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Abstract

This paper aims to introduce a novel efficient approach for high-quality and
fast image restoration by combining a greedy strategy and a global optimiza-
tion strategy based on a pyramidal representation of the image. A coarse
version of the input image is first restored by exemplar-based method using a
greedy strategy. From the low-resolution inpainted image, higher resolutions
are interpolated and refined by a global optimization strategy. Experimen-
tal results on natural images demonstrate the effectiveness of the proposed
method. Moreover, a comparison with some methods of the state-of-the-art
confirms the superiority of the proposed method in terms of image quality
and computational time.

Keywords: image inpainting, image completion, hierarchical
representation, greedy algorithm, graph cuts.

1. Introduction

Image inpainting, also known as blind image completion, refers to the
action of filling missing parts or objects in an image. During the last decade,
it becomes a very important research topic in the fields of computer vision
and image processing because of its suitability for plenty of professional and
consumers applications such as: i) application of digital effects (e.g. removing
undesired objects or logos), ii) image restoration (e.g. deleting scratches
or blotches in old photographs), iii) image coding and transmission (e.g.
recovering missing blocks, error concealment), etc.

Since, the targeted completion is performed blindly and without any cue
about what would be the original content, the focus is put on restoring the
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damaged parts/objects by maintaining as much as possible the naturalness
of the image. Moreover, the restored parts should not be visible or perceptu-
ally annoying to human viewers and the used algorithm needs to be robust,
efficient and, requiring minimal user interactions or quick feedbacks.

To date, several approaches of image in painting have been proposed in
literature [1]. The most fundamental inpainting approach is the diffusion
based in which the image is modeled as a function of smoothness. The
completion is performed by interpolating the image information from the
known region into the missing region at the pixel level. In their pioneering
work, Bertalmio et al. [2] proposed an algorithm for object removal that
inwardly propagates information from the boundaries of the selected object,
in a smoothly manner. This approach reproducing real techniques performed
by professional restorators has been constructed using a third order Partial
Differential Equations (PDE) and improved using fluid dynamics knowledge
[3]. In their work, Bornemann and Marz [4] proposed an improvement of
the Bertalmio’s approach by modifying the weight function and replacing
the edge-oriented transport direction method by the coherence direction. In
the same vein, Chan and Shen proposed an inpainting model relying on a
variational framework based on the total variation to recover the missing in-
formation [5]. They also introduced a new PDE-based inpainting approach
exploiting curvature driven diffusion. The literature on inpainting algorithms
involving variational or PDE approaches is relatively rich and various. Nev-
ertheless, it is commonly agreed that the one proposed by Tschumperlé et
al., based on an efficient second-order anisotropic diffusion model for multi-
valued image regularization [6], is one of the most efficient when parameters
are carefully selected. Finally, even though the methods falling in this ap-
proach are very efficient for untextured and relatively small region, they show
some important drawbacks due to their incapacity to restore texture and tend
to introduce blurring effect when the missing region is large.

The second category of approaches is the exemplar-based algorithms, in
which texture is modeled through probability distribution of the pixel bright-
ness values. This approach is inspired from texture synthesis techniques pro-
posed by Efros et al. [7] and improved by Ashikhmin [8] with the aim of
reducing the computational cost of patches matching based on the notion of
coherence or Kwatra et al[9, 10] for patch synthesis based on graphcut. How-
ever, natural images are composed of structures and textures, in which the
structures refer to edges or contours and the textures are image regions with
homogeneous patterns or feature statistics (including flat patterns). This is
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why pure texture synthesis techniques cannot be efficiently applied to miss-
ing regions/objects with composite textures and structures. Authors in [11]
decomposed the image into structure and texture components. Then, the
restoration is performed simultaneously and independently on each compo-
nent by means of geometry and texture oriented methods, respectively. The
developed approach rely on a number of parameters such as the contour
preservation, the structure anisotropy and the number of iterations. Indeed
this approach allows to avoid blurring effect observed with the diffusion ap-
proaches. But it is still hard to recover missing structures of a large size.

In such a process, neighboring known pixels around the missing region
or the object to be removed is an important source of the most relevant
information regarding the target region. So, the natural way suggests to
start filling the target region inwardly in an onion-peel fashion. Instead, a
patch propagation based on patch priority is proposed in [12] to encourage
the filling-in of patches on the structures. Several improvements have been
introduced for patch priority such as cross-isophotes patch priority in [13],
color distribution priority in [14], patch sparsity in [15] as well as for patch
synthesis such as non-local means [15, 16]. Generally, these approaches are
known as greedy strategies and they have acceptable computation time in
comparison to diffusion approaches. Moreover, it tries to take into account
human perception features. For instance, priority is designed based on the
salient structures considered as important for human perception. However,
these approaches show some common problems related to local optimization,
patch priority, patch selection and so on.

Besides the aforementioned technique, inpainting can be considered as a
global optimization problem that can be solved by minimizing a coherence
measure [17] or energy functions of smoothness [18, 19] or bidirectional sim-
ilarity [20, 21]. Global optimization strategies often provide better results in
comparison to other strategies but at the cost of a higher computational com-
plexity. The latter is mainly due to the fact that time complexity increases
linearly with both the number of source pixels and unknown pixels.

Recently, more general sparse image representations using dictionaries
have proven their efficiency in the context of inpainting [22, 23, 24]. The
idea of this approach is to represent an image by a sparse combination of an
over complete set of transforms. Then, missing pixels are inferred by adap-
tively updating this sparse representation. However, similar to the diffusion-
base approach, this one may fail in recovering structures or may introduce a
smoothing effect when filling large missing regions.
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Although tremendous progress has been achieved on image inpainting
over recent years, there are still significant challenges. For example, image
completion of large missing regions is one of major open problems. The
computaional complexity and time running is also one of the main issues to
consider in image inpainting. In this study, we propose a novel approach
for high-quality and fast image completion by combining and leveraging the
benefits of both greedy and global optimization strategies using a pyramidal
representation of the image.

The proposal is directed by the observation that the human visual system
is more sensitive to salient structures being stable and persistent at differ-
ent scales. Therefore, a hierarchical image inpainting scheme is developed in
order to control and preserve salient features during the completion process.
This scheme allows to restore the missing regions in a visually plausible way.
A top-down completion is implemented from the top level (the lowest res-
olution) to the bottom level (the original resolution). A greedy algorithm,
based on the idea introduced in [25], is developed for the lowest resolution
to restore the damaged region. It provides a good initialization accounting
for the human perception at the higher resolution. It is worth noticing that,
since the low-resolution inpainted image has a critical impact on the quality
at the final output, caution should be taken when using the algorithm pro-
posed in [12]. Therefore, the inpainting algorithm in [12] is first improved by
evaluating the filling-in priority with all pixels in the patch. This makes it
different from simply using the gradient-based or cross-isophotes-based pri-
ority as proposed in [12, 13] while taking advantage of a lower complexity
than those proposed in [14, 15]. The impact of patch synthesis terms on the
quality of the inpainted images is also studied. The similarity measurement
based only on color channels is insufficient to propagate accurate linear struc-
tures into the target region and leads thus to garbage growing. This comes
from the observation that the HVS is sensitive to not only the intensity of a
spectral color but also to the context in which it is observed. To maintain
this variation, a new term representing image gradient is introduced as a
weighting parameter in the computation of the similarity measure. In addi-
tion, patch selection based on standard deviation of variances of neighboring
source patches is introduced. For higher resolution, an offset map defining
the relationship between pixels to be filled and pixels in the known region is
applied instead of using directly pyramidal images. First, an offset map is
extracted from inpainted image at lowest resolution. Then, it is interpolated
for adjacent higher resolution as an initial guess. The offset map is refined
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and optimized by a global optimization algorithm, i.e. multi-label graph-
cuts [26, 27] with operators defining both data and smoothness constraints.
Finally, the inpainted image is derived based on the offset map for highest
resolution, the original resolution. Experimental results highlight a notice-
able improvement in both implementation performance and visual quality of
the inpainted images.

The remainder of this paper is organized as follows. Section 2 is dedi-
cated to the description of th proposed inpainting framework describing the
adopted strategy and the different tuning made to improve visual quality
and performance. The experimental results are given and discussed deeply
in section 3 by giving objective and visual comparison with the very rep-
resentative state-of-the-art. Finally, this paper ends with some conclusions
and gives future directions.

2. The proposed method

Image completion in the case of images with large missing regions is a
very challenging task. As mentioned in the introduction, several solutions
have been developed to tackle this problem. In this section, we introduce a
novel framework based on hierarchical representation in order to propose a
solution for the described problem. Therefore, our idea will be described and
our proposal justified with regards to literature.

2.1. Algorithm overview

The proposed approach is composed of two main and successive opera-
tions. The first one is a greedy strategy, exemplar-based method, used to fill
in missing regions. This approach is applied on a coarse version of the input
image rather than the original image itself. The proposal is inspired from the
observation telling that the human visual system is sensitive to salient struc-
tures being stable and persistent through different scales. In other words, the
most relevant structural information of an image remains visible and attrac-
tive at different levels of resolution. Therefore, this observation is exploited
when performing image inpainting. Indeed, at low resolution the inpainting
would be less sensitive to local singularities and noise effect. Furthermore, it
is much less computationally demanding than when processing the original
full resolution image and it cope with the problem of large regions inpainting.

The second operation consists of restoring the damaged region on the
original high resolution image by exploiting spatial information contained in
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the lowest resolution image provided at the first step. At higher resolution,
the inpainting problem is modeled as an optimal graph labeling where an
offset-map represents the selected label for each unknown pixel. The offset
map could be determined and refined by optimizing an energy function using
multi-label graph cuts [26, 27]. Because an unknown pixel in the damaged
region could originate from any pixel in the source region, the global opti-
mization strategies can be computationally unfeasible. On the one hand, for
inpainting quality, fair assignments may lead to unexpected bias for opti-
mization since they consider fairly possible label assignments but this does
not fit with human perception. On the other hand, for speed, a huge label
set requires high computational load.

In this paper a new strategy is proposed to overcome these limitations.
A hierarchical approach is developed in order to reduce the memory and
computational load and improve the image inpainting quality. A hierarchical
strategy could provide enough-good results for the inpainting problem, even
though optimality cannot be guaranteed.

For the sake of clarity and comparability, some notations that are similar
to those in [25] are adopted. The whole image domain, I, is composed of two
disjoint regions: the inpainting region (or target region) Ω, and the source
region Φ (Φ = I − Ω). The proposed algorithm is summarized through the
pseudo-code given below (Table 1).

At the beginning of the proposed algorithm, a gaussian pyramid is con-
structed from the image to be inpainted. This step consists of low-pass
filtering and downsampling images of the preceding level of the pyramid.
According to the above idea, a set of images G0, G1, ..., GN with various lev-
els of details is generated with G0 = I is the input or original image. The
number of pyramid levels is depending on two criteria i.e. the original size
of the image and the smallest allowed resolution. The former depends on the
user’s image but for the latter min(width(GN), height(GN)) ≥ 32 to avoid
missing important details.

2.2. Inpainting lowest resolution image (GN)

In order to integrate some low-level features of the HVS and simulate its
hierarchical perceptual properties, a greedy strategy is applied for the lowest
resolution GN . In the proposed scheme, an extension of [25] is developed to
complete the coarse resolution. Fig. 1 illustrates the different steps of the
exemplar-based inpainting strategy. Generally, an exemplar-based method
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Table 1: Our algorithm

Input : I - input image;

N - pyramid levels;

Algorithm :

G0 = I;

{G1, G2, ..., GN} = buildPyramid(G0);

Complete GN with the scheme in [12] using window-based priority;

SMN = generateShiftMap(GN);

for i = N − 1 downto 0 do

SMi = interpolate(SMi+1);

SMi = optimize(SMi, Gi);

end for

G0 = restore(SM0);

Output = G0;

consists of two main steps: i) determination of the filling order and ii) selec-
tion of the best matching patch. These steps are analyzed in details in the
next sections.

(a) Priority estimation (b) Patch match (c) Inpainting (d) Offset definition

Figure 1: Illustration of the examplar-based inpainting.

2.2.1. Window-based priority

For the greedy strategy, an appropriate definition of the priority is es-
sential since the decision taken with it is irreversible at the next stages.
Otherwise, error may accumulate continuously because no improvement is
applied on the previous stages. Many formulations have been built for prior-
ity [12, 13, 14, 28]. In this work, we used the window-based priority proposed
in [25] which is considered as more robust and efficient than the others.
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Classically, a priority is composed of two terms: i) confidence term and
ii) data term. Here, we concentrate on the analysis of the data term which
distinguishes the structures from the textures (or flat regions). The confi-
dence term is not mentioned here since it does not provide any additional
improvement. However, a data term with a high value indicates the presence
of a structure. In [12], authors introduced a pixel-based data term, D(p),
depending proportionally on the isophote direction or gradient of the known
region. Thus, if the gradient at pixel p is large, the priority will be high. In
other words, when the gradient values of the texture component are greater
than those of the structure component or when the regions are affected by
noise, the isophote-driven priority method may violate the requirement of an
appropriate priority rule and yields to bad results. To overcome this diffi-
culty, a patch-based data term is introduced as done in [14, 15]. This solves
to some extent the problem but at the cost of an increased computational
time.

Reasonably, the data term should be estimated from all neighborhood
pixels in an exemplar centered on the current pixel to account for the neigh-
boring influence and spatial coherence. Hence, we propose a first improve-
ment by introducing a better definition of the data term. It is based on the
local changes of pixel intensities in each window, Wp, centered at pixel p
with shifted windows in different directions. The local change of intensity at
each pixel p(x, y) is characterized by the following second-moment matrix or
structure tensor [25]:

M(p) =
∑
Wp

GWp(x, y)

( ∂I∂x)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2

 (1)

where GWp is a windowed weighting Gaussian function. This structure
tensor is a 2×2 symmetric and semi-positive matrix which captures the in-
tensity structure of the local neighborhood. The 2D structure tensor and its
eigenvalues λ1 ≥ λ2 ≥ 0 summarize the distribution of the gradient within the
defined window. The two corresponding eigenvectors represent two orthogo-
nal directions directed along the local maximum and minimum variation of
image intensities. Whereas, the eigenvalues measure the effective variations
(strength of contours) of image intensities along these vectors. Therefore,
our data term is defined as the follows:

D(p) =
λ1

λ2 + ε
(2)
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where ε is a very small positive value introduced to ensure computation
stability (in our experiment, ε = 10−10). This data term is related not only
to the geometry features such as contours or edges but also texture features.
There are three cases to be considered for each window as those defined by
Beaudet [29]:

• If the data term is much greater than one (D(p)� 1⇔ λ1 � λ2), the
local shifts in one direction cause little changes and significant change
in the orthogonal direction; then the window is considered as a region
with strong edges;

• If the data term is close to one (D(p) ≈ 1 ⇒ λ1 ≈ λ2), there are two
possible cases:

– If both eigenvalues are high, the shift in any direction will result in
a significant change, this indicates a texture or complex structures
such as corners.

– If both eigenvalues are small, the shift in any direction will cause
a little change, the patch is of approximately constant intensity
(flat region).

With this priority, the patches would be classified in a more robust way
and the computation time will be acceptable. Table 2 gives some numerical
values of the proposed priority in comparison to those described in [12, 13]
for patches illustrated on Figure 2. Since our approach is based on contour
preservation, the priority of associated pixels should be higher than other
pixels; which is demonstrated Table 2.

(a) Flat region (b) Texture region (c)Edge or contour

Figure 2: Window-based priority of different regions.

Figure 3 illustrates the priority of pixels on the boundary of inpainting
regions where the red color refers to higher value and the blue color refers to
lower value. One can notice that higher values can be observed on contours
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Table 2: Priority associated with different patches illustrated on Figure 2.

Patch Priority in [12] Priority in [13] Our Priority (λ1, λ2)

Flat region (Fig. 2a) 0.001 3.269 0 (0, 0 )

Texture region (Fig. 2b) 0.032 3.916 1.374 (0.067, 0.049 )

Edge or contour (Fig. 2c) 0.024 3.130 4.059 (0.025, 0.006 )

as explained previously. Figure 4 illustrates the performance of the proposed
method on various low-resolution images. These images are downsampled
versions of the original ones (the down sampling factor is set to 4 in both
directions). Four inpainting methods, namely Criminisi et al. [12], Wu et
al. [13], Zhang et al. [14] and Cheng et al. [28], belonging to the second
group of approaches, are implemented with the same size of patch to avoid
bias. Visual inspection of the results of Figure 4 shows that the proposed
approach achieves reasonable results in most cases in comparison with the
others.

(a) Original image (b) Mask image (c) Our priority

Figure 3: Illustration of the proposed priority focusing on edge preservation.

2.2.2. Patch selection

The second step of the proposed algorithm consists in finding the suit-
able patch for the filling process. The similarity measurement, computed
based on all known pixels in the patch, should be consistent with human
perception. When based only on color, it is insufficient to propagate accu-
rate linear structures into the target region and leads to uncontrolled and
incoherent growing. This is mainly due to the fact that the perceptual color
appearance depends not only on the color of the observed patch but also on
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(a) (b) (c) (d) (e) (f)

Figure 4: Completion of low resolution images. (a) image to be inpainted. Ouput when
using priority adopted in (b) [12]; (c) [13]; (d) [14]; (e) [28] and (f) our proposal.

the surrounding and the context on which the patch is perceived. Conse-
quently, to solve this problem, a similarity measure which takes into account
the difference in colors and gradients is proposed and given below.

d(Ψp,Ψq) =
∑
i

(θ(I ip − I iq)2 + (1− θ)(∇I ip −∇I iq)2) (3)

where Ip, Iq are the corresponding RGB vectors; ∇Ip, ∇Iq represent the
image gradient vectors. θ is a user defined weight balancing the two terms,
fixed for the following as θ = 0.67. The target patch with the minimal
distance to the source one, Ψp, is the one to be chosen as described by the
following equation:

Ψp̂ = argminΨq∈Φ{d(Ψp,Ψq)} (4)

As mentioned in [13], a major problem of local neighborhood search is its
tendency to get stuck at a particular place in the same image and to produce
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verbatim copying. This region may generate blocking artifacts. In order to
address this problem, we proposed an improvement for the patch selection
step. The idea is based on the fact that patches that are neighbors in the
input image should remain neighbors in the output image. First, K most
similar patches obtained by the local neighborhood search patches are used
as candidates. Second, for each patch, Ψp, a standard deviation describing
the variability of neighboring source patches is formulated as follows:

V (Ψp) =
∑

E∈{R,G,B}

√∑
(E(Ψp)− Ē(ΨN(p)))2

|N(p)|
(5)

where N(p) is the neighborhood centered at p, E(Ψp) is the variance of
pixel values at the neighboring patch Ψp in each of the RGB channels and
Ē(Ψp) is the mean variance of |N(p)| neighboring patches in RGB channels.
The size of N(p) is a global parameter that should be chosen larger than
the patch size. consequently, the chosen patch must satisfy the following
equation:

Ψp̂ =
Ψq∈Φ

argmin{|V (Ψp)− V (Ψq)|} (6)

Figure 5 illustrates an example for patch selection i.e. a completion of the
Kanizsa triangle. One can notice that unsuitable patch selection as shown
on subfigure 5-b, may lead to unexpected results or artifacts (see subfigure
5-b). On the contrary, an appropriate selection as shown on subfigure 5-e,
produces satisfactory results (see subfigure 5-f)

Finally, the missing pixels are copied from the corresponding pixels in the
selected patch. An offset map defining the relationship between pixels to be
inpainted and pixels in the known regions is obtained by keeping a track of
the copy process. The latter is of a high importance since it is used as an
initial guess for inpainting higher resolution in the pyramid.

2.3. Inpainting higher resolution images

Once the inpainting of the lowest resolution image GN is completed, an
offset map is generated and used as the initialization to reconstruct higher
resolutions. This offset map defining the relationship between pixels to be
inpainted and pixels in the known regions (see Figure 6) is given below:

SM(p) =

{
(4x,4y) p(x, y) ∈ Ω

(0, 0) otherwise
(7)

12



(a) (b) (c)

(d) (e) (f)

Figure 5: A restoration of the Kanizsa triangle using inappropriate and appropriate patch
selection. (a) & (d) image to be inpainted; (b) & (e) a patch selection respectively with
and without improvement; (c) & (f) Final results.

Therefore, the offset map a previous resolution is interpolated for a higher
resolution. However, the inpainted results derived directly from this map may
contain annoying artifacts affecting the naturalness of the resulting image.
Authors of [27] proposed an energy function composed of two terms, data
and smoothness, in order to refine the offset map. The energy function is
defined as follows:

EM = α
∑
p∈Ω

Ed(SM(p)) + (1− α)
∑

(p,q)∈NB

Es(SM(p), SM(q)) (8)

Where Ed is the data term related to external requirements and Es is
the smoothness term defined over a set of neighboring pixels, NB. The
parameter α is a user defined weighting factor, fixed to α = 0.5 in our case,
allowing to balance the two terms. One objective when using equation 8 is
to minimize the energy related to both data and smoothness terms. Several
optimization approaches exist in the literature. In the proposed approach,
a global optimization based on graph-cuts is used because its recognized
efficiency.
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(a) An original image (b) An offset (c) Data term (d) Smoothness term

Figure 6: Illustration of the operators used in the proposed approach.

2.3.1. Data Term

The data term, Ed, is linked to external constraints that measures how
appropriate is a label, or an offset. During the completion process, for each
pixel in the target region an offset is assigned to the pixel in the known
regions. This offset is used in the computation of the data term to avoid in-
cluding pixels from the missing region. This data term is defined by equation
(9).

Ed(SM(p)) =

{
∞ (x+4x, y +4y) ∈ Ω

0 otherwise
(9)

In some cases, the specific pixels in the input image can be forced to
appear or disappear in the output image by setting the value of Ed. For
example, a saliency map can be used to weight the data term. Therefore,
a pixel with a high saliency value should be kept and a pixel with a low
saliency value should be removed. Figure 6-c illustrates visually how to
adapt the value of the data term.

2.3.2. Smoothness Term

The second component of the energy function is the smoothness term
representing the discontinuity between two neighboring pixels p(xp, yp) and
q(xq, yq). In [27], authors proposed an effective formula, expressed by by
equation (10), for the smoothness term accounting for both color and gradient
differences between corresponding spatial neighbors in the output and input
images to create a coherent stitching.
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Es(SM(p), SM(q)) =

{
0 SM(p) = SM(q)

βδM(SM(p)) + γδG(SM(p)) otherwise
(10)

where β and γ are weighting factors balancing these two terms, set to
β = 1, γ = 2 for our experiment. ∆M and ∆G denote the differences of
magnitude and gradient and they are defined as the follows:

∆M(SM(p)) = ||I(np′)− I(q′)||+ ||I(nq′)− I(p′)||
∆G(SM(p)) = ||∇I(np′)−∇I(q′)||+ ||∇I(nq′)−∇I(p′)|| (11)

where I and ∇I are the magnitude and gradient at these locations.
p′ = p + SM(p) and q′ = q + SM(q) are locations used to fill for pixels
p and q, respectively. np′ and nq′ are two 4-connected neighbors of p′ and q′,
respectively. Figure 6-d depicts an intuitive way for evaluating the smooth-
ness term. The main idea is based on the fact that a pixel is used for filling,
then its neighbors should be also filled as neighbors in the inpainted regions.
Moreover, the difference between filled pixels and their neighbors in the tar-
get region and known region should be as small as possible.

Figure 7 provides an example of the offset map at the original resolution
image after the graph-cuts optimization. Each offset is the 2-D coordinates
including horizontal and vertical relationships. The output generated by two
corresponding offset maps is shown in the Figure 7-b.

2.4. Interpolation of successive levels
A full offset map is first inferred from a completion at the lowest level of

the pyramidal representation of the input image. Then, it is interpolated to
higher resolutions using the nearest neighbor algorithm, and the offset-map
values are upscaled by simply doubling each value to match the higher image
resolution.

At the highest level, only small shifts relative to the initial guess are
examined. It means that only some parent neighbors are considered. In
our implementation, the shift relative to each coordinate varies in the range
[−a, a], so it takes (2a+ 1)2 labels for both direction. It is important to note
that the data and smoothness terms are always computed with respect to
the actual shifts and not to the labels.

Figure 8-a illustrates an example of the gaussian pyramidal decomposition
and the associated reconstruction scheme (Figure 8-b).
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(a) Image to be inpainted (b) Inpainted image

(c) Horizontal offset map (d) Vertical offset map

Figure 7: Illustration of the offset values for a commonly used image.

(a) Gaussian pyramid of the input image (b) Interpolation between two successive levels

Figure 8: Illustration of the gaussian pyramid and interpolation of the Shift-Map.
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3. Comparison with the state-of-the-art approaches

This section is dedicated to the performance evaluation of the proposed
algorithm and comparison with the state-of-the-art. The parameters of the
algorithm are kept constant for the test presented in this paper.

3.1. Comparative study

Figure 9 illustrates the results of the proposed method in comparison with
some state-of-the-art methods belonging to the same category. In this paper,
some methods of the second group introduced by A. Criminisi et al. [12], J.
Wu et al. [13], Q. Zhang et al. [14] and W. Cheng et al. [28] are considered.
Four input images, commonly used for in painting evaluation, of size 200 ×
200 respectively yokoya, kidstatue, cameraman and student are chosen for
the experiment. The obtained results shown in Figure 9 demonstrate the
efficiency of our method in terms of visual quality and in comparison to the
state-of-the-art.

In order to avoid the limitations of subjective evaluation. We employed
an objective metric in [30, 31] to objectively measure the quality of the in-
painting results. The chart 10 illustrate a comparison between our inpainting
quality with other methods in the second group and the chart in figure 11
is to compare with state-of-the-art methods including both other greedy al-
gorithms and other global optimization approach. These charts again objec-
tively confirmed that the quality of our restoration is not lower than quality
of others in most cases.

3.2. Comparison with unoptimized version

Our method is based on previous idea we developed in [25] but with the
use of a multi-resolution patch matching instead of an offset-map optimiza-
tion that we call here unoptimized version. Results obtained with the latter
are compared to those of the proposed approach on Figure 12. It is clearly
shown that our method (Figure 12-c) is slightly better than the method
proposed in [25]. This makes sure by the objective comparison included in
chart 11. However, the performance in terms of computational complexity
of our proposal is rather better than the unoptimized approach. This issue
is discussed in more details in the next section.
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-a-

-b-

-c-

-d-

-e-

-f-

yokoya kidstatue cameraman student

Figure 9: Inpainting results for 4 commonly used image: a) original images; results when
using method of b) A. Criminisi et al. [12], c) Wu et al. [13], d) Zhang et al. [14], e)
Cheng et al. [28] and f) Our proposal.

18



Figure 10: A comparison of inpainting quality with the methods in the second groups.

Figure 11: A comparison of inpainting quality with state-of-the-art methods.
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(a) (b) (c)

Figure 12: A comparison between our proposal and the unoptimized version described in
[25]. (a) Image to be inpainted; Inpainting results using (b) unoptimized version and (c)
our proposal.
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4. Performance evaluation

The visual quality of the proposed approach has been clearly demon-
strated in the previous sections. To confirm the efficiency of our proposal,
a complete evaluation of performance is considered in term of the computa-
tional complexity and discussed based on both two aspects: i) locally (com-
pare among different stages of the algorithm) and ii) globally (compare our
algorithm with others).

4.1. Local performance evaluation

Locally, we first carried out an analysis of the performance of each stage
in our algorithm including: greedy strategy (window-based priority, patch-
match search) and global optimization strategy.

Figure 13: An analysis of local performance in our proposal.

Figure 13 shows a chart of comparison between stages in our algorithm
for nine images. Each column displays total time in percent of each stage.
In this case, the level of pyramid is set to 4 (depending on the size of input
image). The greedy strategy is applied at the lowest version which have the
smallest size. Thus, the time consuming for this strategy is very low. There
are two main sub-stages in this strategy: window-based priority and patch-
match search. From the figure 13, it is very clear to see that these steps
account for a very small portion in whole process (average time about 0.18%
for window-based priority and 0.78% for patch-match searching).
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The execution time is mainly due to global optimization. The higher
levels are, the more time consume to complete. This is illustrated evidently
in the chart. The average time of global optimization strategy for the levels
G2, G1, G0 corresponds to 3.68%, 14.2% and 58.53%. Totally, the greedy
strategy occupies less than 1% of whole execution time, whereas the global
optimization consumes nearly 76.4%. This analysis shows that combining the
greedy strategy with the global optimization algorithm not only guarantees
the quality output based on the feature of human visual system but also is
an important step to improve the performance of restoration process.

In addition, the use of hierarchical representation also significantly re-
duces the execution time because of the reduction of image size.

4.2. Global performance evaluation
To increase the reliability of our framework, we go on analyzing the global

performance by comparing with other approaches. The performance is eval-
uated from two points of view: i) between methods of the second group and
ii) between methods belonging to greedy and global optimization strategies.
For the sake of fair comparison, all source codes of the compared methods
have been written in C/C++ language and implemented on the same PC
with an Intel Core i5 2.8GHz CPU and 4GB RAM .

Firstly, a number of approaches from the second group are chosen for
evaluating the performance of our method including A. Criminisi [12], J.
Wu [13], Q. Zhang [14] and W. Cheng [28]. In this part of the experiment,
four images of size 200 × 200 pixels, shown in Figure 9, are used. The
computation time obtained for the considered methods is given in Table 3 in
seconds.

Table 3: Computational time (in seconds) for comparison of methods of the second group

Image yokoya kidstatue cameraman student

Damaged Area 6.53% 19.86% 12.78% 7.8%

A. Criminisi [12] 3.22 10.09 5.75 4.74

J. Wu [13] 3.64 10.29 6.05 5.98

W. Cheng [28] 3.58 11.60 6.91 5.64

Q. Zhang [14] 38.38 251.74 111.84 59.52

Our proposal 3.71 4.53 3.29 3.84

Secondly, for the sake of larger comparison with literature, three inpaint-
ing methods corresponding to algorithms proposed by A. Criminisi et al.
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[12] representing greedy strategy; T.T. Dang et al. [25] for the unoptimized
approach; and Y. Pritch et al. [19] for global optimization strategy have been
implemented. Five images, shown in Figure 8 were chosen for this experi-
ment (including bungee (206× 308), angle (300× 252), silenus (256× 480),
boat (300× 225) and seaman (300× 218)).

Figure 14 illustrates the results obtained with the proposed approach in
comparison to the others. Figure 14-a gives images to be inpainted where
inpainting areas cover respectively 12.6%, 5.83%, 7.74%, 10.73% and 14.87%
of the whole image. As it can be seen from these results, the visual quality of
our proposal is confirmed again. Indeed, our results look more natural and
more coherent than those of other approaches. Moreover, the values in Table
4 depicting the computational time in seconds for the selected methods show
an outstanding performance of our approach in comparison with the others.

Table 4: Computational time in global comparison
Image bungee angle silenus boat seaman pumpkin

Size (206× 308) (300× 252) (256× 480) (300× 225) (300× 218) (473× 332)

Damaged Area 12.6% 5.83% 7.74% 10.73% 14.87% 5.1%

A. Criminisi [12] 16.30 8.20 38.29 24.54 27.31 28.98

T. T. Dang [25] 15.92 16.36 63.18 50.18 55.16 54.57

Y. Pritch [19] 35.39 13.24 57.68 21.18 15.50 37.35

Our proposal 3.32 5.81 7.53 7.25 5.97 6.31

5. Conclusion

In this paper, a novel inpainting approach has been introduced by com-
bining both greedy and global optimization strategies based on a pyrami-
dal representation of the image. We first propose an extension of a well-
known exemplar-based method where major improvements are linked to the
introduction of window-based priority and patch selection. This extension
is applied only at the lowest resolution in order to generate an appropriate
initialization accounting for human perception. Then, an offset is produced
and interpolated for higher resolution images. In order to achieve visually
smooth result in the final output image, the offset map is refined by a global
optimization algorithm based on multi-label graph-cuts. A comparison with
some representative approaches from literature belonging to the second group
(i.e. global optimization) is carried out and inpainting results show that our
approach not only produces better visual quality of output images but also
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(a) (b) (c) (d) (e)

Figure 14: Performance evaluation. (a) Image to be inpainted; Outputs when using meth-
ods in (b) [12]; (c) [19]; (d) [25] and (e) our proposal;
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implements noticeably faster. A subjective validation with an adapted pro-
tocol will help in characterizing the visual improvement of the propose ap-
proach. Finally, As future directions, we believe that the proposed approach
may be extended for video completion purposes. This kind of application is
indeed very time consuming and our proposal could drastically reduce the
computational complexity.
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