
Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Parallel, distributed models and programming paradigms
Big Data, Machine Learning and Social Network Analysis

Mini-Workshop and Tutorial

Camille Coti

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, France

Dec. 16th 2014

1 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Outline

1 Theoretical models for distributed systems
Distributed system
Message-passing communications
Shared memory communications

2 Distributed memory
Two-sided communications
One-sided communications

3 Global address space

4 Bag of tasks

5 Conclusion

2 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Distributed system
Message-passing communications
Shared memory communications

Distributed systems

A distributed systems is a set of processes called p0, p1,, pn−1 linked
together by a communication system

Every process is executing a program

Every process has its own control system and its own instruction stream
→ SIMD = not a distributed system

Processes communicate with each other through the communication
system, which is not necessarily a point-to-point network

Configuration of the system

A configuration is the set of the states of the processes at a given moment

If ek = state of the process k, a configuration C is
⋃n−1

k=0 ek

3 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Distributed system
Message-passing communications
Shared memory communications

Message-passing communications

Processes themselves are state machines . The state of a process is changed
by events , which can be:

Internal: defined by the algorithm executed by the process;

Reception: message arriving from the communication system;

Sending: message sent on the communication system.

Message passing :

Processes execute sending and reception primitives :
send(buffer, destination)
receive(buffer, source)

Every sending must match a reception (and vice versa)

Asynchronous : the communication delay is finite but arbitrary.

4 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Distributed system
Message-passing communications
Shared memory communications

Shared memory communications

State-reading model:

Each process has a set of neighboring processes

Each process can read the (full) state of its neighbors

NB: each neighbor of process p will read the same state of p.

link-register model:

There exist memory registers between two (or more) processes

The processes that access a register r can write (primitive:
write(buffer, r)) or read (primitive: read(buffer, r)) atomically into
or from this register.

5 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

1 Theoretical models for distributed systems
Distributed system
Message-passing communications
Shared memory communications

2 Distributed memory
Two-sided communications
One-sided communications

3 Global address space

4 Bag of tasks

5 Conclusion

6 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

Distributed memory

In practice :

A set of processes

Each process has its own memory

They are connected by a peer-to-peer interconnection network: a network
(Ethernet, IB, Myrinet, Internet...) or the system bus.

The programmer is in charge with data locality

Explicit data movements between processes

If process Pi needs some data which is in the memory of process Pj , then
the programmer must explicitly move it from Pj to Pi .

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM

7 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

Two-sided communications

Two-sided communications

Primitives send/recv

A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

P0

P1

2a

4b

recv(&a, P0)

send(&a, P1)

a 2

send(&b, P0)

recv(&b, P1)

b 4

8 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

Two-sided communications

Two-sided communications

Primitives send/recv

A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

P0

P1

2a

4b

recv(&a, P0)

send(&a, P1)

?a 2

send(&b, P0)

recv(&b, P1)

b 4

8 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

Two-sided communications

Two-sided communications

Primitives send/recv

A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

P0

P1

2a

4b

recv(&a, P0)

send(&a, P1)

a 2

send(&b, P0)

recv(&b, P1)

b 4

8 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

Two-sided communications

Two-sided communications

Primitives send/recv

A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

P0

P1

2a

4b

recv(&a, P0)

send(&a, P1)

a 2

send(&b, P0)

recv(&b, P1)

?b 4

8 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

Two-sided communications

Two-sided communications

Primitives send/recv

A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

P0

P1

2a

4b

recv(&a, P0)

send(&a, P1)

a 2

send(&b, P0)

recv(&b, P1)

b 4

8 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

Example

Example of a library for programming parallel programs on distributed memory
using two-sided communications: MPI

De facto standard for parallel programming

Complete control of the data locality (“assembly language of parallel
programming”)

Portable

Powerful: can be used to write programs in other models

Point-to-point but also collective communications

Pros:

Complete control of the data locality

Very good performance

Cons:

Both processes (source and destination) must cooperate

Strongly synchronous

9 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

MPI: Example

Example: ping-pong

A process with rank 0 sends a token

Rank 1 receives it and sends it back to rank 0

Rank 0 receives it.

if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);

} else if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

P0

P1

recv(&t, P0)

send(&t, P1)

send(&t, P0)

recv(&t, P1)

10 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

MPI: Example

Example: ping-pong

A process with rank 0 sends a token

Rank 1 receives it and sends it back to rank 0

Rank 0 receives it.

if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);

} else if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

P0

P1

recv(&t, P0)

send(&t, P1)

send(&t, P0)

recv(&t, P1)

10 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

MPI: Example

Example: ping-pong

A process with rank 0 sends a token

Rank 1 receives it and sends it back to rank 0

Rank 0 receives it.

if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);

} else if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

P0

P1

recv(&t, P0)

send(&t, P1)

send(&t, P0)

recv(&t, P1)

10 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

One-sided communications

One-sided communications

Primitives put/get

RDMA model : Remote Direct Memory Access

A process can read/write in another process’s memory

In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

P0

P1

2a

c ??b

5d

put(&b,&a, P1)

2

c = get(&d, P0)

5

11 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

One-sided communications

One-sided communications

Primitives put/get

RDMA model : Remote Direct Memory Access

A process can read/write in another process’s memory

In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

P0

P1

2a

c ??b

5d

put(&b,&a, P1)

2

c = get(&d, P0)

5

11 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

One-sided communications

One-sided communications

Primitives put/get

RDMA model : Remote Direct Memory Access

A process can read/write in another process’s memory

In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

P0

P1

2a

c ?b

5d

put(&b,&a, P1)

2

c = get(&d, P0)

5

11 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

One-sided communications

One-sided communications

Primitives put/get

RDMA model : Remote Direct Memory Access

A process can read/write in another process’s memory

In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

P0

P1

2a

c ?b

5d

put(&b,&a, P1)

2

c = get(&d, P0)

5

11 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

One-sided communications

One-sided communications

Primitives put/get

RDMA model : Remote Direct Memory Access

A process can read/write in another process’s memory

In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

P0

P1

2a

cb

5d

put(&b,&a, P1)

2

c = get(&d, P0)

5

11 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

Examples

Examples :

One-sided communications of MPI

Put/get functions of UPC

OpenSHMEM

OpenSHMEM

Descendant of Cray’s SHMEM, GI SHMEM... from the 90s

Recent standardization effort, due to needs coming from current
architectures.

Pros:

Very fast communications

Particularly well adapted to current hardware architectures

Does not require both processes to be ready to communicate

Cons:

Sensitive model, risk of race conditions

Necessitates symmetric process memories

12 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

OpenSHMEM

Memory model: symmetric heap

Private memory vs shared memory (heap)

Memory allocation in the shared heap is a collective communication

P0 P1 P2

Private
memory

Symmetric

heap

Static global
objects

Symmetric
objects

13 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Two-sided communications
One-sided communications

OpenSHMEM : Example

Allocation in the shared heap :

shmalloc function

Warning: collective

Data movements:

Fonctions shmem * put, shmem * get

One function for each data type

short* ptr = (short*)shmalloc(10 * sizeof(short));
if (_my_pe() == 0) {

shmem_long_put(ptr, source, 10, 1);
}

14 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

1 Theoretical models for distributed systems
Distributed system
Message-passing communications
Shared memory communications

2 Distributed memory
Two-sided communications
One-sided communications

3 Global address space

4 Bag of tasks

5 Conclusion

15 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Global Address Space

Concept of global address space :

Program distributed memory just like shared memory

Participation from the compiler

The union of the distributed memories is seen by the programmer as a
shared memory

In practice:

The programmer declares the visibility of his/her variables: private (by
default) or shared

Arrays: The programmer declares the size of the blocks that will be placed
on each process

The compiler is in charge with:
Distributing the shared variables in the memory of the processes
Translating remote accesses (a = b) into communications

Issues related to the fact that the memory is distributed are not seen by the
programmer.

16 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Examples

PGAS languages:

Unified Parallel C (UPC), Titanium, CoArray Fortran

a

P0

a

P1

a

P2

shared

private

int a;

shared int x;

x

a = x;

memcpy

get get

17 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Examples

PGAS languages:

Unified Parallel C (UPC), Titanium, CoArray Fortran

a

P0

a

P1

a

P2

shared

private

int a;

shared int x;

x

a = x;

memcpy

get get

17 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Examples

PGAS languages:

Unified Parallel C (UPC), Titanium, CoArray Fortran

a

P0

a

P1

a

P2

shared

private

int a;

shared int x;

x

a = x;

memcpy

get get

17 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Examples

PGAS languages:

Unified Parallel C (UPC), Titanium, CoArray Fortran

a

P0

a

P1

a

P2

shared

private

int a;

shared int x;

x

a = x;

memcpy

get get

17 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

UPC: Example

Example :

A variable x is shared, and therefore accessible from all the processes
The compiler will place it in the memory of a process of its choice.

Process 0 (called thread in UPC terminology) initializes it to 42.

A global barrier makes sure that all the processes have reached this point
of the program.

All the processes read the value of x and put it into a private variable of
their own.

The compiler generates inter-process network communications (in all
likelihood get)

shared int x;
int a;
if(0 == MYTHREAD) {

x = 42;
}
upc_barrier;
a = x;

18 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

1 Theoretical models for distributed systems
Distributed system
Message-passing communications
Shared memory communications

2 Distributed memory
Two-sided communications
One-sided communications

3 Global address space

4 Bag of tasks

5 Conclusion

19 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Bag of tasks

What is a bag of tasks ?

A set of computations that must be performed

Independent from each other

These computations can be done in parallel from each other

→ A bag of tasks can be parallelized extremely well!

No communication between the processes that are running the tasks

0 1 2 3Tasks

Results 0 1 2 3

20 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Bag of tasks

What is a bag of tasks ?

A set of computations that must be performed

Independent from each other

These computations can be done in parallel from each other

→ A bag of tasks can be parallelized extremely well!

No communication between the processes that are running the tasks

Tasks

Results

0 1 2 3

0 1 2 3

20 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Bag of tasks

What is a bag of tasks ?

A set of computations that must be performed

Independent from each other

These computations can be done in parallel from each other

→ A bag of tasks can be parallelized extremely well!

No communication between the processes that are running the tasks

Tasks

Results 0 1 2 3

20 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Bag of tasks

A computation can be made of several phases:

Relations can be defined between those tasks

Represented by a DAG

T0

T8

T1 T2 T3 T4

T5 T6 T7

21 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Examples

There are many ways to implement a bag of tasks!

MPI → a master distributed the work to workers and gets the results.

HTCondor → designed specifically for it, schedules DAGs on a pool of
nodes

MapReduce → a bit particular: the map operation computes the tasks in
parallel, the reduce operation can be used to gather the results

Simple because there is no communication between the processes

Requires a coordinator that schedules the tasks

... and gather the results at then end.

The only communications are between this coordinator and the computing
processes, then between the computing processes and the coordinator.

22 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Regarding MapReduce

Goal of MapReduce :

Process large volumes of data
Not necessarily “big” parallel computing
Oriented for big data, data mining...
Important communication phase between processes during the reduce
operation

In
p

u
t

d
a

ta

Data map

Data map

Data map

Data map

shuffle reduce

shuffle reduce

shuffle reduce

Results

Distribution Computation

Redistribution
Reduction

23 / 24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems
Distributed memory

Global address space
Bag of tasks

Conclusion

Conclusion

Memory models :

Distributed → explicit message-passing communications (MPI,
OpenSHMEM)

Shared distributed → global address space, help from the compiler (PGAS
languages)

Communication patterns :

Both processes cooperate → two-sided communications (MPI)

Remote access → one-sided communications (OpenSHMEM, UPC)

No inter-process communication → bag of tasks

Problem’s data :

Regular → OpenSHMEM

Irregular → MPI, UPC

Very big → MapReduce

24 / 24 Camille Coti Parallel, distributed models and programming paradigms

	Theoretical models for distributed systems
	Distributed system
	Message-passing communications
	Shared memory communications

	Distributed memory
	Two-sided communications
	One-sided communications

	Global address space
	Bag of tasks
	Conclusion

