

#### Very Large Scale Bayesian ML Systems

Zhuhua Cai Google, Rice University caizhua@gmail.com

### Outline

- MapReduce extensions
- Gaussian Mixture Model
- Parallel DB
- Graph ML
- Benchmark

## Parallel ML in A Higher Level



#### Data Independence



#### Repeated Work in ML code



#### Flume/Spark



#### Problem 5

• Given 20news-group dataset, for each word, compute its count in the whole dataset.



## PySpark for WordCount

sc = SparkContext(appName="WordCount")
lines = sc.textFile(sys.argv[1], 1)
wordCount= lines.flatMap(lambda x: split(x, ""\":;, (){}\t\r\n,|")).
map(lambda x: (x,1)).reduceByKey(add)
output = wordCount.collect()

### JavaSpark for WordCount

```
JavaSparkContext sc = new JavaSparkContext(conf);
[avaRDD<String> lines = sc.textFile(args[1]);
[avaRDD<String, Integer> wordCount = lines.flatMap(
  new FlatMapFunction<String, String>() {
     public Iterable<String> call(String s) {
          return Arrays.asList(split(x, ""\":;, (){\t\r\n,|"));
     }
 }).<u>map(new PairFunction</u><String, String, Integer>() {
     public Tuple2<String, Integer> call(String s) {
          return new Tuple2<String, Integer>(s, 1);
     }
  }).<u>reduceBvKev(new Function2<Integer, Integer, Integer>()</u>
     public Integer call(Integer a, Integer b) {return a + b; }
 });
Map < Integer, Vector > tempMap = cluster model.collectAsMap();
```

## Outline

- MapReduce extensions
- Gaussian Mixture Model
- Parallel DB
- Graph ML
- Benchmark

#### **Gaussian Mixture Model**

• Infer this:



#### Generative Model for GMM

- 1. Generate the centroids of clusters  $(\mu_j, \sum_j)$  from a multi-Gaussian and inverse-wishart distribution.
- 2. Generate the fraction vector  $\pi$ , i.e., the fraction of data points in each cluster.
- 3. Generate the membership of each data point and data values.



Figure. Graphical model for Gaussian Mixture Model

### Learning steps



## Learning steps



## Learning steps



Update the parameters for each clusters.



#### **MCMC** Algorithm

$$\mu_{j} \sim N\left(\left(\Lambda + n_{j}\Sigma_{j}^{-1}\right)^{-1}\left(\Lambda\mu + \Sigma_{j}^{-1}\sum_{c_{i}=j}x_{i}\right), \left(\Lambda + n_{j}\Sigma_{j}^{-1}\right)^{-1}\right)$$
$$\Sigma_{j} \sim InvWish\left(\Psi + \sum_{c_{i}=j}(x_{i} - \mu_{j})(x_{j} - \mu_{j})^{T}, n_{j} + v\right)$$
$$\pi \sim Dirichlet(\alpha + [n_{0}, n_{1}, \dots, n_{m-1}])$$

 $\boldsymbol{c_i} \sim DiscreteChoice([p_0,p_1,\ldots,p_{m-1}]), p_j \propto \pi_j \times N(x_j | \mu_j, \Sigma_j)$ 

#### MapReduce Job Design

- 1. Initialize  $\mu_j$ ,  $\frac{1}{j}$  and  $\pi$ .
- 2. MapReduce job

Mapper takes in  $\mu_j$ ,  $c_j$  and  $\pi$ , samples membership of each data point  $c_i$ , output  $(c_j, (x_i - \mu_{c_i})(x_i - \mu_{c_i})^T)$  and  $(c_j, x_i)$ . Both are key-value pairs.

Reducer aggregates  $c_{i=j}(x_i - \mu_j)(x_j - \mu_j)^T$ , and sample j and then  $\mu_j$ .

- 3. Collect  $n_j, \mu_j$ ,  $j_j$  from reducers and sample  $\pi$ .
- 4. Go to step 2.

# PySpark for GMM

// read data from hdfs, and create RDD data.

*lines* = sc.textFile("hdfs://master:54310/data.txt"

data = lines.map(parseLine).cache()

// initialization hyper-parameters

num = data.count()

hyper\_mean = *data*.reduce(add)/num

hyper\_cov\_diagonal = *data*.map(lambda x: square(x - hyper\_mean)).reduce(add)/num numpy.fill\_diagonal(hyper\_cov, hyper\_cov\_diagonal)

# PySpark for GMM

#### // Initial the model.

```
c_model = sc.parallelize(range(0, K)).map(lambda x:
  (x, (mvnrnd(hyper_mean, hyper_cov), invWishart(hyper_cov, len(hyper_mean)+2))))
  .collectAsMap()
  pi = np.zeros(K, float)
  .su(1 o (//))
```

pi.fill(1.0/K)

# PySpark for GMM

- // MCMC iterations.
- // First sample membership and compute sum of X and gram matrix sum.
- c\_agg = data.map(lambda x: sample\_mem(x, pi, c\_model))

.**reduceByKey**(lambda (x1, y1, z1), (x2, y2, z2):(x1+x2, y1+y2, z1+z2))

// Update model.

// update pi.

c\_num = c\_agg.mapValues(lambda (c\_num, x\_sum, sq\_sum): c\_num).collectAsMap()
pi = sample\_dirichlet(c\_num)

#### Code

- PySpark GMM.py
- Java version Gmm.java

## Outline

- Gaussian Mixture Model
- MapReduce extensions
- Parallel DB
- Graph ML
- Benchmark

## Parallel ML in A Higher Level



#### Flume/Spark



#### Database



#### SimSQL



## SimSQL Applications



#### **Traditional Database:**

- DDL: table/view/UDF
- DML: select-query



#### **Stochastic query:**

- Stochastic table, vg function
- E.g., what-if query



#### **Complex analytics:**

- Iterative algorithm, i.e., EM, PageRank
- Markov chain simulations
- Bayesian ML, e.g., LDA, GMM, HMM, LR

#### Random Walk on Graphs



A simulation example: each user starts from itself, and then walks randomly in the graph.

**CREATE TABLE Position[0] (source, target) AS** 

FOR EACH u IN User WITH next AS DiscreteChoice ( SELECT id2 FROM Link WHERE id1 = u.id ) SELECT u.id, next.id FROM next; Data Schema: Link (id1, id2) User (id)

CREATE TABLE Position[0] (source, target) AS
FOR EACH u IN User

```
WITH next AS DiscreteChoice (
    SELECT id2 FROM Link
    WHERE id1 = u.id
)
SELECT u.id, next.id FROM next;
```









# Updating Position[i]



| Data Schema:           |
|------------------------|
| <u>Link (id1, id2)</u> |
| <u>User (id)</u>       |

SELECT u.id, next.id FROM next;



#### SimSQL Tasks



35

#### Gaussian Mixture Model

• GMM.sql

## Compiler



#### Logical Optimizer



#### Physical Optimizer



### Changes to RDBMS



## SimSQL for LDA ( 50 lines)

```
create table Theta[0](doc_id, topic_id, probability) as
for each d in docs
       with newprobs as Dirichlet (
            select topic_id, 1.0 from topics
      )
      select d.doc_id, n.out_id, n.probability
      from newprobs as n;
create table W[0] (doc id, word id, topic id, count num) as
for each dw in word_in_doc
      with topic count as Multinomial (
             (select tm.topic_id, tm.probability
              from Theta[0] tm
              where tm.doc_id = dw.doc_id),
             (select dw.count num)
      )
      select dw.doc_id, dw.word_id, wt.out_id, wt.out_count
      from topic_count wt;
create table Psi[i] (topic_id, word_id, probability) as
for each t in topics
      with newprobs as Dirichlet (
            select pw.word_id, sum(count_num) + 1.0
            from W[i] pw
            where pw.topic_id = t.topic_id
            group by pw.word id
      select t.topic_id, n.out_id, n.probability
      from newprobs n;
```

```
create table Theta[i] (doc_id, topic_id, probability) as
for each d in docs
     with newprobs as Dirichlet(
          select pw.topic_id, sum(count_num) + 1.0
          from W[i-1] pw, topics t
          where pw.doc_id = d.doc_id and pw.topic_id = t.topic id
           group by pw.topic_id
     select d.doc_id, n.out_id, n.probability
     from newprobs n;
create table W[i] (doc_id, word_id, topic_id, count_num) as
    for each dw in word in doc
         with topic count as Multinomial
                   select tm.topic id, wpt.probability * tm.probability
                   from Psi[i-1] wpt, Theta[i] tm
                   where wpt.word id = dw.word id and
                   wpt.topic_id = tm.topic_id and
                   tm.doc id = dw.doc id
              ),
                   select dw.count_num
         select dw.doc_id, dw.word_id, wt.out_id, wt.out_count
         from topic_count wt;
```

#### **One Iteration Plan for LDA**



#### A chain of these plans



- Thousands of operators
- Optimize the whole plan together:
  - No way for optimization
  - No reliability
- Optimize random tables one by one:
  - Optimizer overhead
  - Hurts the optimization

#### Solution

#### Frame-based Optimization/Execution

- Find the cut for the check-pointing.
- Slice the plan, optimize, and execute frames alternatively.

#### Steps

- 1. Compiler links together two non-baseline iteration of plans.
- 2. Compiler sends the plan for optimization.
- 3. System analyzes the plan, and figures out the minimum cut.



#### Steps



#### Steps



## SimSQL for GMM



data(data\_id, dim\_id, dim\_value) cluster(clus\_id, pi\_prior)

We use four random tables to represent four parameters.

dus\_means[i] (dus\_id, dim\_id, dim\_value) dus\_covas[i] (dus\_id, dim\_id1, dim\_id2, dim\_value) dus\_prob[i] (dus\_id, prob) membership[i] (data\_id, dus\_id)

## SimSQL for GMM



Initialize hyper-parameters, e.g, μ<sub>0</sub> create view mean\_prior(dim\_id, dim\_value) as select dim\_id, avg(dim\_value) from data group by dim\_id;



Initialize parameters, e.g.,  $\pi_0$ 

create table dus\_prob[0] (dus\_id, prob) as with diri\_res as Dirichlet( select dus\_id, pi\_piror from duster) select diri\_res.out\_id, diri\_res.prob from diri\_res;

#### SimSQL for GMM

```
Update parameters, e.g., \pi_i
create table dus_prob[i] (dus_id, prob) as
    with diri_res as Dirichlet
        select cmem.dus_id, cmem.c_num+dus.pi_piror
        from dus,
             (select cm.dus_id as dus_id, count(cm.data_id) as c_num
             from membership[i-1] as cm) as cmem
        where cmem.dus_id = dus.dus_id
    select diri_res.out_id, diri_res.prob
    from diri_res;
```

## Outline

- Gaussian Mixture Model
- MapReduce extensions
- Parallel DB
- Graph ML
- Benchmark

## Parallel ML in A Higher Level



#### **Graph Processing Systems**



Figure. MapReduce Framework.



Figure. Graph Processing

#### Single Shortest Path



Figure. A graph with five nodes. The task is to find the length from A to all the nodes in the graph.

# Pregel



Figure. The execution procedures of Pregel for the single shortest path problem.

## Algorithm

**Algorithm 1** Computation function C for the single-source shortest paths algorithm.

```
1: function C(v, S, I)
       mindist = is\_source(v) ? 0 : +inf;
2:
3:
      for all msg in I do
4:
          mindist = min(mindist, msg.value)
5:
       end for
      if mindist < S.value then
6:
7:
          S.value = mindist
8:
          for all edge in v.get\_edges() do
9:
              send_message(edge.dst, mindist+edge.value)
10:
          end for
          vote_to_halt();
11:
12:
       end if
13: end function
```

Figure. Single shortest path algorithm with Pregel model.

#### **Gaussian Mixture Model**



Figure. The execution procedures of GMM in Giraph.

#### Optimization

- 1. In Step 1, 5, 9, ..., using combiner to reduce communication overhead.
- 2. In Step 4, 8, 12, ..., broadcasting the model to data vertices.

## Outline

- Gaussian Mixture Model
- MapReduce extensions
- Parallel DB
- Graph ML
- Benchmark

### public ML libraries

- Mahout
- MLlib
- Pregasus
- . . .

### **Benchmark configuration**

| Systems                   | Spark, SimSQL, GraphLab, Giraph.                                                                                                       |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Hardware                  | Amazon EC2, m.2.4x large instance, 8 cores,<br>64 GB RAM per machine, with 5, 20, 100<br>machines.                                     |  |  |
| Problems                  | Gaussian mixture model (GMM)<br>Latent Dirichlet Allocation (LDA)<br>Bayesian Lasso<br>Hidden Markov Model(HMM)<br>Gaussian Imputation |  |  |
| Datasets                  | 200 GB ~ 1TB                                                                                                                           |  |  |
| <b>Comparison metrics</b> | Programmability and performance                                                                                                        |  |  |

70,000 + hours of Amazon EC2 time, \$100,000 @ ondemand price, 5 researchers, 5 months' work.

#### GMM

• Infer this:



#### Programmability



The programmability of different platforms for GMM in the "natural" implementation.

#### Performance



The "natural" implementation for GMM, and the data scale is:  $10^7 data points per machine \times 10 dims \times 10 clusters \times n machines (m = 5, 20, 100).$ 

## The problem of GraphLab



GraphLab / Giraph graphical model

#### • GraphLab

- pull-based model: each *cluster* needs access to its neighbors.
- Memory usage for the machine holding clusters is too large:
   1cluster \* 1 billion data points \* 100 bytes = 100 G.
- Giraph
  - push-based model, combiner, aggregator.

## Super Vertex Implementation



Super-vertex implementation for GraphLab

|          | Super Vertex  | 10 dimensions |             |              |
|----------|---------------|---------------|-------------|--------------|
|          | Lines of code | 5 machines    | 20 machines | 100 machines |
| GraphLab | 681           | 6:13          | 4:36        | 6:09         |

#### Performance Improvement of Super Vertex



#### The impact of using super-vertex implementation.

#### Problem 3. LDA



#### Performance



The "multi-docs"-based LDA, and the data scale is:  $2 \times 10^6$  docs per machine  $\times 10^4$  words  $\times 10^2$ topics  $\times$  *n* machines (*m* = 5, 20, 100).

### Why GraphLab fails again?



#### Homework

• Try to implement the LDA model in all three systems.