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Description of the problem

Nowadays, we can find networks everywhere: biology, sociology, computer
programming, marketing, etc). cyber-marketing, cyber-Security.
It is difficult to analyse a network directly because of its big size.
Therefore, we need to decompose it in clusters or modules ⇐⇒
modularize it.
Different modularization criteria have been formulated in different
contexts in the last few years and we need to compare them.
Objective: Compare the partitions found by different linear criteria

We will provide a unified notation of different linear modularization
criteria to understand the properties of the clusters found by their
optimization. Moreover, this notation allows to easily identify the criteria
having a resolution limit.
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Definitions

Definitions and notations

A graph G(V ,E ) is a set of objects V , called nodes, linked by edges E .

N = |V | is the number of nodes and M = |E | is the number of edges.
A graph is completely described by a N × N matrix called the Adjacency
Matrix A defined as follows

aii′ =

{
1 if there is an edge between nodes i and i ′,
0 otherwise.

(1)

Example: given a graph
with N = 6 and M = 7.

its adjacency matrix is:

A =


0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0



The degree di of node i is the
number of edges incident to i .
di =

∑
i′ aii′ = ai. = a.i

The average degree of the
graph is dav = 2M

N .
The Density of the graph is
δ = 2M

N2 .

Just in case the graph is weighted we will denote the adjacency matrix W.
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Mathematical Relational modelling

Mathematical Relational modelling
Let X be a square matrix of order N defining an equivalence relation on
V as follows:

xii′ =

{
1 if i and i ′ are in the same cluster ∀i , i ′ ∈ V × V
0 otherwise

(2)

We present a modularization criterion as a function F to optimize:
max

X
or min

X
F (A,X ). (3)

subject to the constraints of an equivalence relation:
xii′ ∈ {0, 1} Binarity (4)

xii = 1 ∀i Reflexivity
xii′ − xi′i = 0 ∀(i , i ′) Symmetry

xii′ + xi′i′′ − xii′′ ≤ 1 ∀(i , i ′, i ′′) Transitivity
Finding the exact solution of this problem turns impractical for large graphs,
therefore we will use heuristics ad-hoc.
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Properties verified by linear modularization criteria

Properties verified by linear modularization criteria
A criterion is linear if it can be written in the general form:

F (X) =

N∑
i=1

N∑
i′=1

φ(aii′ )xii′ + K (5)

Besides that, the criterion has the property of General balance if it can be
written in the form:

F (X) =

N∑
i=1

N∑
i′=1

φ(aii′ )xii′ +

N∑
i=1

N∑
i′=1

φ̄(aii′ )x̄ii′ (6)

where K is any constant depending only on the original data and
x̄ii′ = (1− xii′ ) (the opposite relation of X);
φ(aii′ ) ≥ 0 ∀i , i ′ and φ̄(aii′ ) ≥ 0∀i , i ′ are non negative functions verifying:∑N

i=1

∑N
i′=1 φii > 0 and

∑N
i=1

∑N
i′=1 φ̄ii > 0; .

The quantities
N∑

i=1

N∑
i′=1

φ(aii′ )xii′ and
N∑

i=1

N∑
i′=1

φ̄(aii′ )x̄ii′ are called positive (+)

and negative (-) agreements respectively.
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Properties verified by linear modularization criteria

The impact of the property of General balance

Let κ denote the number of clusters obtained after optimization of the
criterion.

Given a graph

If (-) agreements
missing (φ̄ii′ = 0∀i , i ′)

then all nodes are
clustered together, κ = 1

If (+) agreements
missing (φii′ = 0 ∀i , i ′)

then all nodes are
separated, κ = N
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Properties verified by linear modularization criteria

Contribution: Different levels of general balance for linear criteria

Property of Local balance
A balanced linear criterion whose functions φii ′ and φ̄ii ′ satisfy

φii ′ + φ̄ii ′ = KL ∀ (i , i ′)

where KL is a constant depending only upon the pair (i , i ′) has
the property of local balance.

Therefore KL must not depend on global properties of the graph.

10/32
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Properties verified by linear modularization criteria

Contribution: Different levels of general balance for linear criteria

Criterion based on a null model

A balanced linear criterion whose functions φii′ and φ̄ii′ satisfy the following
conditions:

N∑
i=1

N∑
i′=1

φii′ =

N∑
i=1

N∑
i′=1

φ̄ii′

φii′ + φ̄ii′ = g(KG ) ∀ (i , i ′)
where g(KG ) is a function depending on global properties of the graph KG is a
criterion based on a null model.

A linear criterion can not be local balanced and based on a null model at the
same time.

Resolution limit

If φ̄ tends to zero with the graph size the criterion has a resolution limit.
11/32
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Some linear criteria in relational notation

Criterion Relational notation

Zahn-Condorcet
(1785, 1964)

FZC (X ) =
N∑

i=1

N∑
i′=1

(aii′xii′ + āii′ x̄ii′ )

Owsiński - Zadrożny
(1986)

FZOZ (X ) =
N∑

i=1

N∑
i′=1

((1− α)aii′xii′ + αāii′ x̄ii′ )

with 0 < α < 1

Newman-Girvan
(2004)

FNG (X ) =
1

2M

N∑
i=1

N∑
i′=1

(
aii′ − ai.a.i′

2M

)
xii′

Table : Relational notation of linear modularity functions.
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Some linear criteria in relational notation (continuation)

Criterion Relational notation

Deviation to Unifor-
mity
(2013)

FUNIF(X ) =
1

2M

N∑
i=1

N∑
i′=1

(
aii′ − 2M

N2

)
xii′

Deviation to Indeter-
mination (2013)

FDI(X ) =
1

2M

N∑
i=1

N∑
i′=1

(
aii′ − ai.

N −
a.i′

N +
2M
N2

)
xii′

The Balanced Mod-
ularity (2013)

FBM(X ) =
N∑

i=1

N∑
i′=1

(
(aii′ − Pii′ ) xii′ + (āii′ − P̄ii′ )x̄ii′

)
where Pii′ = ai.a.i′

2M and P̄ii′ =
(

āii′ − (N−ai.)(N−a.i′ )
N2−2M

)
Table : Relational notation of linear modularity functions.
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Properties of these linear criteria
The 6 criteria have the property of General balance.

Global balance
Criterion Local

Balance
Null
model

Zahn-Condorcet X
Owsiński-Zadrożny X
Newman-Girvan X
Deviation to Uniformity X
Deviation to Indetermination X
Balanced modularity X

Table : Balance Property for Linear criteria
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First approach: the deviation form notation

Criterion Notation F (X) =

N∑
i=1

N∑
i′=1

(φii′ − φ̄ii′ )xii′

Zahn-Condorcet FZC (X) =

N∑
i=1

N∑
i′=1

(
aii′ −

1
2

)
xii′

Owsiński-Zadrożny FOZ (X) =

N∑
i=1

N∑
i′=1

(aii′ − α)xii′

Deviation to unifor-
mity

FUNIF(X) =

N∑
i=1

N∑
i′=1

(
aii′ −

2M
N2

)
xii′

Newman-Girvan FNG (X) =

N∑
i=1

N∑
i′=1

(
aii′ −

ai.a.i′

2M

)
xii′

Deviation to indeter-
mination

FDI (X) =

N∑
i=1

N∑
i′=1

(
aii′ −

(ai.

N +
a.i′

N − 2M
N2

))
xii′
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Comparison between Newman-Girvan, Deviation to Indetermination and the

Balanced Modularity

Maximizing the Balanced Modularity turns out to maximize the following
expressions depending upon the Newman-Girvan criterion and the
Deviation to Indetermination respectively.

FBM = 2FNG +
N∑

i=1

N∑
i′=1

(
(ai. − dav )(a.i′ − dav )

2M(1− δ)

)
xii′ .

FBM = 2FDI +

(
2− 1

δ

) N∑
i=1

N∑
i′=1

(
(ai. − dav )(a.i′ − dav )

N2(1− δ)

)
xii′ .

The Balanced Modularity behaves as a regulator between the
Newman-Girvan criterion and the Deviation to Indetermination.
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Second approach: Impact of merging two clusters

Now let us suppose we want to merge two clusters C1 and C2 in the
network of sizes n1 and n2 respectively. Let us suppose as well they are
connected by l edges and they have average degree d1

av et d2
av

respectively.

18/32
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Impact of merging two clusters

What is the contribution of merging two clusters to the value of
each criterion?

The contribution C of merging two clusters will be:

C =
n1∑

i∈C1

n2∑
i ′∈C2

(φii ′ − φ̄ii ′) (7)

The objective is to compare function φ(.) to function φ̄(.)

If C > 0 the criterion merges the two clusters, it is a gain.
If C < 0 the criterion separates the two clusters, it is a cost.

19/32
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The Contribution of merging two clusters

Contribution of merging two clusters for linear criteria.

Criterion: F CF =
n1∑

i∈C1

n2∑
i′∈C2

(φii′ − φ̄ii′ )

Zahn-Condorcet CZC =
(

l − n1n2
2

)
Owsiński-Zadrożny COZ = (l − n1n2α) 0 < α < 1
Deviation to Uniformity CUNIF = (l − n1n2δ)

Newman-Girvan CNG =

(
l − n1n2

d1
av d2

av
2M

)
Deviation to Indetermination CDI =

(
l − n1n2

(
d1

av
N +

d2
av
N − 2M

N2

))

20/32
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Summary by criterion
Criterion Characteristics of the clustering
Zahn-Condorcet The density of edges of each cluster is at

least equal to 50%.
No resolution limit.
For real networks the optimal partition
contains many small clusters or single nodes.

Owsiński-Zadrożny It gives the choice to define the minimum
required within-cluster density, α.
For α = 0.5 the Owsiński-Zadrożny criterion
≡ the Zahn-Condorcet criterion.
No resolution limit.

Deviation to Uni-
formity

A particular case of Owsiński-Zadrożny
criterion with α = δ.
The density of within cluster edges of each
cluster is at least δ.
It has a resolution limit. 21/32
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Summary by criterion

Criterion Characteristics of the clustering
Newman-Girvan It has a resolution limit.

The contribution depends on the degree
distribution of the clusters.
The optimal partition has no single nodes.

Deviation to In-
determination It has a resolution limit.

The contribution depends on the degree
distribution of the clusters.

Balanced modu-
larity It has a resolution limit.

The contribution depends on the degree
distribution of the clusters.

Depending upon δ and dav this criterion
behaves like a regulator between the NG
criterion and the DI criterion. 22/32
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Examples: real large graphs

Modularizing large graphs with the generalized Louvain algorithm

Number of clusters found by the generalized Louvain algorithm (see
[Campigotto et al. (2014)])

Network Jazz Internet Web nd.edu Amazon Youtube
N ∼ 198 70k 325k 334k 1M
M ∼ 3k 351k 1M 925k 3M
δ 0,14 1.44× 10−04 2.77× 10−05 1.65× 10−05 4.64× 10−06

Criterion κ κ κ κ κ

ZC 38 40,123 201,647 161,439 878,849
OZ α = 0.4 34 30,897 220,967 121,370 744,680
OZ α = 0.2 23 24,470 184,087 77,700 601,800
UNIF 20 173 711 265 51,584
NG 4 46 511 250 5,567
DI 6 39 324 246 13,985
BM 5 41 333 230 6,410

Table : Ref: Zahn-Condorcet (ZC), Deviation to Uniformity (UNIF), Newman-Girvan (NG), Deviation to
Indetermination(DI) and Balanced Modularity (BM).

Ref: Zahn-Condorcet (ZC), Deviation to Uniformity (UNIF), Newman-Girvan
(NG), Deviation to Indetermination(DI) and Balanced Modularity (BM)
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Examples: real large graphs

The number of clusters in artificial LFR graphs
Five benchmark LFR graphs of sizes 1000, 5000, 10000, 100000 and 500000. The input parameters are the same
as those considered in [Lancichinetti et al (2010)]: small communities sizes, ranging from 10 to 50 nodes, and a
low mixing parameter, 0.10.
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Figure : Average number of cluster for artificial LFR graphs (logarithmic
scale).
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Examples: real large graphs

The Normalized Mutual Information with LFR graphs
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Conclusions

We presented six different modularization criteria in Relational
notation.

We described and clearly defined the property of balance by making
the link between this property and the resolution limit property.
The generic Louvain algorithm allowed us to modularize real large
graphs and we could compare the number of clusters found by the
different criteria.
We characterized the partitions found by six linear modularization
criteria. We saw that two criteria who have a local definition are
based on a the density of within-cluster edges (Zahn-Condorcet
and Owsiński-Zadrożny), whereas others are based on a null model
(Newman-Girvan, Deviation to Uniformity, Deviation to
Indetermination and the Balanced Modularity). These criteria have
a resolution limit.
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Thanks for your attention!
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