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Abstract

A fast method for accurate measurement of displacement field that combines template matching and differential techniques is proposed.

This method, which is able to deal with the problems of non-rigid object movement as well as large inter frame displacements, operates in

three steps. First, a sparse displacement field is obtained by a classic template matching technique. Then, this information is propagated

through the overall image to obtain a dense displacement field. Finally, this field is considered as approximate solution before the use of

classical differential technique for optical flow estimation. To illustrate the efficiency of the proposed procedure, a number of experimental

results using both synthetic and real images are presented and discussed. The results show significant improvement over those obtained using

standard multigrid approaches, especially in the cases of textured, very structured images or large inter frame displacements.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Optical Flow (OF) is defined as the apparent

movement or velocity distribution1 of the ‘brightness

patterns’ in the image plane. Its estimation from image

sequences has been an active field of research since being

introduced by Horn and Schunck in the early 80’s [22]. OF

techniques have been widely used in areas such as

meteorology [50], biomedical imaging [8,15,26,33,41],

material sciences [5,29,32] and other industrial problems.

OF estimation methods can be grouped into four typical

categories: differential methods, feature-based approaches,

spatio-temporal (energy-based) approaches, and model-

based methods [4,20].

The present contribution is a differential-based method

that uses a special correlation strategy. The differential

approach has been chosen for its simplicity and ease of

computation. It is well known, however, that both

differential and correlation methods suffer from some

drawbacks. For instance, correlation methods are computa-

tionally very involved. The amount of computation time

becomes prohibitive when accuracy in the estimation of a

dense flow field is required. Whereas, differential methods

become unreliable when large displacements are concerned.

To overcome this problem, some multiresolution techniques

with coarse-to-fine strategy were proposed [11,14]. In these

techniques, a multiresolution decomposition, wherein a

sequence of approximations at successively coarser resol-

utions is performed, is adopted. This decomposition is

carried out by using low pass filters followed by

subsampling operation. When these operations are iterated,

a hierarchical structure is generated leading to what is called

‘multiresolution pyramid’. The idea behind this decompo-

sition is to perform a coarse estimation of the flow field in a

reduced copy of the original image and conveys this

estimated flow as an initial approximation of the field to be

computed at the next finer resolution. This approach

assumes that the image at coarser resolution of the pyramid

still contains salient features of the signal. This requirement

is, however, hard to fulfill in the case of structured images

such as texture where the fine structures are lost at coarser

resolutions of the pyramid. In this case, the flow field

estimation error could propagate towards the finer levels of
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the pyramid leading to a poor estimate of the flow field. In

contrast to the differential approaches, features-based

methods allow, under some conditions, to estimate large

displacements with a good precision [29], but at the expense

of a much longer computational time.

The incremental approach proposed in this paper

combines a differential technique with a special correlation

method for flow field estimation. It is shown that this

strategy allows a fast and accurate (about 1/10 of a pixel)

estimation of the dense flow field.

The paper is organized into five sections. We first review

some existing OF estimation techniques and discuss their

advantages and drawbacks (Section 2). We then expose the

basic idea behind our method and give some details on its

computer implementation (Section 3.1 and 3.2). In Section

4, the results of applying the proposed method on real life

image sequences are presented and compared to the

standard multigrid approach. Section 5 summarizes the

contribution of this work and proposes possible future

directions and improvements.

It should be noted that it is not the intention of the authors

to compare the performance of the proposed method to the

existing OF estimation techniques. A full and objective

comparison of the large number of methods published in

this field during the last two decades is a rather time

consuming task. In this paper, we focus in the present work

on answering the following questions:

Is it possible to use the computationally most attractive

differential method of Horn and Schunk in the case of large

displacement without introducing additional constraints as

done in other known approaches (for a review see Mitiche

and Bouthemy [31]). In the following, we show that this

challenging question can be addressed and solved in a

simple way. An approach allowing the computation of the

dense flow field without additional constraint is proposed.

The main attractive characteristics of this method are its

simplicity, accuracy, and ease of implementation.

2. Existing methods

In the following we briefly summarize the most widely

cited OF estimation approaches. Drawbacks as well as

advantages of each approach are highlighted. OF estimation

approaches can be broadly classified into four categories,

namely, differential methods, correspondence (correlation-

based) methods, spatio-temporal (energy-based) methods

and the parametric (model-based) methods.

2.1. Differential methods

Differential methods [22,35,36,39,40,42,45,46] are

based on the assumption that the observed brightness

(intensity) E of any object point is constant over time.

Consequently, any change in intensity at a point in the

image is due to motion. Relative motion between the camera

and the object will cause position ðx; yÞ of a point M in the

image at time t to change to a new position ðx þ dx; y þ dyÞ

over the interval time dt: By the constant brightness

assumption, the intensity of the object point will be the

same in the two images. This assumption is mathematically

stated as:

Eðx; y; tÞ ¼ Eðx þ dx; y þ dy; t þ dtÞ ð1Þ

By expanding the right side of the above equation as a

Taylor’s series about ðx; tÞT and discarding terms higher

than the first order, we can obtain the standard OF equation

[22]:

Et þ 7
k
Ev ¼ 0 ð2Þ

where v is the velocity vector, Et is the partial derivative of

E with respect to t; and 7
k

is the gradient operator. This

equation is called ‘Brightness Invariance Equation’. In

practice, to derive such equation two fundamental assump-

tions are used, namely, Intensity conservation during the

movement and small inter frame displacements. The

validity of the latter requires fine temporal sampling of the

data flow. Furthermore, the use of differential operators

assumes small displacement, in general lower than the pixel.

When the latter assumption cannot be guaranteed, other

approaches such as multiresolution decomposition can be

used [10,11,27,28]. Accurate measurement could then be

obtained with such methods even for large displacements or

for large and irregular intensity gradient deviations in the

image plane [37]. The problem of these methods, as we

mentioned before, is that they assume that the brightness

constraint is still valid at coarser resolutions of the image

decomposition [31].

It is well known that problem of OF estimation using

Eq. (2) is ill-posed and consequently could not be solved

without additional constraints to guarantee the uniqueness

of the solution [6]. Depending on the choice of the

additional constraint, various methods were derived

[17,22,24,30,34,46,49]. In Section 3.1, the smoothness con-

straint used for regularization in Horn and Schunk method

[22] is recalled and analyzed. This method serves as a basis

of our new technique called Translated Optical Flow (TOF).

2.2. Correlation-based (matching or correspondence)

methods

In contrast to differential approaches, correlation

methods [2,25,29,44], can deal with large motions. The

basic idea behind these methods consists in establishing an

inter frame correspondence. This could be achieved by

tracking a pattern or a set of local features in two successive

frames. These techniques are known as block or pattern

matching methods [18]. The easiest and the standard way of

choosing such patterns is to consider only a set points of

interest where intensity abruptly changes. Such features are

for example corners, end line points or other salient features

A. Beghdadi et al. / Image and Vision Computing 21 (2003) 383–399384



[43,51] which often guaranty the uniqueness of the pattern

matching.

The correspondence procedure consists of searching the

displacement vector of a given pattern from its initial

position in the first frame into the second one. In general,

this could be achieved using an exhaustive search for the

displacement vector s that corresponds to the maximum of a

local similarity measure such as the inter-block correlation

coefficient. In practice, an analysis block is chosen on which

a smaller sliding matching block is defined. Other distance

measures such as Sum of Square Difference (SSM) defined

by:

SSDðx; sÞ ¼
Xn

j¼2n

Xn

i¼2n

Wði; jÞ½E1ðx þ ði; jÞÞ

2 E2ðx þ s þ ði; jÞÞ�2 ð3Þ

can be used where W is a weighting function corresponding

to the analysis window of size ð2n þ 1Þ £ ð2n þ 1Þ; and E1

and E2 are the intensity distributions in two successive

frames.

The main difficulty encountered when using such

methods is the validity of the uniqueness of the solution.

Indeed, the 2D correlation function may not be unimodal

and may exhibit a flat shape. In such cases, it becomes very

difficult to localize the optimum solution. Moreover, even

when the correlation is unimodal, its peak could be wide

leading to the well-known aperture problem [2,50]. For

these reasons, the methods based on correlation or matching

give only an approximate solution of the displacement field.

Furthermore, they often fail in estimating the displacement

field in homogeneous region.

2.3. Energy-based methods

These methods are based on the multidecomposition of

the image sequence using a bank of spatio-temporal filters,

such as Gabor-like filters, tuned to a family of frequency

bands [1,13,21,47]. Such techniques analyze the image

sequence in the multi-dimensional space spanned by two

spatial and one temporal frequencies ðk;vÞ: For this reason

they are sometimes called frequency-based techniques.

The main idea behind the energy-based methods is the

fact that a 2D pattern translating with a constant velocity v

in the image plane has all of its power lies on a plane

containing the origin in the spatio-temporal frequency space

ðk;vÞ: The plane equation is given by:

v ¼ 2vT k

Based on this fact, the image velocity can be computed in

the Fourier domain by finding the plane in which most of the

power is concentrated. This can be achieved by using filters

that respond to oriented spatio-temporal energy.

Velocity estimation using these techniques is a two-stage

process. In the first stage, also called image representation,

sets of spatio-temporal frequency selective filters are used to

sample the power spectrum of the input image. In the second

stage, the filter outputs are resolved to measure the velocity

of the image motion at each of the number of spatial

locations and spatial frequencies.

The main drawback of these approaches is that they are

computationally demanding and require a longer image

sequence than other techniques, for example seven frames

are used in Ref. [50]. Furthermore, the efficiency of these

techniques is limited, as in differential methods, to small

displacements.

2.4. Model-based methods

The basic idea of these methods is to propose a plausible

model for motion and to estimate the model parameters

fitting the model to the experimental data in order to

compute the flow field. Common models of image flow in a

local neighbourhood V include constant, affine, and

quadratic [3,7,12,38,48]. For the case of affine model we

have:

uðx; aÞ ¼
a1 þ a3x þ a5y

a2 þ a4x þ a6y

 !

while for the case of the case of quadratic model we have:

uðx; aÞ ¼
a1 þ a3x þ a5y þ a7x2 þ a9xy þ a11y2

a2 þ a4x þ a6y þ a8x2 þ a10xy þ a12y2

 !

The main drawback of this approach is the fact that the

accuracy is model-dependent. Furthermore, these

approaches assume apriori knowledge of the nature of the

motion. With more complicated motions model allowed, the

problem of computational cost arises. So instead of solving

for 2 parameters per pixel for the case of constant velocity,

we will be required to solve for 6 in the affine model and 12

in the quadratic model. Also since these methods are local,

they do not allow for propagation of the optical flow to

uniform bright image regions from nearby points which

results in a sparse flow field.

3. Incremental approach (translated optical flow)

Our method, called Translated Optical Flow (TOF), is

based on both differential and matching methods. The

differential side of the method is nothing but the well-known

Horn and Schunk’s technique (HST). It is worth noting here,

thatHSTis thebasisof severalknownoptical flowmethods. In

the following, we briefly recall Horn and Schunck’s

technique.

3.1. The differential method of horn and Schunck

Horn and Schunck’s method is based on the intensity

distribution conservation assumption during the motion

expressed in as shown in Eq. (2). To solve this ill-posed
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problem, that is finding the velocity vector v ¼ ðu; vÞT ; Horn

and Schunck introduced an additional constraint called

smoothness constraint (SC), which constraints the flow field

to be smooth over the whole image. One way of obtaining

the smooth flow field is by minimizing the following

functional:

:ðvÞ ¼
ðð

½Exu þ Eyv þ Et�dxdy þ a2
ðð

½u2
x þ u2

x þ v2
x

þ v2
y�dxdy ð4Þ

where the subscripts x; y and t stand for the partial

derivations with respect to the spatial and temporal

coordinates, respectively. The first term in the left-hand

side of Eq. (4) represents a penalty on the deviation of

the estimated velocity field from the brightness invar-

iance equation (Eq. (2)), while the second term is a

penalty on the deviation of the velocity filed components

from smooth surfaces. The positive constant parameter

a2 controls the relative contribution of the latter penalty

to the total cost function :: This minimization problem is

solved numerically using an iterative gradient search

which leads to the following expression of u and v:

uðnþ1Þ ¼ �u
ðnÞ 2

ExðEx �u
ðnÞ þ Ey �v

ðnÞ þ EtÞ

a2 þ E2
x þ E2

y

vðnþ1Þ ¼ �v
ðnÞ 2

EyðEx �u
ðnÞ þ Ey �v

ðnÞ þ EtÞ

a2 þ E2
x þ E2

y

ð5Þ

where n stands for the iteration number and �uðnÞ and �vðnÞ

are the neighbourhood averages of uðnÞ and vðnÞ: Horn and

Schunk [22] approximated the derivative terms using

finite difference technique. They used Eq. (6), where ði; jÞ

stand for pixel coordinates and the subscripts (1, 2) are

the indices related to two successive frames.

Exði; jÞ ¼ 1=2 Ex;1ði; jÞ þ Ex;2ði; jÞ
� �
Eyði; jÞ ¼ 1=2½Ey;1ði; jÞ þ Ey;2ði; jÞ�

Etði; jÞ ¼ ½E2ði; jÞ2 E1ði; jÞ�

ð6Þ

where

Ex;kði; jÞ ¼ 1=2½Eði þ 1; j; kÞ2 Eði; j; kÞ

þ Eði þ 1; j þ 1; kÞ2 Eði; j;þ1; kÞ� for ðk ¼ 1; 2Þ

Ey;kði; jÞ ¼ 1=2½Eði; j þ 1; kÞ2 Eði; j; kÞ

þ Eði þ 1; j þ 1; kÞ2 Eði þ 1; j; kÞ� for ðk ¼ 1; 2Þ

Ekði; jÞ ¼ 1=4½Eði; j; kÞ þ Eði þ 1; j; kÞ

þ Eði; j þ 1; kÞ þ Eði þ 1; j þ 1; kÞ� for ðk ¼ 1; 2Þ

ð7Þ

Notice that in Eq. (7), the partial derivative terms Ex; Ey

and Et are computed on the same spatio-temporal point

(see Fig. 1)

3.2. TOF technique

The basic idea of TOF is to combine HS method with a

classical result derived from Helmolt’s theorem [19]. This

theorem states that any vector movement s of a material

surface element could be decomposed into elementary and

small enough movements composed mainly of translation,

rotation, and a uniform dilation of the two orthogonal

components of a shear. Thus, in any small neighbourhood of

a given image point, say O, one can write the displacement

as follows:

sðxÞ ¼ sðxOÞ þ Jðx 2 xOÞ ; sO þ ds ð8Þ

where sO is the displacement of O and J is the Jacobian

given by

J ¼

›u

›x

›u

›y

›v

›x

›v

›y

2
6664

3
7775 ð9Þ

The derivatives are computed at the point O. If J is bounded,

which is the case when the partial derivative exist and are

Fig. 1. The location where the partial derivatives are estimated when using Horn and Schunck’s method ðk ¼ 1; 2Þ:
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continuous [16], we can write:

kJðx 2 xOÞk # kJkkðx 2 xOÞk ð10Þ

where kJk ¼ supkJxkfor kxk ¼ 1:

In the following, we make use of this assumption since

we consider slow transformations such that the partial

derivatives expressed in Eq. (9) are quite small (such is the

case when the temporal sampling rate is high enough). We

can write:

kdsk ¼ kJðx 2 xOÞk # kJkkðx 2 xOÞk # M ð11Þ

where M is a small enough constant. Thus, for such

transformations, if one considers a small element of surface

centred at O, we can interpret the movement as follows. If

an observer is on a referential centered at O, he can only

notice the local deformation ds: As a consequence, and due

to the assumption of small deformation ds; differential

techniques, such as HST, could be used for estimating the

flow field relative to this local referential.

Now let us apply this idea to the analysis of image

sequence. Consider two image frames with the two

luminance distributions E1 ¼ Eðt1Þ and E2 ¼ Eðt2Þ: Also

consider a surface element S centered at an arbitrary point

O, origin at the instant t1 of a referential R0 related to the

initial frame F1, and a referential R which moves with the

origin O (i.e. O is the origin of R at any instant t). Let

vðPlR0Þ be the velocity vector of a point P in the

neighbourhood of O; measured in R0 and similarly let

vðRlR0Þ be the translation vector of R with respect to R0,

defined by:

vðRlR0Þ ¼ Oðt1ÞO




!

ðt2Þ=Dt ¼ sO=Dt ð12Þ

where Dt ¼ t2 2 t1
2vðPlR0Þ can be written as:

vðPlR0Þ ¼ vðRlR0Þ þ vðPlRÞ ð13Þ

If now we use the intensity constraint in R0 (i.e. we assume

that the luminance distribution E of a given element S is

invariant under motion), then the same assumption applies

in the R referential. Furthermore, in the case of slow

transformation satisfying condition Eq. (11), the following

relation holds:

kvðPlRÞk ¼ kdsk # M ð14Þ

Using this simple analysis we showed that the conditions

which need to be fulfilled in order to apply the differential

technique (i.e. intensity invariance and small displace-

ments) are all satisfied in the referential R0. In such

referential, the numerical expressions of the partial

derivative terms expressed in Eq. (6) could be estimated

from two successive frames, numbered 1 and 2, (see Fig. 2)

as follows:

Exði; jÞ ¼ 1=2 Ex;1ði; jÞ þ Ex;2ði þ uO; j þ vOÞ
� �

Eyði; jÞ ¼ 1=2½Ey;1ði; jÞ þ Ey;2ði þ uO; j þ vOÞ�

Etði; jÞ ¼ ½E2ði þ uO; j þ vOÞ þ E1ði; jÞ�

ð15Þ

where) ðuO; vOÞ are the components of the displacement

vector sO: Furthermore, the following expressions, where

index k stands for frame number, still hold.

Ex;kði; jÞ ¼ 1=2½Eði þ 1; j; kÞ2 Eði; j; kÞ þ Eði þ 1; j þ 1; kÞ

2 Eði; j þ 1; kÞ� for ðk ¼ 1; 2Þ

Ey;kði; jÞ ¼ 1=2½Eði; j þ 1; kÞ2 Eði; j; kÞ þ Eði þ 1; j þ 1; kÞ

2 Eði þ 1; j; kÞ� for ðk ¼ 1; 2Þ

Ekði; jÞ ¼ 1=4½Eði; j; kÞ2 Eði þ 1; j; kÞ þ Eði; j þ 1 þ 1; kÞ

þ Eði þ 1; j þ 1; kÞ� for ðk ¼ 1; 2Þ

Since in general the components ðuO; vOÞ of sO are not

integer quantities, an interpolation on the gray-levels may

be necessary in order to compute the partial derivatives. In

our case a cubic-spline interpolation described in Ref. [29]

is used.

It is worth noting here that any differential-based optical

flow estimation algorithm could be used with the help of

Fig. 2. The location where the partial derivatives are estimated when using TOF ðk ¼ 1; 2Þ:

2 In all the rest of the paper we use Dt ¼ 1: This allows to simplify the

analysis and to indiscriminately identify velocity vector and displacement

vector.
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the given expressions in order to compute the relative

displacement field ds: The next step is to compute the

overall displacement s which is simply the sum of the

relative displacement ds and the translation vector s0:

Because of the presence of the translation vector term sO;

this method is called Translated Optical Flow(TOF).

In summary, the use of TOF requires that we must have

at our disposal an approximate solution with sufficient

accuracy of the translation displacement vector sO at any

point of the image. In Section 3.3, we show how to obtain

this first approximate solution using a classical correlation

method. Before going any further, let us make two

important remarks. First, it should be mentioned that the

use of correlation method is not the only way to compute the

translation term and that any method allowing the

determination of the approximate translation vector sO

could be used. This gives our method a significant

flexibility. The second remark relies on the fact that the

introduction of the translation term will modify the way the

partial derivatives are computed and could be combined

with any of the known optical flow differential methods

without affecting the basic idea of TOF.

3.3. Approximate solution determination

The main idea of the method used for estimating the

approximate solution of the flow field is to use the classical

correlation method to track some patterns but only at some

strategic points. Obviously, correlation method is time

consuming and the idea of limiting its use to some image

features of interest will significantly reduce the compu-

tational load. Once these points are localized and the

correspondence between the two frames is well established,

this solution is then propagated to the other neighboring

points using a constraint of global smoothness analogous to

that use in HS algorithm. We call this constraint

‘propagation constraint’ and will be termed PC in the

following.

In practice, the correspondence technique implemented

in our method is based on a correlation search strategy

applied only at regularly spaced nodes of a virtual grid

deposited on the first frame. The grid node correspondence

allows the determination of a sparse translation displace-

ment field. In the next stage of the strategy, on each node a

square analysis window of size proportional to the grid step

and where the search correspondence method works is

defined. Typical size of this window is c ¼ aP; where P is

the grid step and a is a factor controlling the width (in this

experiment it is chosen in the interval [1/4,1/2]). The

correspondence procedure between the first and the second

frame uses a template-matching method based on the

Maximum Cross-Correlation (MCC) method. The MCC

method consists of an exhaustive search over all possible

values of the position vector s for the displacement vector

which would maximize the cross-correlation coefficient rðsÞ

defined by:

rðsÞ ¼

ÐÐ
E1ðxÞE2ðx þ sÞd2x

½
ÐÐ

E2
1ðxÞd

2x
ÐÐ

E2
2ðx þ sÞd2x�1=2

ð16Þ

As already mentioned in Section 2.2, the validity of this

method depends on the shape of the correlation function. It

is well known that the correlation method works well and

the solution is unique when the correlation curve is

unimodal. In the case where the correlation curve is not

unimodal, the uniqueness is not guaranteed. In the

following, we will first assume that the correlation curve

is unimodal. We will then extend this method to more

general situations where such hypothesis no longer holds.

At the end of this matching procedure we have at our

disposal a set {sm;n} of displacement vectors where the

indices ðm; nÞ stand for node spatial coordinates. This sparse

field is to be transformed into a dense field with the use of

the PC. As in Horn and Schunk’s method, this constraint

expresses the fact that the searched field would be regular

and smooth (i.e. all neighboring points will be subjected to

approximately the same amount of displacement). As stated

in Section 3.1, this constraint could be treated as the

minimization problem, where the function to be minimized

is given by:ðð
½u2

x þ u2
y þ v2

x þ v2
y�dxdy

Using Lagrangian formalism one can easily derive the

following Euler equations:

Ds ¼
uxx þ uyy

vxx þ vyy

" #
¼ 0 ð17Þ

Using this constraint, the problem of estimating the optical

flow becomes the displacement s that minimizes the

following cost function:X
n

X
m

ksðxm;nÞ2 sm;nk ð18Þ

subject to the Ds ¼ 0:

This constrained minimization attempts to find a smooth

field that matches the sparse field computed using the

correlation method at the grid nodes xm;n:

The approximate solution for the dense field is obtained

by performing an interpolation on the sparse field derived

from a correlation method applied to a limited set of points

of interest. Other algorithms for flow field estimation use

this strategy to reduce the computation time involved in

computing displacement field using correlation method

[29]. Such approach, however, usually yields erroneous

estimates when local deformations result in between the grid

nodes. It is the case, for example, of the particular situations

displayed in Fig. 3(a) and (b). Indeed, these figures represent

a synthetic grid in its initial state and final deformed state,

respectively. As it can be seen if, for convenience and ease

of computation, we decide to estimate the displacement only
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on the basis of grid nodes information it would not be

possible to recover the motion information of, for example,

the grid bars by simply interpolating in between the nodes.

Whereas, it is the aim of TOF technique to solve this

problem since differential approach based on the CI (Eq.

(2)) uses the whole spatial information contained in the

frame.

The diagram shown in Fig. 4 summarizes the different

steps involved in the ‘TOF’ method.

4. Results and discussion

In the following, we present the results of applying TOF

for estimating the flow field to four different image

sequences. The proposed method is compared with a

multiresolution implementation of HS method since it is

usually this sort of approaches, which are used when large

amplitude displacements are considered. The image

sequences used in this study are the following:

– Synthetic images representing a grid at different stages

of deformations (Figs. 5 and 6). This constitutes an

excellent example well suited to TOF technique,

– another synthetic image representing a random binary

pattern (Fig. 7),

– a real image sequence (from INSA de Lyon)

representing a random speckle-like pattern (Fig. 8),

obtained by spraying a paint over a material,

– a real image of town known as ‘Goldhill’ (Fig. 9),

and.- a real image sequence downloaded from http://

www.cs.ubc.ca/nest/lci/vista/index-pix.html and

called ‘Hamburg Taxi’ (Fig. 10)

.

In these experiments, the first three images are

numerically transformed in order to obtain two successive

frames per image. The main advantage of this experimental

approach is that we have at our disposal the exact flow field

since the images are deformed on the basis of

a predetermined motion-based model. It would then be

possible to objectively judge the quality of the flow field

estimated by the different studied motion estimation

methods. Whereas, in the last example of ‘Hamburg taxi’,

the true flow field is unknown. To compare the computed

optical flow fields we use some classical error measures.

4.1. Evaluation of a motion estimation method when the true

flow field is known

One way of evaluating the efficiency of a given motion

estimation method is to compute the discrepancy between

the true flow field, when known, and the one derived from

the method under consideration. Such discrepancy could be

expressed in terms of a distance or a norm. Given two

matrices A and B of size M £ N; the distance between them

Fig. 4. TOF diagram.

Fig. 3. An example of very localized deformations that may lead to an erroneous displacement field in the case of the intorpolation methods using estimated

values at the nodes.
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in terms of the Frobenius norm is given by:

dðA;BÞ ¼
1

MN

XM
j¼1

XN
i¼1

ðaij 2 bijÞ
2

2
4

3
51=2

ð19Þ

The main shortcoming of this error measure is that it reflects

a global deviation of A from B and consequently does not

give any indication on the error distribution. One way of

taking into account this aspect is to incorporate some spatial

information in the error distribution. Fleet and Jepson [13]

have proposed such approach, where an angular measure of

error is used in order to evaluate the deviation of the

computed flow field from the correct one. This method is

briefly described next.

Fig. 5. Application of the ‘Translated Optical flow’ for the case of synthetic image.
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A given velocity vector v ¼ ðu; vÞ; or equivalently a

displacement vector of ðu; vÞ pixels per unit time, could

be interpreted as a vector of components ðu; v; 1Þ in the

3D spatio-temporal space ðx 2 y 2 tÞ: In such space, an

angular deviation CE of the estimated displacement field

ve ¼ ðue; ve; 1Þ
T from the orientation of the correct one

vc ¼ ðuc; vc; 1Þ
T is a more plausible and attractive

objective measure for flow field estimation evaluation.

This measure is defined by:

CE ¼ cos21ðuc;ueÞ ð20Þ

Fig. 5 (continued )
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where

uc ¼
ðuc; vc; 1Þ

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

c þ v2
c þ 1

p ue ¼
ðue; ve; 1Þ

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

e þ v2
e þ 1

p ð21Þ

One drawback of such measure is that the angular errors

may be relatively small in the case of large displace-

ments. Moreover, the estimated deviation corresponding

to two symmetrical estimated vectors (symmetry with

Fig. 6. Comparison between HS and TOF methods for the case of synthetic image.
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respect to the correct vector) might yield very different

angular deviations [38]. Keeping these in mind, it would

be better to use a deviation histogram, which is nothing

but the distribution of the magnitude differences between

the estimated vector and the correct one. This histogram

may help in evaluating the efficiency of the flow filed

estimation method. Indeed, for instance, a narrow shaped

histogram is an indication of an efficient estimation.

Fig. 7. Comparison between the HS and TOF methods for the case of binary image.

A. Beghdadi et al. / Image and Vision Computing 21 (2003) 383–399 393



4.2. Evaluation of a motion estimation method when the flow

field is unknown

In the case of an unknown flow field, which is the

most encountered situation in real life, we make use of

the Inverse Reconstruction Method (IRM) in evaluating

the flow field estimation method. Indeed, let I1 and I2 be

the two frames of the image sequence under study and

let sðrÞ be the estimated flow. Thus, given I1 and sðrÞ; it

would be possible to recover an estimated frame, say Î2:

This reconstructed frame could then be compared to the

actual given frame I2: One can, for example, use the

Mean Square Error (MSE) to quantify the deviation of

the estimated frame from the correct one. This approach

Fig. 8. Comparison of the methods HSM and TOF in the case of an image of the ‘speckle’ type.
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has been tested on synthetic images and its performance

compared to the angular deviation method of Fleet and

Jepson (which is only useful when the true flow field is

known) [23]. It was found that the two error measures

are correlated [9]. This motivated us to use IRM as an

evaluation criterion of flow field estimation technique. It

is worth keeping in mind, however, that this approach

should not be considered as a rigorous and universal

method for evaluation. Indeed, consider for example a

homogeneous region in the initial frame I1 one can easily

derive various flow field sðrÞ yielding the same final

frame Î2: However, we feel that the introduction of

additional criteria (objective criteria such as dissimilarity

measure or smoothness constraint, or subjective criterion

Fig. 9. Comparison of the methods HSM and TOF in the case of a real image ‘Goldhill’.

A. Beghdadi et al. / Image and Vision Computing 21 (2003) 383–399 395



such as visual quality assessment) would give the IRM

more reliability when used as an index for the flow field

estimation quality.

4.3. Results

To show how TOF works, a first experiment is conducted

on a synthetic image (Fig. 5) composed of a grid with a

thickness of 22 pixels and with a regular step in both

horizontal and vertical directions embedded in a textured

homogeneous background (Fig. 5(a)). A local deformation

of amplitude 3 pixels is applied to a circular region 24 pixels

wide. This local deformation is firstly applied to the image

center then followed by a uniform dilation of 1% strength

and centered on the upper left corner of the image (this point

is supposed to be fixed during all the transformation). The

result of the transformation is shown in Fig. 5(b). The local

deformation is clearly visible at the center of the image.

The estimated flow field using the correlation method

described in Section 3.3 is shown in Fig. 5(c). This sparse

vector field is propagated to the rest of the image using the

Propagation Constraint (PC) expressed in Eq. (21). The

result is shown in Fig. 5(f). By comparing this estimated

flow field to the correct one (shown in Fig. 5(j)), one can see

that the local deformation of the image is not taken into

account when using the correlation method. This is not

surprising since the extent of the local deformation

magnitude is of order size of the grid step. This is more

noticeable in the histogram of the deviations between the

estimated flow field and the correct one as shown in Fig.

5(g). Notice that in all the conducted experiments the error

measures are computed in the quadrilateral delimited by

grid nodes because, in the scope of our method, the flow

field has no meaning outside this region. This is confirmed

in Fig. 5(d), where the difference between the correct

deformed image (Fig. 5(b)) and the one estimated by IRM

(using the original image of Fig. 5(a) and the estimated flow

field of Fig. 5(f)) is shown.

Fig. 5(h) shows the flow field ds estimated by TOF

method. This flow field is clearly high in the central zone

where the local deformation was applied. When summing

the flow fields shown in Fig. 5(f) and (h), the total

displacement field is obtained as displayed in Fig. 5(i).

Using TOF, a good precision in flow field estimation was

achieved. The maximum distance error obtained was

0.7 pixels compared to the 2.3 pixels of the correlation

method alone. The new mean error of 0.06 pixels is better

than the 0.26 pixels due to the correlation method. If one

compares the flow field obtained using TOF with the correct

flow field shown in Fig. 5(j), one can clearly see that the

local deformation has been well taken into account as

illustrated in Fig. 5(e).

In the following experiments (see Figs. 6–10), the results

obtained using our method are compared with those

obtained with the Horn and Schunck based mutiresolution

method. The optimum parameters used in the two studied

methods are mentioned in the figure captions. As it can be

noticed, TOF technique clearly outperforms the multi-

resolution-based approach when dealing with large dis-

placements. This is confirmed by the example shown in

Fig. 6 where a punch effect is applied to the synthetic grid

image. The displacement field, which attains in some areas a

magnitude of ten pixels, is estimated with an average

precision of order of 1/10 pixels with the proposed approach

whereas multiresolution method attains an average value of

1/4. This superiority is also well illustrated in the shape of

the error histogram, which exhibits a very narrow mode.

This gain in precision is visible in the image sequence

shown in Fig. 7 where a binary image is subjected to a

translation of 9 pixels towards the right bottom direction.

Indeed, on this textured image, the coarse analysis inherent

to the multiresolution approach image yields inevitably a

loss of information which in turn is propagated to lower

Fig. 9 (continued )
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levels of the pyramid leading to a poor estimation of the

flow field compared to that of TOF method.

Another test sample shown in Fig. 8, corresponding to a

speckle like image similar to that used in the previous

example, is subjected to a small rotation (18) resulting in

a maximum displacement of 4 pixels. In this case, the TOF

method, with an average precision of about 1/25 pixels,

outperforms once more the HS method.

To test the efficiency of the proposed method, a real

image, called ‘Goldhill’, shown in Fig. 9 and composed of

Fig. 10. Comparison between HSM and TOF methods in the case of the real sequence ‘Hamburg Taxi’.
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different structures is considered. A displacement field

composed of a uniform dilation of 20% followed by a

circular deformation attaining 50 pixels at the central zone

are simulated on this image. Once more, the TOF method is

shown to outperform HS technique. Notice here that the

attained precision is less important than that obtained with

the previous experiments. This is mainly due to the high

dilation amplitude used in this case, which result in a poor

displacement field on the virtual grid nodes.

It is worth noticing here that the grid step is a decisive

parameter in the proposed method. Indeed, a small grid step

will result in a better estimation of the displacement field but

with an increase in computation time especially in the

correlation computation step. Furthermore, in the case of a

small step, a small size analysis window for matching is

used. This does not guarantee the existence of a unimodal

bell-shaped correlation curve. When such situation occurs

the correlation method could yield erroneous displacement

vectors which are propagated via PC to other parts of the

image leading to a poor estimated flow field when using

TOF. The importance, for the second step of TOF technique,

of the displacement vectors obtained with the correlation

step is demonstrated in Fig. 9(h) and (i). The dense flow

field reconstructed when the TOF method is applied with the

a priori knowledge of the actual displacement vectors of the

nodes of a virtual grid is shown in Fig. 9(h). In this case an

improvement is observed as shown in Fig. 9(i). Through

these results, it is shown that the use of TOF requires a good

precision in the estimation of the sparse flow field computed

on regularly spaced nodes. One possible improvement is to

select other points of interest not necessarily on a regular

grid but randomly distributed on the image plane or better

belonging to some salient features of the image signal

(contrasted points, corners, end of line, etc.). Once these

points of interest are selected, any correlation method such

that described in Ref. [50] would be used to efficiently

estimating the sparse flow field which is then propagated to

the other points of the image using Eq. (21).

The last example is a real image sequence called

‘Hamburg Taxi’, shown in Fig. 10 whose true displacement

field is unknown. To evaluate the quality of the estimated

flow field, the IRM is used. Fig. 10(c) displays the difference

between the last image of the real image sequence and the

one reconstructed when using the flow field obtained with

HS method (Fig. 9). Fig. 10(d) corresponds to the difference

between the last image of the real image sequence and that

of the one reconstructed using the flow field obtained with

TOF method (Fig. 10(f)). In both figures the difference in

magnitude have been multiplied by a factor 2 for ease of

visual appearance. It could be noticed that the image

reconstructed using TOF better fits the real original one than

does the reconstructed one using HSM. Moreover, Fig. 10(f)

shows that the displacement vectors of the two vehicles

moving in opposite direction are better discriminated when

using TOF method than when using the HSM. Using the

HMS results in an oversmoothed flow field between the two

mobiles as already reported in Ref. [50]. This drawback is

avoided thanks to the PC which guarantees the stability of

the nodes displacement vectors, supposed to be correctly

computed, and allows to control the extent of smoothing

effect.

5. Conclusions

In this paper, we have shown that TOF method can

efficiently deal with large displacements in the case of

continuous and slow deformations, where the classical

multiresolution approaches fail. The proposed approach

offers two advantages, namely time saving in the compu-

tation and good precision (1/10 pixel) when compared to

similar approaches. The obtained results show that this

method can be potentially used in different scientific areas

such as material deformation estimation, medical investi-

gations, and meteorological analysis. This method, how-

ever, fails to give reliable flow field in the presence of

discontinuities and occlusions. These issues are being

investigated by the authors.
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[27] E. Mémin, P. Pérez, Adaptative multigrid and variable parameteriza-

tion for optical-flow estimation, Internal Publication, IRISA, No.

1057, Oct. 1996, pp. 1–19.
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modèles paramétrés de mouvement sur des scènes complexes,
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