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Context
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What is a dynamic network

Two kinds of dynamic

Interaction networks

Evolving network
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Communities in networks

A de�nition based on the network topology :

Group of densely connected nodes.

Few links between groups.
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Local community detection

Local community: identi�ed with local information only

We start from a node

At each step we have a local view of the network (see the �g.)

The nodes outside the community (but connected to it) are evaluated

one by one.
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Local Community detection in action
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Communities in dynamic networks

No formal de�nition, but some trends

Communities tracking

Communities updating

long term communities detection
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Communities tracking

General Framework (Image from Cazabet et al.)
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Communities tracking cont'd

Examples

Palla et al., 2007.

Greene et al., 2010.

Tantipathananandh et al., 2007.

Remarks

Instability of detection methods

This can be reduced by community cores analysis
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Communities updating
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Communities updating cont'd

Examples

Nguyen et al., 2011.

Cazabet et al., 2010.

Remarks

Dependence with previous partitioning

Can start with an empty network
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Long-term communities detection

(Image from Cazabet et al.)
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Long-term communities detection cont'd

Examples

Aynaud et al., 2010.

Mitra et al., 2011.

Remarks

No formal evaluation method.

Some evaluations by applications
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Community prediction in interactions networks
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The proposed approach

Predict the interactions

Compute the communities on the predicted network

Interaction prediction is more general than link prediction
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Supervised learning approach

Attributes

For each time step extract the following attributes:

the number of common neighbors

the number of common community members

number of interaction between the two nodes

the attribute similarity between the two nodes(if available)

Target variable: An interaction is present or not in target time-step?

Model Construction

Support Vector Machines

RBF Kernel

Normalization of the attributes

Parameters estimated with grid search
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Disgression: Common neighbors computation
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Datasets description

DBLP

Co-authorship dataset

Nodes authors

interactions: common publications

11 time-steps (years from 2000 to 2011)

Facebook Walls

A subset of Facebook New Orleans users

Nodes Facebook users

interactions: wall posts (undirected)

5 time-steps (years from 2004 to 2008)
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Evaluation protocol
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Interaction prediction evaluation

Evaluation with Area Under the Curve(AUC)

DBLP Facebook wall

Random model 0.50 0.50

Similarity based model 0.69 0.84

Supervised model 0.87 0.92
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Communities prediction evaluation

Evaluation with Normalized Mutual Information (NMI)

Communities detected by local method from Ngonmang et al. 2012.

DBLP Facebook Wall
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Conclusions and perspectives

Some conclusions

We have introduced the Community prediction problem

We have proposed an approach using interaction prediction

We have Tested on real networks

Some perspectives

Deal with new nodes

Test on other real networks
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Merci

Thanks you for your attention

Questions?
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