Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Comparison of linear modularization criteria using the relational formalism

Patricia Conde Céspedes

Université Paris Nord L2TI

December 16th, 2014

イロト 不得 トイヨト イヨト 三日

Introduction and objective	Relational approach	Comparison of linear criteria	Applications	Conclusions
	ŏooo			

Table of contents

2 Relational approach

3 Comparison of linear criteria

4 Applications

6 Conclusions

Introduction and objective	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0000			

2 Relational approach

- Mathematical Relational modelling
- Properties verified by linear modularization criteria
- 3 Comparison of linear criteria

Applications

- The generalized Louvain algorithm
- Examples: real large graphs

5 Conclusions

Introduction and objective O	Relational approach 0 0000	Comparison of linear criteria	Applications	Conclusions

Description of the problem

Nowadays, we can find networks everywhere: biology, sociology, computer programming, marketing, etc). cyber-marketing, cyber-Security. It is difficult to analyse a network directly because of its big size. Therefore, we need to decompose it in clusters or modules \iff **modularize** it.

Different modularization criteria have been formulated in different contexts in the last few years and we need to compare them.

Objective: Compare the partitions found by different linear criteria

We will provide a **unified** notation of different linear modularization criteria to understand the properties of the clusters found by their optimization. Moreover, this notation allows to easily identify the criteria having a **resolution limit**.

4/32

イロト 不得 トイヨト イヨト 三日

Introduction and objective •	Relational approach 0 0000	Comparison of linear criteria	Applications	Conclusions
Definitions				
Definitions an	d notations			

A graph G(V, E) is a set of objects V, called <u>nodes</u>, linked by edges E.

Introduction and objective ●	Relational approach 0 0000	Comparison of linear criteria	Applications	Conclusions
Definitions				

A graph G(V, E) is a set of objects V, called <u>nodes</u>, linked by <u>edges</u> E. N = |V| is the number of nodes and M = |E| is the number of edges.

Introduction and objective •	Relational approach 0 0000	Comparison of linear criteria	Applications	Conclusions
Definitions				

A graph G(V, E) is a set of objects V, called <u>nodes</u>, linked by <u>edges</u> E. N = |V| is the number of nodes and M = |E| is the number of edges. A graph is completely described by a $N \times N$ matrix called the **Adjacency Matrix A** defined as follows

$$a_{ii'} = \begin{cases} 1 & \text{if there is an edge between nodes } i \text{ and } i', \\ 0 & \text{otherwise.} \end{cases}$$
(1)

Example: given a graph with N = 6 and M = 7.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

its adjacency matrix is:

5/32

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ りゅつ

Introduction and objective •	Relational approach 0 0000	Comparison of linear criteria	Applications	Conclusions
Definitions				

A graph G(V, E) is a set of objects V, called <u>nodes</u>, linked by <u>edges</u> E. N = |V| is the number of nodes and M = |E| is the number of edges. A graph is completely described by a $N \times N$ matrix called the **Adjacency Matrix A** defined as follows

$$a_{ii'} = \begin{cases} 1 & \text{if there is an edge between nodes } i \text{ and } i', \\ 0 & \text{otherwise.} \end{cases}$$
(1)

Example: given a graph with N = 6 and M = 7.

$$=\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

The **degree** d_i of node *i* is the number of edges incident to *i*. $d_i = \sum_{i'} a_{ii'} = a_{i.} = a_{.i}$ The **average degree** of the graph is $d_{av} = \frac{2M}{N}$. The **Density of the graph** is $\delta = \frac{2M}{M^2}$.

・ロット (四) (日) (日) (日)

5/32

Introduction and objective •	Relational approach 0 0000	Comparison of linear criteria	Applications	Conclusions
Definitions				

A graph G(V, E) is a set of objects V, called <u>nodes</u>, linked by <u>edges</u> E. N = |V| is the number of nodes and M = |E| is the number of edges. A graph is completely described by a $N \times N$ matrix called the **Adjacency Matrix A** defined as follows

$$a_{ii'} = \begin{cases} 1 & \text{if there is an edge between nodes } i \text{ and } i', \\ 0 & \text{otherwise.} \end{cases}$$
(1)

Example: given a graph with N = 6 and M = 7. 6 $a_{5}=a_{5}=3$ $A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \end{pmatrix}$ The **degree** d_i of node i is the number of edges incident to i. $d_i = \sum_{i'} a_{ii'} = a_{i.} = a_{.i}$ The **average degree** of the graph is $d_{av} = \frac{2M}{N}$. The **Density of the graph** is $\delta = \frac{2M}{N^2}$.

Just in case the graph is weighted we will denote the adjacency matrix $\boldsymbol{W}.$

5/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
ŏooo			

Table of contents

2 Relational approach

- Mathematical Relational modelling
- Properties verified by linear modularization criteria
- 3 Comparison of linear criteria

4 Applications

5 Conclusions

3

ヘロト ヘロト ヘビト ヘビト

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0000			
Mathematical Relational modellin	ıg			

Mathematical Relational modelling

Let **X** be a square matrix of order N defining an equivalence relation on V as follows:

$$x_{ii'} = \begin{cases} 1 & \text{if } i \text{ and } i' \text{ are in the same cluster} \quad \forall i, i' \in V \times V \\ 0 & \text{otherwise} \end{cases}$$
(2)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0000			
Mathematical Relational modellin	ıg			

Mathematical Relational modelling

Let **X** be a square matrix of order N defining an equivalence relation on V as follows:

$$x_{ii'} = \begin{cases} 1 & \text{if } i \text{ and } i' \text{ are in the same cluster} \quad \forall i, i' \in V \times V \\ 0 & \text{otherwise} \end{cases}$$
(2)

We present a modularization criterion as a function F to optimize:

$$\max_{X} \text{ or } \min_{X} F(A, X).$$
(3)

subject to the constraints of an equivalence relation:

$$\begin{array}{ccc} x_{ii'} \in \{0,1\} & \text{Binarity} & (4) \\ x_{ii} = 1 & \forall i & \text{Reflexivity} \\ x_{ii'} - x_{i'i} = 0 & \forall (i,i') & \text{Symmetry} \\ x_{ii'} + x_{i'i''} - x_{ii''} \leq 1 & \forall (i,i',i'') & \text{Transitivity} \end{array}$$

Finding the exact solution of this problem turns impractical for large graphs, therefore we will use heuristics ad-hoc.

Patricia Conde Céspedes

Université Paris Nord L2TI

7/32

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0 0000			
Properties verified by linear mod	ularization criteria			

Properties verified by linear modularization criteria

A criterion is **linear** if it can be written in the general form:

$$F(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \phi(a_{ii'}) x_{ii'} + K$$
(5)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0 0000			
Properties verified by linear m	odularization criteria			

Properties verified by linear modularization criteria

A criterion is linear if it can be written in the general form:

$$F(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \phi(a_{ii'}) x_{ii'} + K$$
(5)

Besides that, the criterion has the property of **General balance** if it can be written in the form:

$$F(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \phi(a_{ii'}) x_{ii'} + \sum_{i=1}^{N} \sum_{i'=1}^{N} \bar{\phi}(a_{ii'}) \bar{x}_{ii'}$$
(6)

8/32

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	o ●000			
Properties verified by linear m	odularization criteria			

Properties verified by linear modularization criteria

A criterion is **linear** if it can be written in the general form:

$$F(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \phi(a_{ii'}) x_{ii'} + K$$
(5)

Besides that, the criterion has the property of **General balance** if it can be written in the form:

$$F(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \phi(a_{ii'}) x_{ii'} + \sum_{i=1}^{N} \sum_{i'=1}^{N} \bar{\phi}(a_{ii'}) \bar{x}_{ii'}$$
(6)

where *K* is any constant depending only on the original data and $\bar{x}_{ii'} = (1 - x_{ii'})$ (the opposite relation of **X**); $\phi(a_{ii'}) \ge 0 \forall i, i' \text{ and } \bar{\phi}(a_{ii'}) \ge 0 \forall i, i' \text{ are non negative functions verifying:}$ $\sum_{i=1}^{N} \sum_{i'=1}^{N} \phi_{ii} > 0 \text{ and } \sum_{i=1}^{N} \sum_{i'=1}^{N} \bar{\phi}_{ii} > 0;$. The quantities $\sum_{i=1}^{N} \sum_{i'=1}^{N} \phi(a_{ii'}) x_{ii'} \text{ and } \sum_{i=1}^{N} \sum_{i'=1}^{N} \bar{\phi}(a_{ii'}) \bar{x}_{ii'} \text{ are called positive (+)}$ and negative (-) agreements respectively.

8/32

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	000			
Properties verified by linear mo	dularization criteria			

The impact of the property of General balance

Let κ denote the number of clusters obtained after optimization of the criterion.

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	o o●oo			
Properties verified by linear mo	dularization criteria			

The impact of the property of General balance

Let κ denote the number of clusters obtained after optimization of the criterion.

If (-) agreements missing $(\bar{\phi}_{ii'} = 0 \ \forall i, i')$

then all nodes are clustered together, $\kappa=1$

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0 000			
Properties verified by linear mo	dularization criteria			

The impact of the property of General balance

Let κ denote the number of clusters obtained after optimization of the criterion.

9/32

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0000			
Properties verified by linear mod	lularization criteria			

Contribution: Different levels of general balance for linear criteria

Property of Local balance

A balanced linear criterion whose functions $\phi_{ii'}$ and $\bar{\phi}_{ii'}$ satisfy

$$\phi_{ii'} + \bar{\phi}_{ii'} = K_L \quad \forall (i, i')$$

where K_L is a constant depending only upon the pair (i, i') has the property of <u>local balance</u>.

Therefore K_L must not depend on global properties of the graph.

10/32

・ロット (四) (日) (日) (日)

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0000			
Properties verified by linear mod	ularization criteria			

Contribution: Different levels of general balance for linear criteria

Criterion based on a null model

A balanced linear criterion whose functions $\phi_{ii'}$ and $\bar{\phi}_{ii'}$ satisfy the following conditions:

$$\sum_{i=1}^{N} \sum_{i'=1}^{N} \phi_{ii'} = \sum_{i=1}^{N} \sum_{i'=1}^{N} \bar{\phi}_{ii'}$$
$$\phi_{ii'} + \bar{\phi}_{ii'} = g(K_G) \quad \forall (i, i')$$

where $g(K_G)$ is a function depending on global properties of the graph K_G is a criterion based on a null model.

A linear criterion can not be local balanced and based on a null model at the same time.

Resolution limit

If $\bar{\phi}$ tends to zero with the graph size the criterion has a **resolution limit**.

11/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Table of contents

- Introduction and objective
- 2 Relational approach
- 3 Comparison of linear criteria
 - Applications
- 5 Conclusions

12/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0 0000			

Some linear criteria in relational notation

Criterion	Relational notation
Zahn-Condorcet (1785, 1964)	$F_{ZC}(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} (a_{ii'} x_{ii'} + \bar{a}_{ii'} \bar{x}_{ii'})$
Owsiński - Zadrożny (1986)	$F_{Z_{OZ}}(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} ((1-\alpha)a_{ii'}x_{ii'} + \alpha\bar{a}_{ii'}\bar{x}_{ii'})$ with 0 < α < 1
Newman-Girvan (2004)	$F_{NG}(X) = \frac{1}{2M} \sum_{i=1}^{N} \sum_{i'=1}^{N} \left(a_{ii'} - \frac{a_{i.}a_{.i'}}{2M} \right) x_{ii'}$

Table : Relational notation of linear modularity functions.

13/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Some linear criteria in relational notation (continuation)

Criterion	Relational notation
Deviation to Unifor- mity (2013)	$F_{\text{UNIF}}(X) = \frac{1}{2M} \sum_{i=1}^{N} \sum_{i'=1}^{N} \left(a_{ii'} - \frac{2M}{N^2} \right) x_{ii'}$
Deviation to Indeter- mination (2013)	$F_{DI}(X) = \frac{1}{2M} \sum_{i=1}^{N} \sum_{i'=1}^{N} \left(a_{ii'} - \frac{a_{i.}}{N} - \frac{a_{.i'}}{N} + \frac{2M}{N^2} \right) x_{ii'}$
The Balanced Mod- ularity (2013)	$F_{BM}(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \left((a_{ii'} - P_{ii'}) x_{ii'} + (\bar{a}_{ii'} - \bar{P}_{ii'}) \bar{x}_{ii'} \right)$ where $P_{ii'} = \frac{a_{i,a_{i'}}}{2M}$ and $\bar{P}_{ii'} = \left(\bar{a}_{ii'} - \frac{(N - a_{i.})(N - a_{i'})}{N^2 - 2M} \right)$

Table : Relational notation of linear modularity functions.

14/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Properties of these linear criteria

The 6 criteria have the property of **General balance**.

	Global	balance
Criterion	Local	Null
	Balance	model
Zahn-Condorcet	Х	
Owsiński-Zadrożny	Х	
Newman-Girvan		Х
Deviation to Uniformity		Х
Deviation to Indetermination		Х
Balanced modularity		Х

Table : Balance Property for Linear criteria

15/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0 0000			

First approach: the deviation form notation

Criterion	Notation $F(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} (\phi_{ii'} - \overline{\phi}_{ii'}) x_{ii'}$
Zahn-Condorcet	$F_{ZC}(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \left(a_{ii'} - \frac{1}{2} \right) x_{ii'}$
Owsiński-Zadrożny	$F_{OZ}(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} (a_{ii'} - \alpha) x_{ii'}$
Deviation to unifor- mity	$F_{\text{UNIF}}(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \left(a_{ii'} - \frac{2M}{N^2} \right) x_{ii'}$
Newman-Girvan	$F_{NG}(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \left(a_{ii'} - \frac{a_{i,a_{,i'}}}{2M} \right) x_{ii'}$
Deviation to indeter- mination	$F_{DI}(X) = \sum_{i=1}^{N} \sum_{i'=1}^{N} \left(a_{ii'} - \left(\frac{a_{i.}}{N} + \frac{a_{.i'}}{N} - \frac{2M}{N^2} \right) \right) x_{ii'}$

Relational approach	Comparison of linear criteria	Applications	Conclusions
0 0000			

Comparison between Newman-Girvan, Deviation to Indetermination and the Balanced Modularity

Maximizing the Balanced Modularity turns out to maximize the following expressions depending upon the Newman-Girvan criterion and the Deviation to Indetermination respectively.

$$F_{BM} = 2F_{NG} + \sum_{i=1}^{N} \sum_{i'=1}^{N} \left(\frac{(a_{i.} - d_{av})(a_{.i'} - d_{av})}{2M(1 - \delta)} \right) x_{ii'}.$$

$$F_{BM} = 2F_{DI} + \left(2 - \frac{1}{\delta}\right) \sum_{i=1}^{N} \sum_{i'=1}^{N} \left(\frac{(a_{i.} - d_{av})(a_{.i'} - d_{av})}{N^2(1 - \delta)} \right) x_{ii'}.$$

The **Balanced Modularity** behaves as a **regulator** between the Newman-Girvan criterion and the Deviation to Indetermination.

17/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Second approach: Impact of merging two clusters

Now let us suppose we want to merge two clusters C_1 and C_2 in the network of sizes n_1 and n_2 respectively. Let us suppose as well they are connected by I edges and they have average degree d_{av}^1 et d_{av}^2 respectively.

18/32

A D > A B > A B > A B >

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Impact of merging two clusters

What is the contribution of merging two clusters to the value of each criterion?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Impact of merging two clusters

What is the contribution of merging two clusters to the value of each criterion?

The **contribution** C of merging two clusters will be:

$$C = \sum_{i \in C_1}^{n_1} \sum_{i' \in C_2}^{n_2} (\phi_{ii'} - \bar{\phi}_{ii'})$$
(7)

19/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Impact of merging two clusters

What is the contribution of merging two clusters to the value of each criterion?

The **contribution** *C* of merging two clusters will be:

$$C = \sum_{i \in C_1}^{n_1} \sum_{i' \in C_2}^{n_2} (\phi_{ii'} - \bar{\phi}_{ii'})$$
(7)

The objective is to compare function $\phi(.)$ to function $\bar{\phi}(.)$

- If C > 0 the criterion merges the two clusters, it is a **gain**.
- If C < 0 the criterion separates the two clusters, it is a **cost**.

19/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

The Contribution of merging two clusters

Contribution of merging two clusters for linear criteria.

Criterion: F	$C_F = \sum_{i \in C_1}^{n_1} \sum_{i' \in C_2}^{n_2} (\phi_{ii'} - \bar{\phi}_{ii'})$
Zahn-Condorcet	$C_{ZC} = \left(I - \frac{n_1 n_2}{2}\right)$
Owsiński-Zadrożny	$C_{OZ} = (l - n_1 n_2 \alpha) 0 < \alpha < 1$
Deviation to Uniformity	$C_{\rm UNIF} = (I - n_1 n_2 \delta)$
Newman-Girvan	$C_{NG} = \left(I - n_1 n_2 \frac{d_{av}^1 d_{av}^2}{2M} \right)$
Deviation to Indetermination	$C_{DI} = \left(I - n_1 n_2 \left(\frac{d_{av}^1}{N} + \frac{d_{av}^2}{N} - \frac{2M}{N^2}\right)\right)$

20/32

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Summary by criterion

Criterion	Characteristics of the clustering
Zahn-Condorcet	 The density of edges of each cluster is at least equal to 50%. No resolution limit. For real networks the optimal partition contains many small clusters or single nodes.
Owsiński-Zadrożny	 It gives the choice to define the minimum required within-cluster density, α. For α = 0.5 the Owsiński-Zadrożny criterion ≡ the Zahn-Condorcet criterion. No resolution limit.
Deviation to Uni- formity	 A particular case of Owsiński-Zadrożny criterion with α = δ. The density of within cluster edges of each cluster is at least δ. It has a resolution limit.

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Summary by criterion

Criterion	Characteristics of the clustering
Newman-Girvan	 It has a resolution limit. The contribution depends on the degree distribution of the clusters. The optimal partition has no single nodes.
Deviation to In- determination	 It has a resolution limit. The contribution depends on the degree distribution of the clusters.
Balanced modu- larity	 It has a resolution limit. The contribution depends on the degree distribution of the clusters.
	 Depending upon δ and d_{av} this criterion behaves like a regulator between the NG criterion and the DI criterion.

22/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Table of contents

- Introduction and objective
- 2 Relational approach
- 3 Comparison of linear criteria
- 4

Applications

- The generalized Louvain algorithm
- Examples: real large graphs

Conclusions

-

23/32

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0000		•00	
Examples: real large graphs				

Modularizing large graphs with the generalized Louvain algorithm

Number of clusters found by the generalized Louvain algorithm (see [Campigotto et al. (2014)])

Network	Jazz	Internet	Web nd.edu	Amazon	Youtube
$N \sim$	198	70k	325k	334k	1M
$M \sim$	3k	351k	1M	925k	3M
δ	0,14	$1.44 imes10^{-04}$	$2.77 imes 10^{-05}$	1.65×10^{-05}	$4.64 imes 10^{-06}$
Criterion	κ	κ	κ	κ	κ
ZC	38	40,123	201,647	161,439	878,849
OZ $\alpha = 0.4$	34	30,897	220,967	121,370	744,680
OZ $\alpha = 0.2$	23	24,470	184,087	77,700	601,800
UNIF	20	173	711	265	51,584
NG	4	46	511	250	5,567
DI	6	39	324	246	13,985
BM	5	41	333	230	6,410

 Table : Ref: Zahn-Condorcet (ZC), Deviation to Uniformity (UNIF), Newman-Girvan (NG), Deviation to Indetermination(DI) and Balanced Modularity (BM).
 Image: Conduct to Conduct

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0000		000	
Examples: real large graphs				

The number of clusters in artificial LFR graphs

Five benchmark LFR graphs of sizes 1000, 5000, 10000, 100000 and 500000. The input parameters are the same as those considered in [Lancichinetti et al (2010)]: small communities sizes, ranging from 10 to 50 nodes, and a low mixing parameter, 0.10.

Number of clusters

Patricia Conde Céspedes

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0000		000	
Examples: real large graphs				

The Normalized Mutual Information with LFR graphs

Normalized Mutual Information

Patricia Conde Céspedes

Université Paris Nord L2TI

26/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Table of contents

- Introduction and objective
- 2 Relational approach
- 3 Comparison of linear criteria
- 4 Applications

	Relational approach	Comparison of linear criteria	Applications	Conclusions
Conclusions				

• We presented six different modularization criteria in Relational notation.

	Relational approach	Comparison of linear criteria	Applications	Conclusions
	0000			
Conclusions				

- We presented six different modularization criteria in Relational notation.
- We described and clearly defined the property of **balance** by making the link between this property and the **resolution limit** property.

28/32

・ロット (四) (日) (日) (日)

	Relational approach 0 0000	Comparison of linear criteria	Applications	Conclusions
Conclusions				

- We presented six different modularization criteria in Relational notation.
- We described and clearly defined the property of **balance** by making the link between this property and the **resolution limit** property.
- The generic Louvain algorithm allowed us to modularize real **large** graphs and we could compare the number of clusters found by the different criteria.

28/32

・ロット (四) (日) (日) (日)

	Relational approach 0 0000	Comparison of linear criteria	Applications	Conclusions
Conclusions				

- We presented six different modularization criteria in Relational notation.
 - We described and clearly defined the property of **balance** by making the link between this property and the **resolution limit** property.
 - The generic Louvain algorithm allowed us to modularize real **large** graphs and we could compare the number of clusters found by the different criteria.
 - We characterized the partitions found by six linear modularization criteria. We saw that two criteria who have a **local definition** are based on a the **density of within-cluster edges** (Zahn-Condorcet and Owsiński-Zadrożny), whereas others are based on a **null model** (Newman-Girvan, Deviation to Uniformity, Deviation to Indetermination and the Balanced Modularity). These criteria have a **resolution limit**.

28/32

Relational approach	Comparison of linear criteria	Applications	Conclusions
0000			

Thanks for your attention!