Parallel, distributed models and programming paradigms

Big Data, Machine Learning and Social Network Analysis
Mini-Workshop and Tutorial

Camille Coti

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, France

Dec. 16th 2014

1 /24 Camille Coti Parallel, distributed models and programming paradigms

Outline

@ Theoretical models for distributed systems
@ Distributed system
@ Message-passing communications
@ Shared memory communications

© Distributed memory
@ Two-sided communications
@ One-sided communications

Global address space
o p
@ Bag of tasks

© Conclusion

2 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems

Distributed system
Message-passing communications
Shared memory communications

Distributed systems

A distributed systems is a set of processes called po,pi,....,pn—1 linked
together by a communication system

@ Every process is executing a program

@ Every process has its own control system and its own instruction stream
— SIMD = not a distributed system

@ Processes communicate with each other through the communication
system, which is not necessarily a point-to-point network

Configuration of the system
@ A configuration is the set of the states of the processes at a given moment

o If e, = state of the process k, a configuration C'is UZ;S ek

Z Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems

Distributed system

ge-passing
Shared memory communications

Message-passing communications

Processes themselves are state machines . The state of a process is changed
by events , which can be:

o Internal: defined by the algorithm executed by the process;
@ Reception: message arriving from the communication system;

@ Sending: message sent on the communication system.

Message passing
@ Processes execute sending and reception primitives

o send(buf fer, destination)
o receive(buf fer, source)

o Every sending must match a reception (and vice versa)

@ Asynchronous : the communication delay is finite but arbitrary.

4 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed systems

Distributed system
Message-passing communications
Shared memory communications

Shared memory communications

State-reading model:
@ Each process has a set of neighboring processes
@ Each process can read the (full) state of its neighbors

@ NB: each neighbor of process p will read the same state of p.

link-register model:

@ There exist memory registers between two (or more) processes

@ The processes that access a register r can write (primitive:
write(buf fer,r)) or read (primitive: read(buf fer,r)) atomically into
or from this register.

5 /24 Camille Coti Parallel, distributed models and programming paradigms

Distributed memory

Two-sided communications
One-sided communications

© Distributed memory
@ Two-sided communications
@ One-sided communications

Camille Coti Parallel, distributed models and programming paradigms

uted memory

Two-sided communications
One-sided communications

Distributed memory

In practice :
o A set of processes
@ Each process has its own memory

@ They are connected by a peer-to-peer interconnection network: a network
(Ethernet, IB, Myrinet, Internet...) or the system bus.

The programmer is in charge with data locality
o Explicit data movements between processes

o If process P; needs some data which is in the memory of process P;, then
the programmer must explicitly move it from P; to P; .

CcPU CPU CPU CPU

MEM MEM MEM MEM

7 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed tem
Distributed memory

Two-sided communications
One-sided communications

nclusion

Two-sided communications

Two-sided communications
@ Primitives send/recv
o A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

« [2]

Py

Py

Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed tem
Distributed memory

Two-sided communications
One-sided communications

nclusion

Two-sided communications

Two-sided communications
@ Primitives send/recv
o A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

« [2]

send(&a, Pr)

Py

recv(&a, Po)
Py

Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed tem
Distributed memory

Two-sided communications
One-sided communications

nclusion

Two-sided communications

Two-sided communications
@ Primitives send/recv
o A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

« [2]

send(&a, Pr)

Py

recv(&a, Po)

ar °[2]

Camille Coti Parallel, distributed models and programming paradigms

Py

uted memory

Two-sided communications
One-sided communications

Two-sided communications

Two-sided communications
@ Primitives send/recv
o A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

Py
send(&a, Pr) recv(&b, P1)
recv(&a, Po) send(&b, Py)
Py
b “
/ 24 Camille Coti Parallel, distributed models and programming paradigms

uted memory

Two-sided communications
One-sided communications

Two-sided communications

Two-sided communications
@ Primitives send/recv
o A send primitive must match a recv primitive (and vice versa)

Consequence: when some data is moved between two processes, both processes
take an active part of the data movement.

« [2]

send(&a, Pr) recv(&b, P1)

b 4]

Py

recv(&a, Po) send(&b, Py)

ar °[2]

8 /24 Camille Coti Parallel, distributed models and programming paradigms

Py

Theoretical models for distributed system:

Distributed memory

Glot Two-sided communications

One-sided communications

Example

Example of a library for programming parallel programs on distributed memory
using two-sided communications: MPI
o De facto standard for parallel programming
o Complete control of the data locality (“assembly language of parallel
programming’)
o Portable
@ Powerful: can be used to write programs in other models

@ Point-to-point but also collective communications

Pros:
@ Complete control of the data locality
@ Very good performance
Cons:
@ Both processes (source and destination) must cooperate

@ Strongly synchronous

9 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed system:
Distributed memory

Two-sided communications
One-sided communications

MPI: Example

Example: ping-pong
@ A process with rank 0 sends a token
@ Rank 1 receives it and sends it back to rank 0

@ Rank O receives it.

if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD, &status);
} else if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, O,
0

0, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, 0

, MPI_COMM_WORLD);

Py

10 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed system:

Distributed memory

Glot Two-sided communications

One-sided communications

MPI: Example

Example: ping-pong
@ A process with rank 0 sends a token
@ Rank 1 receives it and sends it back to rank 0

@ Rank O receives it.

if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD, &status);
} else if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, O,
0

0, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, 0

, MPI_COMM_WORLD);

}
Py
send(&t, Pi)
recv(&t, Py)
Py

10 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed system:

Distributed memory

Glot Two-sided communications

One-sided communications

MPI: Example

Example: ping-pong
@ A process with rank 0 sends a token
@ Rank 1 receives it and sends it back to rank 0

@ Rank O receives it.

if(0 == rank) {
MPI_Send(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD);
MPI_Recv(&token, 1, MPI_INT, 1, O, MPI_COMM_WORLD, &status);
} else if(1 == rank) {
MPI_Recv(&token, 1, MPI_INT, O,
0

0, MPI_COMM_WORLD, &status);
MPI_Send(&token, 1, MPI_INT, 0

, MPI_COMM_WORLD);

}
Py
send(&t, Pi) recv(&t, Pr)
recv(&t, Py) send(&t, Po)
Py

10 /24 Camille Coti Parallel, distributed models and programming paradigms

\eoretical models for distributed system:

Distributed memory

o Two-sided communications

One-sided communications

One-sided communications

One-sided communications
o Primitives put/get
o RDMA model : Remote Direct Memory Access
@ A process can read/write in another process's memory
@ In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

« 2] als]

Py

Py

11 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed tem

Distributed memory
Global adc

B

Two-sided communications
One-sided communications

One-sided communications

One-sided communications

Primitives put/get

[}

o RDMA model : Remote Direct Memory Access

@ A process can read/write in another process's memory

In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

« 2] als]

put(&b, &a, Pr)

Py

Py

11 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed tem

Distributed memory
Global adc

B

Two-sided communications
One-sided communications

One-sided communications

One-sided communications

Primitives put/get

[}

o RDMA model : Remote Direct Memory Access

@ A process can read/write in another process's memory

In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

« 2] als]

put(&b, &a, Pr)

Py

Py

b c 7

11 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed tem

Distributed memory
Global adc

B

Two-sided communications
One-sided communications

One-sided communications

One-sided communications

Primitives put/get

[}

o RDMA model : Remote Direct Memory Access

@ A process can read/write in another process's memory

In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

« 2] als]

put(&b, &a, Pr)

Py

Py

11 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed tem

Distributed memory
Global adc

B

Two-sided communications
One-sided communications

One-sided communications

One-sided communications

Primitives put/get

[}

o RDMA model : Remote Direct Memory Access

@ A process can read/write in another process's memory

In practice: can be done by RDMA network interface cards (InfiniBand,
Myrinet...)

Only one process is taking part of the communication.

« 2] als]

put(&b, &a, Pr)

Py

c = get(&d, Py)

o[2] ° 5]

11 /24 Camille Coti Parallel, distributed models and programming paradigms

Py

Distributed memory

Two-sided communications
One-sided communications

Examples

Examples :
@ One-sided communications of MPI
@ Put/get functions of UPC
e OpenSHMEM
OpenSHMEM
@ Descendant of Cray's SHMEM, GI SHMEM... from the 90s

@ Recent standardization effort, due to needs coming from current
architectures.

Pros:

@ Very fast communications

o Particularly well adapted to current hardware architectures

@ Does not require both processes to be ready to communicate
Cons:

@ Sensitive model, risk of race conditions

o Necessitates symmetric process memories

12 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed system:

Distributed memory

o Two-sided communications

One-sided communications

OpenSHMEM

Memory model: symmetric heap

@ Private memory vs shared memory (heap)

@ Memory allocation in the shared heap is a collective communication

PO P1 P2
Private oD = =
memory = =
Static global
Symmetric T T T ao;e%tz ?
heap |-*-| |-i'-| |-J‘-|
1 1 1 1 1 1
' ' ' ' I I Symmetric
'_T_ = '_T_ = '_T_ = objects

13 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed system:

Distributed memory

o Two-sided communications

One-sided communications

OpenSHMEM : Example

Allocation in the shared heap :
@ shmalloc function

@ Warning: collective

Data movements:
@ Fonctions shmem_*_put, shmem_*_get

@ One function for each data type

short* ptr = (short*)shmalloc(10 * sizeof(short));
if (_my_pe() == 0) {

shmem_long_put(ptr, source, 10, 1);
}

14

Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distribute tem
Distributed memor
Global address space

Bag of t:

nclusion

© Global address space

Camille Coti Parallel, distributed models and programming paradigms

Global address space

Global Address Space

Concept of global address space
@ Program distributed memory just like shared memory
@ Participation from the compiler

@ The union of the distributed memories is seen by the programmer as a
shared memory

In practice:

@ The programmer declares the visibility of his/her variables: private (by
default) or shared

@ Arrays: The programmer declares the size of the blocks that will be placed
on each process

@ The compiler is in charge with:

o Distributing the shared variables in the memory of the processes
e Translating remote accesses (a = b) into communications

Issues related to the fact that the memory is distributed are not seen by the
programmer.

16 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distri
Distribut te!
Global address space

Examples

PGAS languages:
o Unified Parallel C (UPC), Titanium, CoArray Fortran

Po P2

Py
private E E B

shared

int a;

shared int x;

17 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distri
Distribut te!
Global address space

Examples

PGAS languages:
o Unified Parallel C (UPC), Titanium, CoArray Fortran

Po P2

Py
private E E B

]

shared

int a;

shared int x;

17 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distri
Distribut te!
Global address space

Examples

PGAS languages:
o Unified Parallel C (UPC), Titanium, CoArray Fortran

Po P2

Py
private E E B

]

shared

int a;
shared int x;

a=x;

17 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed system:
Distributed memor

Global address space

B, s

Examples

PGAS languages:
o Unified Parallel C (UPC), Titanium, CoArray Fortran

P Py P

private @ B

memcpy

get Et

shared

int a;
shared int x;

a=x;

17 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributec tem:
Distributed memor

Global address space

B, s

UPC: Example

Example :
@ A variable x is shared, and therefore accessible from all the processes
o The compiler will place it in the memory of a process of its choice.
@ Process 0 (called thread in UPC terminology) initializes it to 42.

@ A global barrier makes sure that all the processes have reached this point
of the program.
@ All the processes read the value of x and put it into a private variable of
their own.
e The compiler generates inter-process network communications (in all
likelihood get)

shared int x;

int a;

if(0 == MYTHREAD) {
x = 42;

}

upc_barrier;

a = x;

18 /24 Camille Coti Parallel, distributed models and programming paradigms

for distribute tem
Dis

pace
Bag of tasks
nclusion

© Bag of tasks

Camille Coti

Parallel, distributed models and programming paradigms

Theoretical models for distributed
d memor
address space

Bag of tasks

Bag of tasks

What is a bag of tasks ?
@ A set of computations that must be performed

o Independent from each other

These computations can be done in parallel from each other
— A bag of tasks can be parallelized extremely well!

No communication between the processes that are running the tasks

Tasks ©O) ©) ©) 3

Results

20 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed
d memor
address space

Bag of tasks

Bag of tasks

What is a bag of tasks ?
@ A set of computations that must be performed

o Independent from each other

These computations can be done in parallel from each other
— A bag of tasks can be parallelized extremely well!

No communication between the processes that are running the tasks

Tasks

®© O |®© |®

L/

Results

20 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed
d memor
address space

Bag of tasks

Bag of tasks

What is a bag of tasks ?
@ A set of computations that must be performed

o Independent from each other

These computations can be done in parallel from each other
— A bag of tasks can be parallelized extremely well!

No communication between the processes that are running the tasks

Tasks

L/

OO OO,

20 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for di

Bag of tasks

Conclusion

Bag of tasks

A computation can be made of several phases:
@ Relations can be defined between those tasks
@ Represented by a DAG

21 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for distributed
d memor
address space

Bag of tasks

Examples

There are many ways to implement a bag of tasks!

o MPI — a master distributed the work to workers and gets the results.

o HTCondor — designed specifically for it, schedules DAGs on a pool of
nodes

e MapReduce — a bit particular: the map operation computes the tasks in
parallel, the reduce operation can be used to gather the results

Simple because there is no communication between the processes
@ Requires a coordinator that schedules the tasks
@ ... and gather the results at then end.

The only communications are between this coordinator and the computing
processes, then between the computing processes and the coordinator.

22 /24 Camille Coti Parallel, distributed models and programming paradigms

Theoretical models for di

Bag of tasks

Conclusion

Regarding MapReduce

Goal of MapReduce
@ Process large volumes of data
Not necessarily “big" parallel computing

°
@ Oriented for big data, data mining...
@ Important communication phase between processes during the reduce
operation
Distribution =~ Computation
Redistribution
Reduction
shuffle H
S
% Va
g shute | reduce) [Resus|
o
= AV
shuffle H

23 /24 Camille Coti Parallel, distributed models and programming paradigms

Conclusion

Memory models :

@ Distributed — explicit message-passing communications (MPI,
OpenSHMEM)

@ Shared distributed — global address space, help from the compiler (PGAS
languages)

Communication patterns :
@ Both processes cooperate — two-sided communications (MPI)
@ Remote access — one-sided communications (OpenSHMEM, UPC)

o No inter-process communication — bag of tasks

Problem’s data :
@ Regular - OpenSHMEM
@ Irregular — MPI, UPC
@ Very big — MapReduce

24 /24 Camille Coti Parallel, distributed models and programming paradigms

	Theoretical models for distributed systems
	Distributed system
	Message-passing communications
	Shared memory communications

	Distributed memory
	Two-sided communications
	One-sided communications

	Global address space
	Bag of tasks
	Conclusion

