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Context
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What is a dynamic network

Two kinds of dynamic

Interaction networks
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Plan

© Community detection in static networks
@ What is a community?
@ Local community identification
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Communities in networks

A definition based on the network topology :
@ Group of densely connected nodes.

o Few links between groups.
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Local community detection

e Local community: identified with local information only

e We start from a node

@ At each step we have a local view of the network (see the fig.)

@ The nodes outside the community (but connected to it) are evaluated
one by one.
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Local Community detection in action
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© Community detection in dynamic networks
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Communities in dynamic networks

No formal definition, but some trends
o Communities tracking
e Communities updating

@ long term communities detection
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Communities tracking
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Communities tracking cont'd

Palla et al., 2007.
Greene et al., 2010.

Tantipathananandh et al., 2007.

Instability of detection methods

This can be reduced by community cores analysis
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Communities updating
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Communities updating cont'd

@ Nguyen et al., 2011.
@ Cazabet et al., 2010.

Remarks

@ Dependence with previous partitioning

@ Can start with an empty network

A\
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Long-term communities detection

(Image from Cazabet et al.)
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Long-term communities detection cont'd

@ Aynaud et al., 2010.
o Mitra et al., 2011.

Remarks

@ No formal evaluation method.

@ Some evaluations by applications
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@ Communities prediction
@ Problem definition
@ The proposed approach

@ supervised method for interactions prediction
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Community prediction in interactions networks

T T+n T+n+1?

Observation ‘ ‘ Prévision
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The proposed approach

@ Predict the interactions

@ Compute the communities on the predicted network

Interaction prediction is more general than link prediction

t. - ot t

!

Prediction Period

Temporal graphs extraction & Attributes computation
Ty

Attributes

"Attl
"Att2

“Attk

B NGONMANG (UP13 - UY1) Communities prediction December 16, 2014 20 / 30



Supervised learning approach

Attributes

For each time step extract the following attributes:
@ the number of common neighbors
@ the number of common community members
@ number of interaction between the two nodes
@ the attribute similarity between the two nodes(if available)

Target variable: An interaction is present or not in target time-step?

Model Construction

@ Support Vector Machines
o RBF Kernel
@ Normalization of the attributes

@ Parameters estimated with grid search

v
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Disgression: Common neighbors computation
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© Evaluation
@ Datasets description
@ Evaluation protocol
@ Interaction prediction evaluation
@ Communities prediction evaluation

B NGONMANG (UP13 - UY1) Communities prediction December 16, 2014 23 / 30



Datasets description

Co-authorship dataset

Nodes authors
interactions: common publications
11 time-steps (years from 2000 to 2011)

Facebook Walls

A subset of Facebook New Orleans users

Nodes Facebook users
interactions: wall posts (undirected)
5 time-steps (years from 2004 to 2008)
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Evaluation protocol

Dynamic network

C Predicted target snaphot Real target snaphot

v v

COMPUTE THE COMMUNITIES COMPUTE THE COMMUNITIES

Real communities
Predicted communities
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Interaction prediction evaluation

Evaluation with Area Under the Curve(AUC)

DBLP || Facebook wall
Random model 0.50 0.50
Similarity based model || 0.69 0.84
Supervised model 0.87 0.92
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Communities prediction evaluation

Evaluation with Normalized Mutual Information (NMI)
Communities detected by local method from Ngonmang et al. 2012.
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@ Conclusions and perspectives
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Conclusions and perspectives

Some conclusions

@ We have introduced the Community prediction problem
@ We have proposed an approach using interaction prediction

@ We have Tested on real networks

Some perspectives

@ Deal with new nodes

@ Test on other real networks
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@ Thanks you for your attention

@ Questions?
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