the size of each of the
eight clusters. We, then, compare the size of the largest cluster to
the minimal required proportion of moving points set to N

2 where
N is the total number of detected points. Therefore, camera motion
exists if Eq. (2) is satisfied:

sup
i21;...;8

fsig P
N
2

ð2Þ

where si is the size of cluster i and i is the number of the cluster. As
an example, in the first row of Fig. 4, we can easily interpret that
purple is the dominant color. Hence, the camera is in motion and
it is moving horizontally to the left. If the above condition is not sat-
isfied, then the camera is supposed to be in rest and if it is detected
as being in motion, then the camera motion magnitude and devia-
tion are computed using on the following equations:

mm ¼ meanjf ij ð3Þ

hm ¼ meanðhf i Þ ð4Þ
Here, f i and hf i refer, respectively, to the flow and deviation of point
i. mm and hm refer, respectively, to the camera flow magnitude and
deviation.

Camera motion compensation: In videos captured by a hand-
held camera, camera motion is random. This motion is a combina-
tion of translation and rotation. In Nga et al.’s work [37], only the
camera translation is considered. Camera motion is compensated
by subtracting the camera flow from the original flow of each SURF
keypoint. As a result, the camera motion will not be correctly com-
pensated if the motion is, for example, oblique. We propose to
solve this problem by applying affine transformation to each frame
in which camera motion is detected. The affine model [68] incorpo-
rates transformation such as translation, rotation, and scaling
(compressions or expansions). The transformation can be
described as:

I0 ¼ D� I þ d� T ð5Þ
where I is the original frame; I0 is the transformed frame;

D ¼ sxdxx sydxy

sxdyx sydyy

� �
is the deformation matrix accounting for rota-

tion and scaling; dxx; dxy;dyx;dyy are the rotation parameters and sx

Fig. 2. Results of LK optical flow computation before (left) and after (right) edge detection.

Fig. 3. Possible directions of camera motion.
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and sy are the scaling ratios in the x and y directions. T ¼ dx

dy

� �
is the

translation vector. d equals 1 if the camera moves in a positive
direction or �1 if the camera moves in a negative direction.

In this work, we take under consideration only translation and
rotation motions. The parameters sx and sy from the deformation
matrix are equal to 1. Hence, I0 from (5) becomes:

I0 ¼ cos hm � sin hm
sin hm cos hm

� �
� I þ mmH

mmV

� �
ð6Þ

Here mmH (respectively mmV ) refers to the camera flow magnitude
when the camera translates horizontally (respectively vertically).
In case of horizontal motion,mmV ¼ 0 and in case of vertical motion,
mmH ¼ 0. Unlike in [22,37] where the motion of each flow vector is
compensated for independently, in our work, we apply the affine
model on the whole image.

3.3. Motion segmentation

After compensating the camera motion, we reach a situation
similar to when the camera is static. Here, moving objects are
segmented using a pixel-wise technique known as temporal dif-
ference. It is the simplest method for extracting moving objects
and is robust in dynamic environments. It is similar to back-
ground subtraction techniques. The only difference between them
is that the background model for temporal difference is the pre-
vious frame.

This algorithm classifies a new pixel as being a foreground pixel
whenever kIðx; yÞ � Iprevðx; yÞk P Th where Th is a user defined
threshold. In this work, Th is set experimentally to 100. The output
is a binary image. However, due to camera noise and limitations of
the background model, the foreground mask typically contains
numerous small ‘‘noise” clusters. These erroneous clusters can be
removed by applying a noise filtering algorithm to the foreground
mask. Removing them at an early stage is desirable since they can
interfere with later post-processing steps.

In general, morphological operations are performed to remove
noise and extract significant information from images. In our sys-

tem, we used both morphological erosion and dilatation, using a
structuring element with size 2� 2, to remove noise and unwanted
objects. After that, objects, including many small holes and sepa-
rated pixels, are connected into one cluster using the dilatation
operation. Small and useless clusters are removed by setting limi-
tation on their sizes. The remaining clusters represent the moving
objects.

Finally, a bounding box is drawn around each detected object.
The aforementioned steps of our proposed method for motion
segmentation are applied to an input video with a temporal step
of size N. Thus, the detected objects in the remaining frames (the
frames between frame ðnÞ and frame ðnþ NÞ) need to be tracked.
To accomplish this, we employ a template matching technique
known as normalized cross correlation [69]. Fig. 5 emphasizes
the effectiveness of our motion segmentation method. It can be
observed that almost only local motions remain which are then
employed, after filtering noise, to segment the motion. Our
method succeeded to eliminate the motion induced by the
camera and thus keeping only the motion of humans/objects.
However, in some cases, the process of camera motion compensa-
tion may have a reverse effect on motion segmentation. In fact, in
some frames, two or more dominant planes coexist. Hence, the
camera motion direction and deviation will not be determined
correctly. For example in the fourth row of Fig. 5, the motion of
two players can be easily detected before camera motion com-
pensation. When applied, the latter adds some noise to the frame.
At the end, we were able to solve this problem using morpholog-
ical operations.

In the case where no camera motion is detected, we admit that
the detected flow belongs to the objects/humans in motion. Hence,
instead of applying, as we did previously, the temporal differencing
technique, here, we propose to apply a second clustering of optical
flow vectors based on the degree of similarity of their magnitudes,
angles and closeness, under the assumption that optical flows of a
single person/object have similar characteristics.

We assume that two optical flow vectors, f i and f j, belong to the
same cluster if the following assumptions are satisfied:

jli � ljj 6 lth ð7Þ

Fig. 4. Optical flow clustering using KNN algorithm: the first row presents optical flows between two frames taken from a video sequence while the second row displays the
results of KNN clustering. The keypoints are grouped into eight clusters with different colors depending on the flow direction. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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jhi � hjj 6 hth ð8Þ

jposXi � posXjj 6 posXth ð9Þ

jposYi � posYjj 6 posYth ð10Þ

where li and lj are the magnitudes of f i and f j. hi and hj are the devi-
ations (angles) of f i and f j. ðXi;YiÞ and ðXj;YjÞ are the coordinates of
optical flow vectors. Finally, lth; hth;posXth and posYth are the thresh-
olds for optical flow clustering.

All detected flow vectors are compared two-by-two based on
these similarity comparisons leading to form a fixed number of
clusters. Noisy and meaningless clusters, are removed. The remain-
ing clusters belong to the foreground. A bounding box is drawn
around each one.

Fig. 6 presents the segmentation results derived from the opti-
cal flow clustering technique as well as the results of using the
frame difference technique. The OF clustering technique (row 5)
achieves better segmentation results. It succeeds to capture the
whole human motion, whereas the second technique (rows 3 and

4) leads to loss of information and only some parts of the motion
are segmented.

4. Selective snippets (SS) and Group of SURF (G-SURF)
segmentation

One of the main objectives of the proposed method is to reduce
computational time. This could be achieved by reducing the num-
ber of the video frames to be analyzed. For this purpose, we pro-
pose the use of concepts of selective snippets and the group of
SURF (G-SURF). A selective snippet is a video portion that contain
action. Considering three successive frames ðn;nþ 1;nþ 2Þ, a
detected SURF in frame n can be detected in the same location in
the following frame ðnþ 1Þ. Also it can simply disappears or be
detected in another spatial location if the SURF moves. Therefore,
a trajectory description to follow the motion of this point can be
extracted. Considering a, as shown in Fig. 7, the angle between
the lines segments supporting the motion of a SURF from the cou-
ple of frames ðn;nþ 1Þ and ðnþ 1;nþ 2Þ, we compare a to amax

(amax is empirically set) to segment a succession of frames (SS) in

Fig. 5. Results of our proposed method for motion segmentation. Camera motion exists in all the sequence. The first column presents a frame set of consecutive frames
containing camera motion on which optical flow is drawn. The second column refers to the motion segmentation results before camera motion compensation. The third
column shows the results of motion segmentation after camera motion compensation. Finally, the last column is the final segmentation after applying morphological
operations.
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which each SURF has an a lower than amax. Let Dn;nþ1 be the dis-
placement vector of a given SURF from the frame ðnÞ to the frame
ðnþ 1Þ;Dn;nþ2 from the frame ðnÞ to the frame ðnþ 2Þ.

Dn;nþ1 ¼ ðDxn;nþ1;Dyn;nþ1;Dtn;nþ1Þ ð11Þ
and

Dnþ1;nþ2 ¼ ðDxnþ1;nþ2;Dynþ1;nþ2;Dtnþ1;nþ2Þ ð12Þ

a ¼ arccos
Dn;nþ1 � Dnþ1;nþ2

Dn;nþ1

�� ��� Dn;nþ2

�� �� ð13Þ

Note that, within a SS, all SURF motions are lower than amax. In
order to avoid an over-sized SS, we introduce the concept of G-
SURF. This is a parameter defining the number of grouped SURF
empirically tuned. The grouping technique is then performed over
successive SURF detected in a reference frame. By defining G-SURF,
an average motion angle (aavg) is computed and compared to amax.

Fig. 6. Results of motion segmentation in videos acquired by static camera. The first row presents a set of consecutive frames on which optical flow is drawn. The second row
refers to optical flow clustering using KNN clustering. The third and forth rows show the results of temporal differencing technique. Finally, the last row is the result of motion
segmentation after optical flow second clustering.
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The more SURFs are, the less aavg is sensitive to motion and the
more the SS will have extended borders. The extracted keyframes
are called tmin and tmax. The main steps of the proposed segmenta-
tion algorithm are given below (Algorithm 1).

Algorithm 1. Proposed algorithm for FPs segmentation.

Require: I - input video
amin;amax - motion angles

Ensure: f, tmin; tmax

Step1: IP extraction from frames {f n; f nþ1};
Step2: Groups of IPs defined;
Step3: Compute the line supporting the motion;
Apply the above three steps to {f nþ1; f nþ2};
Compute the angle between each motion line;
Extract aavg for each GIP;
if aavg 6 amin then
go to the next frame;

else
Compare aavg to amax;

end if
repeat
previous steps

until aavg P amax

5. Feature extraction

Action recognition is a challenging computer vision task. As
mentioned in the introduction, several descriptors have been pro-
posed to achieve high quality action detection. In this section, we
describe in details the main stages of the used descriptors in our
process.

5.1. Local interest points extraction

In 2004, Lowe [16], presented an interest point called scale
invariant feature transform (SIFT). SIFT strikes a balance between

robustness and fast computational time against image scale and
rotation. SIFT descriptor was successfully used in image recogni-
tion and retrieval [16]. However, SIFT extraction process is very
slow. Bay et al. [16] proposed a speeded-up version of SIFT called
SURF. The SURF detection process is based on the determinant of
the Hessian matrix (HM). In fact, HM is not only fast and accurate,
but it also allows to extract both scale and location cues [16]. For a
given IP ¼ ðx; yÞ located in a frame f, the HM located at IP with the
scale r is defined as

HðIP;rÞ ¼ LxxðIP;rÞ LxyðIP;rÞ
LxyðIP;rÞ LyyðIP;rÞ

� �
ð14Þ

Fig. 7. IPs trajectory tracking for FPs segmentation.

Fig. 8. A general outline of SIFT SURF extraction. (a) Box filter to estimate SURF
features; (b) scales space in the SURF extraction; (c) scale space in the SIFT
extraction.
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where LxxðIP;rÞ is the result of the convolution of the frame f in IP

with the Gaussian second order derivative @2gðrÞ
@x2 . This filter is

approximated by using box filter (see Fig. 8(a)). Henceforth, the
determinant of the approximated HM becomes:

detðHapproxÞ ¼ DxxDyy � ð0:9DxyÞ2 ð15Þ
Instead of using scale space representation based on pyramid

decomposition, in [16], the filter size is up-scaled while keeping
the original image size (see Fig. 8). To accelerate the computation
time, authors employ integral images. Then, they define a square
region centered by the detected interest points and characterized
by a reproducible orientation. This region is then splitted into
4� 4 sub-regions. A four Haar wavelet responses are extracted
from every sub-region. Finally, the 64D SURF descriptor is
extracted. The experiments turned out that SURF is three times fas-
ter than SIFT with a reasonable accuracy. In this work, the feature
extraction solution given in [16] is adopted to extract IP. This
choice is motivated by the speed up of the extraction step, robust-
ness, the smaller size of this feature and its reliable performances
attested in several datasets for action recognition [30].

5.2. Motion trajectory extraction

The motion trajectory detection tracking and extraction are
based on the following steps:

5.2.1. Optical flow computation
Features tracking is performed by estimating optical flow. To

increase optical flow estimation accuracy, several methods derived
from the Horn and Schunck (HS) Optical flow formulation [70]
have been proposed. Sun et al. [70] proposed an algorithm to
approximate an optimized computationally tractable objective
function, based on the original HS formulation. First, a median fil-
tering is used to denoise the flow field. The pre-filtering of the
frames reduces the influence of illumination changes. By exploiting
relation between median filtering and L1-based denoising, it has
been proved that algorithm relying on a median filtering step
allows to optimize a different objective that regularizes the flow
over a large spatial neighborhood [70]. It is filtered using a bilateral
weight that depends on the spatial and the color value distance of
the pixels as done in bilateral filer. The resulting algorithm ranks
1st in both angular and end-point errors in the Middlebury evalu-
ation [70]. The initially computed optical flow serves in many
blocks in the proposed framework. This reduces feature extraction
computational time.

5.2.2. Trajectory tracking
Every selective snippet corresponds to a volume of frames in

the 3D space called SS Volume ðSSvÞ. This cubic volume is charac-
terized by:

� The frame number ðFNÞ varying from 1 to tmax.
� The frame surfaces dimensions ðFSÞ varying from x to xmax in the
x direction, and from y to ymax in the y direction.

� The SS cubic volume center ðSSccÞ coordinates.

A given interest point IP ¼ ðx; y; tÞ is defined by its spatial posi-
tion ðx; yÞ and its temporal cue t. In frame ðt þ nÞ, the IP undergoes a
displacement u in the x direction, and v in the y direction defined
as, IPðt þ nÞ ¼ ðxþ u; yþ v ; t þ nÞ. In all our experiments, unless
mentioned otherwise, we consider only moving interest points
when u – 0;v – 0. In every pre-defined SSv , the 3D direction
ðu;v ;nÞ is the direction of the IP motion. The motion vector is cal-
culated by the Sun et al. [70] optical flow approach. Our main con-
tribution consists on the use of motion trajectory orientation to

describe IP displacement, instead of using directly the optical flow
fields ðu;v ;nÞ. In-fact, the motion vector in the 3D space can be
found by the intersection of two orthogonal planes to the plane
ðt; xÞ and the plane ðt; yÞ. To extract IP motion trajectory orienta-
tion, we project its motion vectors onto the planes ðt; xÞ and ðt; yÞ
of the SSv to define an angle for each projection of the first angle
ax between optical flow and the plane ðt; xÞ, the angle ay between
the plane ðt; yÞ and the motion vector. Fig. 9 illustrates the cube
and its projection into the planes ðt; xÞ and ðt; yÞ.

/x ¼ 90� 180
P

arctan
u
n

� �
;/y ¼ 90� 180

P
arctan

v
n

� �
: ð16Þ

The projection of each SURF 0s motion vector on the planes ðt; xÞ
and ðt; yÞ yields to two lines Lx and Ly. The orthogonal projection of
SSccx and SSccy onto the lines Lx and Ly allows computing the two
distances Dx and Dy between the SSv center and the lines support-
ing the motion vectors (Lx and Ly).

For an IP located at ðx; y; tÞ, the distances Dx and Dy are given by:

Dx ¼ Dxu � Dtv ;Dy ¼ Dyv � Dtu ð17Þ
where

Dxu ¼ ðx� xmax=2Þcos 180=Parctan
u
n

� �� �
ð18Þ

Dtv ¼ ðt � tmax=2Þsin 180=Parctan
v
n

� �� �
ð19Þ

Dyv ¼ ðy� ymax=2Þcos 180=Parctan
v
n

� �� �
ð20Þ

Dtu ¼ ðt � tmax=2Þsin 180=Parctan
u
n

� �� �
ð21Þ

where tmax; xmax and ymax are the dimensions of the SS volume with
tmax depending on the number of the frames contained within a seg-
mented ðSSvÞ. In the following, Dx and Dy describe the motion trajec-
tory location in the 3D volume generated from the successive
frames.

5.2.3. Histogram of motion trajectory orientation (HMTO)
A wide range of histograms have been proposed in the literature

for action recognition description. Some of them focus on extract-
ing motion cues such as [34] or MBH [58]. While other extract spa-
tial information i.e., HOG descriptor [25]. In this paper, we
introduce a novel descriptor called motion trajectory orientation
histogram (HMTO). The most valuable property of this descriptor
is that it is splitted in order to capture motion trajectory orienta-
tion patterns in both (x, t) and (y, t) directions. To gain more accu-
racy, we extract both HMTOx and HMTOy from a SURF centered
patch. The patch is a square region with size 20s where s represent
the current scale. Furthermore, for every pixel in the detected
patch, we compute the optical flow. Then, we extract the direction
parameters ax and ay. These are considered as the angular votes in
HMTOx and HMTOy. To use the trajectory cues to track actions, we
propose to bin them based on the absolute motion distance. Finally
we extract 8 bins histogram HMTOx and HMTOy. These histograms
are finally L2 normalized (see Fig. 10).

5.2.4. Motion boundary histogram (MBH)
The motion boundary histogram (MBH) was introduced in [58]

to detect actions. MBH contains the distribution of the gradient of
the optical flow fields in both x and in y directions. Hence, it cap-
tures salient optical flow changes while suppressing static motion
usually derived from camera motion. The final MBHx and MBHy are
96D ð2� 2� 3� 8Þ features set. In this work, we used MBH, not
only for its aptitude of reducing camera motion, but also as a
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motion descriptor for its action recognition discriminative power
attested in the state-of-the-art [58,5].

5.2.5. Spatio-temporal SURF (ST-SURF)
ST-SURF was introduced by [6]. The main idea is to detect the

trajectory of a SURF point by tracking its motion trajectory. The
authors use Hessian Matrix to detect salient points. Then, they
extract all SURFs in a given video. Finally they compute a 68D
spatio-temporal SURF called ST-SURF. The results given by their
proposed approach are encouraging but still below the state-of-
the-art. In this paper, we give an optimized ST-SURF extracted over
a SS. This step is based on a dense SURF extraction, which boosts
the information detection step. We combine ST-SURF with other
descriptors to capture maximum spatial and temporal cues. We
choose ST-SURF for many reasons. First, it contains spatial informa-
tion driven by the SURF and temporal information driven by the
optical flow, the size of this descriptor and finally it provides local-
ization information. The latter will add spatial information to the
bag of words encoding step.

6. Experiments and results

A highlight of the experimental settings and results are pre-
sented in this section.

6.1. Dataset

Our proposed algorithm is evaluated on three complex bench-
marks for action recognition: UCF101, KTH and HMDB51. Exam-
ples from each dataset is presented in Fig. 11.

UCF101 [71]. UCF101 is one of the largest realistic datasets for
action recognition. It includes a total number of 101 action classes
which are divided into five categories: Human-Object Interaction,
Body-Motion, Human-Human Interaction, Playing Musical Instru-
ments, Sports.

Clip Groups: The clips of one action class are divided into 25
groups which contain 4–7 clips each. The clips in one group share
some common features, such as the background or actors. The
videos are downloaded from YouTube [72] and the irrelevant ones
are manually removed. All clips have fixed frame rate and resolu-
tion of 25 FPS and 320 � 240 respectively.

KTH [73]. The KTH dataset is commonly used as a public bench-
mark test of spatio-temporal features. It contains six kinds of
actions: walking, running, jogging, boxing, hand waving and hand
clapping. We consider six action classes performed by twenty-five
persons in four different scenarios (indoor, outdoor, different
clothes outdoors, scale outdoors) with a total of 2391 video sam-
ples, all with a homogeneous and static background. The average
length of videos in the KTH dataset is about 20 s.

Fig. 9. The projection of a motion vector in the adjacent planes.

Fig. 10. Overview of HMTO extraction.
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HMDB51 [74]. HMDB51 is currently the largest dataset that
addresses the problem of action recognition. It contains around
7000 manually annotated clips extracted from a variety of sources
ranging from digitized movies to YouTube divided to 51 action cat-
egories. We follow the original protocol using three train test splits
[74]. For every class and split, there are 70 videos for training and
30 videos for testing. Note that in our experiments, we use the
original videos and not the stabilized ones.

6.2. Experimental settings

In the previous sections, we introduced the overall approach for
motion segmentation and action description and recognition. Our
proposed technique for motion segmentation does not require
any assumptions about the first frame, initialization, or training
steps. The segmentation process starts by dense SURF features
extraction on a 6� 6 sized grid with a temporal step size of N
frames. In our experiments, we fix N to 3 so that small motions
do not get lost and fast motions are captured without error. Then,
L&K optical flow is computed. The flow vectors are clustered to
determine whether camera motion exists. If it does not, a second
clustering of flow vectors is conducted basing on the degree of sim-
ilarity of their magnitudes, angles and closeness. Thresholds are
fixed experimentally as follows: lth ¼ 15; hth ¼ 2:0; posXth ¼ 45
and posYth ¼ 35.

The descriptors employed in the action recognition process pro-
vide a rich video representation in terms of space and motion of
moving interest points. From each clip, local spatio-temporal fea-
tures as ST-SURF are extracted. As described previously, the
extracted ST-SURF is a 68D vector (64D SURF, ax;Dx;ay;Dy).
Square-shaped patches surrounding the detected SURFs are also
extracted. The size of each detected patch is 20s. For each patch,
a HMTO is computed in both planes ðx; tÞ and ðy; tÞ. HMTOx and
HMTOy are both 96D vectors. To reinforce our action recognition
system, the motion boundary histogram MBH is used as a motion
descriptor and as a remover of camera motion. MBHx and MBHy

are 96D histograms. For both KTH and HMBD51 datasets, we fol-
low the same protocols used in the methods of the state-of-the-
art for learning and testing phases. A group of actors is involved
during the learning phase. One actor, for every action, is left for
the test step.

We performed an experiment using the bag-of-words approach
to provide baseline results on the UCF101 dataset. The classifica-
tion step starts by k-mean clustering applied to a set of 106 ran-
domly selected features to build a visual dictionary for every
extracted descriptor type (ST-SURF, HMTOx;HMTOy;MBHx;MBHy).
For each one, we construct 4000 visual words. The k-mean cluster-
ing is initialized eight times, and we keep the configuration with
the lowest error rate. The extracted histograms are L2 normalized
to ensure better visual quality. Finally, to classify the actions, we
use a non linear SVM with an RBF2

v Kernel [34].

Kðv i;v jÞ ¼ exp �
X 1

Ac D vc
i ;v

c
j

� �� �
; ð22Þ

where D vc
i ; vc

j

� �
is the v2 distance between video v i and v j of the

channel c. Ac is the mean distance value of the training features.

6.3. Results and discussion

In this section, we report and discuss the motion segmentation
and action recognition results reported from the three datasets.
The purpose of this discussion is to highlight the key successes
as well as the weaknesses of the proposed action recognition
system.

6.3.1. Motion segmentation
We first present an evaluation of the proposed motion segmen-

tation process. The experiments are carried out on 125 randomly
picked videos (25 videos from each of the five categories) from
the UCF dataset. This dataset is very complex. It represents differ-
ent indoor and outdoor scenes with moving foregrounds, moving

Fig. 11. Example frames from (a) KTH; (b) UCF101; (c) HMDB51.
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objects, complex backgrounds and camera motion. In fact, this
dataset is dedicated mainly to the task of action recognition and,
as far as we know, there are no evaluations of proposed motion
segmentation algorithms based on this dataset to which we may
compare our method.

The processing time of the overall algorithm for motion detec-
tion and segmentation for some videos from the five classes is pre-
sented in Table 1. The most time consuming task is computing
dense features and optical flow on a small grid (6� 6) every N
frames. In fact, choosing a larger grid may accelerate the process
but it decreases the system’s performance.

The system’s performance is evaluated in terms of the average
F-measure given by:

F ¼ 2� Rc � Pr

Rc þ Pr
ð23Þ

where Pr is precision and Rc is the recall for bounding box annota-
tions, for each video. These measures are assessed based on certain
bounding box annotations provided in [75]. Our main purpose in
segmenting motion is to restrict the amount of data involved in
studying human actions. Hence, we aim to detect a bounding box
covering as much motion as possible. Table 2 reports the results
obtained for the Sports (74.50%), Playing Musical Instrument
(88.75%), Human-Object Interaction (87.83%), Body-Motion Only
(85.45%), and Human-Human Interaction (84.53%) categories.

Generally, the camera motion segmentation process helps to
improve the accuracy of motion segmentation. Furthermore, for
fixed scenes, employing a second clustering of motion flow vectors
enhances the extraction of moving objects. We consider these
results satisfying, especially since we make no assumptions about
the first frame, and our process does not require any initialization
or training steps. Sports actions are considered to be the most chal-
lenging ones, as they include important motions of humans along
with camera motion. The majority of these videos were captured
outdoors with the presence of trees and audiences. Despite these
effects, the motion segmentation of sports action achieved accept-
able results. The performed motion segmentation makes the action
recognition task easier, even with presence the of camera motion.

6.3.2. Action recognition
As previously mentioned, we used the same settings and evalu-

ation metrics of the state-of-the-art in order to provide fair com-
parison. The accuracy rates reported on the KTH dataset are

presented in Table 3. The distribution of the trajectory angles given
by HMTO perform well in KTH dataset with a rate of 90.1% outper-
forming dense trajectory 89.8%, KLT trajectory 89.4% and SIFT tra-
jectory 44.6%. As HMTO allows the tracking of the trajectory of a
moving patch, the temporal extents of the action are settled by
selective segmentation into actionlets. We also notice that
AMAR-CTW [76] achieved 93.8% when they cluster motion curves
using GMM in both learning/test steps. It could be also noticed that
combined with ST-SURF and MBH, the HMTO gives best results in
realistic and complicated video. This encourages the use of differ-
ent features to achieve relevant action recognition. The results
are improved by 4.9% on KTH dataset. This is the consequence of
the efficiency of the association of the actionlets extraction with
MBH features to reduce video in realistic benchmarks.

Over the UCF101 dataset, the accuracy rates reported for the
predefined action types are shown in Table 4: the Sports
(87.23%), Playing Musical Instrument (79.4%), Human-Object Inter-
action (86.07%), Body-Motion Only (85.19%), and Human-Human
Interaction (88.61%).

We observe that Human-Human Interaction actions achieve the
highest accuracy, since the spatio-temporal segmentation we
introduced in this work highlights human bodies. As a result, the
feature extraction performed on the humans bounding boxes sig-
nificantly boosts human detection. Analysis of the sports actions
demonstrates a reasonable accuracy of 87.23%, which is due to
two factors. The first factor is the temporal segmentation, while
the second one is the motion based extraction features. Sports
actions involve important motion, which can be very well
described with our proposed approaches. Despite the fact that
Human-Object and Body- Motion actions are not based on signifi-
cant motion, the classification shows satisfactory results. We
believe that the pixel motion segmentation precision in detecting
motion is a good cue for exploring human action.

We present the results of our approach compared with the tra-
jectory and motion-based video description approaches in Table 5.
The MBH descriptor is associated with several approaches to detect
human actions, since it is based on optical flow. This proves that
combining MBH with different descriptors is a straightforward
way to improve the results. The proposed approach, which combi-
nes ST-SURF, HMTO and MBH gives an accuracy rate of 79.2%,
equivalent to the state-of-the-art trajectory-based video descrip-
tion. As expected, the proposed spatio-temporal segmentation
improves the proposed approach by 6.9%, achieving 86.1% of accu-
racy in the challenging realistic large dataset UCF101. Compared
with trajectory-based descriptors, the proposed approach performs
well.

6.3.3. Comparison with the state of the art
The results given by the-state-of-the-art of KTH, UC101 and

HMBD51 are given in Tables 6–8 respectively. Note that these
results are reported from the papers in which they originally
appeared.

The performances on the KTH dataset are around 94.9%, nearly
0.4% better than Spatio-temporal SURF [30]. We achieved 6–7%
improvement more than the ST-SURF [6]. This is due to the opti-
mization of the selective segmentation based on dense SURF and
the fusion of the ST-SURF with trajectory descriptors (HMTO,
MBH). The framework of the method proposed by Wang et al. [7]
is similar to our framework but with performances that are a bit
lower than ours. This dense trajectory approach [7] starts by sam-
pling dense points from each frame, then tracks them and esti-
mates their displacements as trajectory information from an
optical flow field. After that, this trajectory information is encoded
to classify different actions. However, the number of
sampling points is significantly greater than in our method. Even
though, this approach achieves good recognition results, it is

Table 1
Processing time of motion segmentation over the UCF101 dataset.

Action class Average duration
(s)

Average processing time
(s)

Sports 283 540.861
Playing Musical

Instrument
89 127.516

Human-Object
Interaction

156 289.502

Body-Motion Only 103 169.134
Human-Human

Interaction
28 47.573

Table 2
F-measure results of motion segmentation over the UCF101 dataset.

Action class F-measure (%)

Sports 74.50
Playing Musical Instrument 88.75
Human-Object Interaction 87.83

Body-Motion Only 85.45
Human-Human Interaction 84.53
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computationally very complex. Far from interest points-based
methods, Ni et al. [77] use human pose information as the main
cue to select the most representative sub-volume in the video to
recognize actions. This method achieved an accuracy of 95% which
is almost equal to our results. This proves that motion and appear-
ance descriptor are as important as human pose to describe the
action.

From Table 7, the overall performances on UCF101 dataset are
86.1%. These results are significantly better than those reported
in [71] using the standard bag-of-words method with an overall
accuracy of 44.5%. In [79], the authors used a dense trajectory com-
puted for fixed frame length L = 16 and L = 17. The overall perfor-
mance rate is 47.1% using a trajectory descriptor. Combined with
MBH, HOG and HOF their trajectory-based approach reaches
72.8%. These performances are still less satisfactory than our
results. We believe that this is due to their use of a fixed frame
number. We also outperform the results given in [80]. The authors
of this paper used a multi-channel approach for the Local Part
Model and the LPM algorithm for efficient action recognition. Their
approach was based on the fusion of HOG, HOF, HOG3D and MBH.
They achieved 78.9% of average accuracy. Dense trajectory features
were used in [81]. The author applied Fisher vectors and spatio-
temporal pyramids to embed structural information. Finally, a lin-
ear SVM combining all their descriptors gives a performance of
85.9%, about 0.2% lower than our results. This proves the impor-
tance of motion cues in detecting human actions. This also encour-
ages us to investigate more approaches than the SVM we used in
this work. Fisher vectors give good results in [82]. In that study,
the authors extracted features from both video and key frame
modalities. They used dense trajectory features associated with
HOG and Motion Boundary Histogram (MBH). Next, they encoded
them as Fisher vectors. To represent action-specific scene context,
we compute local SIFT pyramids on grayscale (P-SIFT) and oppo-
nent color keyframes (P-OSIFT) extracted as the central frame of
each clip. They proposed to improve accuracy by using L1-
regularized logistic regression (L1LRS) for stacking classifier out-
puts 85.7%, 0.4% lower than our method. The results given in [83]
are less satisfactory than ours. These authors provide an extensive
empirical evaluation of CNNs on large-scale video classification
63.3%. However, in [84], authors investigate architectures of indis-
criminately trained deep Convolutional Networks (ConvNets) for
action recognition in video. This method achieves 87.6% accuracy,
which is the best result of all the approaches studied. The success
of this method also highlights the importance of the classification
task investigation, especially in terms of deep classification.

Finally, comparison results with the state-of-the-art approaches
over the HMDB51 dataset are presented in Table 8. Until now, this
dataset is considered as the most challenging one. In fact, efforts
are being made to achieve high performances on it. With our pro-
posed technique, we succeeded to achieve an accuracy rate of
58.82% which is an important score compared to the state of the
art as presented in Table 8. Wang et al. [85] achieve 55.9% over
the baseline videos (without motion stabilization) basing on

Table 3
Results of various descriptors performances in action recognition over the KTH dataset.

Proposed approach KLT SIFT CTW

Descriptor HMTO ST-SURF MBH Fused Traj Fused Traj Fused Traj
Accuracy (%) 90.1 88.2 90 94.9 89.4 93.4 44.9 84.9 93.8

Table 4
Recognition results of the proposed approach over the UCF101 dataset.

Action class Accuracy (%)

Sports 87.23
Playing Musical Instrument 83.4
Human-Object Interaction 86.07

Body-Motion Only 85.19
Human-Human Interaction 88.61

Average 86.1

Table 5
Trajectory based descriptor performances over the UCF101 dataset (Traj: Trajectory;
LocDesc: Local descriptors).

Approach Descriptor Accuracy (%)

Traj TrajShape 47.1
Traj + LocDesc TrajShape + MBH + HOG + HOF 72.8

LocDesc HOG3D + MBH + HOG + HOF 78.9
Traj Dense trajectory 85.9
Traj Dense trajectory + PSIFT 85.7
Traj MBH 85.7
Traj ST-SURF + HMTO + MBH 79.2
Traj proposed: BB + ST-SURF + HMTO + MBH 86.1

Table 6
Comparison with the state-of-the-art approaches over the KTH dataset.

Method Accuracy (%)

Shuldt et al. [73] 71.7
Jhuang et al. [41] 90.5
Laptev et al. [34] 91.8
Niebles et al. [39] 93.3

Lin et al. [78] 95.8
Noguchi et al. [30] 94.5
Megrhi et al. [6] 88.2
Wang et al. [7] 94.2

Virigkas et al. [76] (CTW) 93.8
Ni et al. [77] 95
Proposed 94.9

Table 7
Comparison with the state-of-the-art approaches over the UCF101 dataset.

Method Accuracy (%)

Murthy and Goecke [79] 72.8
Shi et al. [80] 78.9

Wang and Schmid [81] 85.9
Karaman et al. [82] 85.7
Soomro et al. [71] 44.5
Karpathy et al. [83] 63.3
Simonyan et al. [84] 87.6

Proposed 86.1

Table 8
Comparison with the state-of-the-art approaches over the HMDB51 dataset.

Method Accuracy (%)

Wang et al. [85] 55.9
Jiang et al. [87] 40.7

Murthy and Goecke [79] 47.3
Shi et al. [80] 55.2
Ni et al. [77] 52.3
Jain et al. [22] 52.1
Ballas et al. [86] 51.8

Proposed 58.8
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improved dense trajectories with Fisher Vector encoding. This
method include local appearance (HOG) and motion descriptors
(HOF/MBH). Ballas et al. [86] achieved 51:8% by pooling dense tra-
jectory features from regions of interest using video structural cues
estimated by different saliency functions. Jiang et al. [87] achieve
40.7% by modeling the relationship between dense trajectory clus-
ters. Our method surpasses again the methods proposed by Murthy
and Goecke [79], Shi et al. [80] and Ni et al. [77].

It can also be noticed that the performances on the KTH are bet-
ter than those on UCF101 and HMDB51. This is due to the fact that
KTH is a controlled dataset with minimum camera motion.

7. Conclusion

In this paper, we presented an end-to-end framework for
human action recognition in big datasets. As part of this effort,
we started by introducing a new human action segmentation pro-
cess. Our method is based on studying optical flows induced by
human motion which are, then, clustered to determine the exis-
tence of camera motion. The latter, if it exists, is compensated by
means of affine transformation. Finally, human motion is extracted
using temporal differencing along with pre-processing operations
to reduce noise. Our second contribution in this framework is the
video description process. It is a combination of motion, trajectory
and appearance descriptors. To this end, the actions classification
task is achieved using a support-vector-machine to classify actions
based on extracted features by means of a bag-of-words approach.
We have shown promising results in both action detection and
recognition processes in videos taken under different conditions
and with complex background. Compared to many existing state-
of-the-art approaches, our proposed framework achieves a reason-
able trade-off between high accuracy and prohibitive computa-
tional cost.
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