
Very Large Scale Bayesian
ML Systems

1

Zhuhua Cai
Google, Rice University

caizhua@gmail.com

Outline
• MapReduce extensions
• Gaussian Mixture Model
• Parallel DB
• Graph ML
• Benchmark

2

Parallel ML in A Higher Level

ML Code ML Code ML Code

System/Hardware
Architecture, e.g.,
distributed cluster

Application Application Application Application

Analytics Platform with
public API, e.g., map() and

reduce()

3

Analytics Platform,
e.g., Hadoop.

Data Independence

ML Code ML Code ML Code

Application Application Application Application

Design a new
platform?

Rewrite all the
code?

CPU with GPU
4

Repeated Work in ML code

ML Code ML Code ML Code

Application Application Application Application

Analytics Platform,
e.g., Hadoop.

System/Hardware
Architecture, e.g.,
distributed cluster 5

Flume/Spark

ML Code ML Code ML Code

Application Application Application Application

MapReduce

System/Hardware
Architecture, e.g.,
distributed cluster 6

Functional Language

Problem 5
• Given 20news-group dataset, for each word, compute its count in

the whole dataset.

7

HDFS file Splitting Mapping Shuffling Reducing Final result

That Bear River
Car Car River
That Car Bear

Car Car River

That Car Bear

That Bear River
That 1
Bear 1
River 1

Car1
Car1

River 1

That 1
Car 1
Bear 1

Bear 1
Bear 1

Car 1
Car 1
Car 1

That 1
That 1

River 1
River 1

Bear 2

Car 3

That 2

River 2

Bear 2
Car 3
That 2
River 2

PySpark for WordCount
sc = SparkContext(appName="WordCount")lines= sc.textFile(sys.argv[1], 1)wordCount= lines.flatMap(lambda x: split(x, “"\":;, (){}\t\r\n,|”)).map(lambda x: (x,1)).reduceByKey(add)output =wordCount.collect()

8

JavaSpark for WordCount
JavaSparkContext sc = new JavaSparkContext(conf);JavaRDD<String> lines= sc.textFile(args[1]);JavaRDD<String, Integer>wordCount= lines.flatMap(new FlatMapFunction<String, String>() {public Iterable<String> call(String s) {return Arrays.asList(split(x, “"\":;, (){}\t\r\n,|”));}}).map(new PairFunction<String, String, Integer>() {public Tuple2<String, Integer> call(String s) {return new Tuple2<String, Integer>(s, 1);}}).reduceByKey(new Function2<Integer, Integer, Integer>() {public Integer call(Integer a, Integer b) {return a + b; }});Map<Integer, Vector> tempMap = cluster_model.collectAsMap();

9

Outline
• MapReduce extensions
• Gaussian Mixture Model
• Parallel DB
• Graph ML
• Benchmark

10

Gaussian Mixture Model
• Infer this:

11

Generative Model for GMM

12

Figure. Graphical model for Gaussian Mixture Model

1. Generate the centroids of clusters (, Σ) from a multi-Gaussian and
inverse-wishart distribution.

2. Generate the fraction vector , i.e., the fraction of data points in each
cluster.

3. Generate the membership of each data point and data values.

Learning steps
Initialize the parameters for each cluster.

13

Learning steps
Sample the membership for each data point.

14

Learning steps
Update the parameters for each clusters.

15

MCMC Algorithm

16

~ Λ + Σ Λ + Σ , Λ + Σ
Σ ~ Ψ + − − , +~ + [, , … ,]~ ([, , … ,]), ∝ × (| , Σ)

MapReduce Job Design

17

1. Initialize , Σ and .
2. MapReduce job

Mapper takes in , Σ and , samples membership of each data point ,
output , − − and , . Both are key-value pairs.

Reducer aggregates ∑ − − , and sample Σ and then .

3. Collect , , Σ from reducers and sample .
4. Go to step 2.

PySpark for GMM
// read data from hdfs, and create RDD data.lines= sc.textFile(“hdfs://master:54310/data.txt”data= lines.map(parseLine).cache()// initialization hyper-parametersnum = data.count()hyper_mean = data.reduce(add)/numhyper_cov_diagonal = data.map(lambda x: square(x - hyper_mean)).reduce(add)/numnumpy.fill_diagonal(hyper_cov, hyper_cov_diagonal)

18

PySpark for GMM
// Initial the model.c_model = sc.parallelize(range(0, K)).map(lambda x:(x, (mvnrnd(hyper_mean, hyper_cov), invWishart(hyper_cov, len(hyper_mean)+2)))).collectAsMap()pi = np.zeros(K, float)pi.fill(1.0/K)

19

PySpark for GMM
// MCMC iterations.// First sample membership and compute sum of X and gram matrix sum.c_agg= data.map(lambda x: sample_mem(x, pi, c_model)).reduceByKey(lambda (x1, y1, z1), (x2, y2, z2):(x1+x2, y1+y2, z1+z2))// Update model.c_model = c_agg.mapValues(lambda (c_num, x_sum, sq_sum):updateModel(c_num, x_sum, sq_sum, len(hyper_mean)+2, hyper_mean, hyper_cov)).collectAsMap()// update pi.c_num = c_agg.mapValues(lambda (c_num, x_sum, sq_sum): c_num).collectAsMap()pi = sample_dirichlet(c_num)

20

Code
• PySpark GMM.py
• Java version Gmm.java

21

Outline
• Gaussian Mixture Model
• MapReduce extensions
• Parallel DB
• Graph ML
• Benchmark

22

Parallel ML in A Higher Level

ML Code ML Code ML Code

System/Hardware
Architecture, e.g.,
distributed cluster

Application Application Application Application

Analytics Platform with
public API, e.g., map() and

reduce()

23

Flume/Spark

ML Code ML Code ML Code

Application Application Application Application

MapReduce

System/Hardware
Architecture, e.g.,
distributed cluster 24

Functional Language

Database

Code Code Code

Application Application Application Application

Database Engine

System/Hardware
Architecture, e.g.,
distributed cluster 25

SimSQL

ML Code ML Code ML Code

Application Application Application Application

MapReduce

System/Hardware
Architecture, e.g.,
distributed cluster 26

SQL Compiler
Optimizer

SimSQL Applications

Traditional Database:
 DDL: table/view/UDF
 DML: select-query

Stochastic query:
 Stochastic table, vg function
E.g., what-if query

Complex analytics:
 Iterative algorithm, i.e., EM, PageRank
 Markov chain simulations
 Bayesian ML, e.g., LDA, GMM, HMM, LR

27

Random Walk on Graphs

1

2

3

5

4

6

7

8

A simulation example: each user starts from itself, and then
walks randomly in the graph.

28

Initializing Position[0]
CREATE TABLE Position[0] (source, target) AS

FOR EACH u IN User
WITH next AS DiscreteChoice (

SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

Data Schema:
Link (id1, id2)
User (id)

29

CREATE TABLE Position[0] (source, target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

Initializing Position[0]

loop through User

User(id)
1 |
2 |
3 |
4 |
…

u: (1)

30

Initializing Position[0]

id2: [(2), (7), (9)]
u: (1)

CREATE TABLE Position[0] (source, target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

Link(id1, id2)
1 |2 |
1 |7 |
1 |9 |
2 |3 |
3 |5 |
4 |6 |
…

User(id)
1 |
2 |
3 |
4 |
…

31

Initializing Position[0]

id2: [(2), (7), (9)]

Link(id1, id2)
1 |2 |
1 |7 |
1 |9 |
2 |3 |
3 |5 |
4 |6 |
…

u: (1)

next: (7)

CREATE TABLE Position[0] (source, target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (

SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

User(id)
1 |
2 |
3 |
4 |
…

32

Initializing Position[0]

id2: [(2), (7), (9)]
u: (1)

next: (7)

(1, 7)

CREATE TABLE Position[0] (source, target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT id2 FROM Link
WHERE id1 = u.id

)

SELECT u.id, next.id FROM next;

Link(id1, id2)
1 |2 |
1 |7 |
1 |9 |
2 |3 |
3 |5 |
4 |6 |
…

User(id)
1 |
2 |
3 |
4 |
…

33

Updating Position[i]
CREATE TABLE Position[i] (source, target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT l.id2
FROM Position[i-1] AS p, Link AS l
WHERE p.source = u.id AND

p.target = l.id1
)
SELECT u.id, next.id FROM next;

Link(id1, id2)
1 |2 |
…
7 |16 |
7 |26 |
8 |6 |
9 |10 |
…

Position[0]
1 |7 |
2 |3 |
3 |9 |
4 |3 |
5 |9 |
6 |6 |
…

User(id)
1 |
2 |
3 |
4 |
…

Data Schema:
Link (id1, id2)
User (id)

34

SimSQL Tasks

seed

VGWrapper
(DiscreteChoice)

User

Πseed

Π

Link

seed

VGWrapper
(DiscreteChoice)

User

Πseed

Π

Link

seed

VGWrapper
(DiscreteChoice)

User

Πseed

Π

Link

CREATE TABLE Position[0] (source, target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

CREATE TABLE Position[i] (source, target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT l.id2
FROM Position[i-1] AS p, Link AS l
WHERE p.source = u.id AND

p.target = l.id1
)

SELECT u.id, next.id FROM next;

35

Gaussian Mixture Model
• GMM.sql

36

Compiler

SimSQL query

Scanner, Parser
 200 grammar rules.
 9 predicates.
 12 math expressions.
 18 SQL elements.
 14 kinds of queries.

TypeChecker
 23 checker classes.
 > 100 check rules.

SQL Unnesting
 Almost arbitrary

queries.

Translator
 10 relational

operators.
 12 math expressions.
 5 Boolean predicates.

Preoptimization
 Keep lineage of

attributes.
 Remove redundancy.

Prolog
code

Frame Generation
 Incremental

optimization.
 MCMC iteration plan.

traditional plan 37

Logical Optimizer

Prolog
code

Logical Optimization
 Remove redundancy.
 Reorder the logical operators.
 A*-search algorithm.
 Different weights for different type of operators.
 Linear regression to learn weights.

Prolog
code

…
38

Physical Optimizer

… Prolog
code

Physical Optimization
 Merge logical operators into MapReduce jobs.
 Pipelining.
 Determine the types of joins.

MapReduce
Jobs (Java)

39

Changes to RDBMS

SimSQL query

Scanner, Parser
 200 grammar rules.
 9 predicates.
 12 math expressions.
 18 SQL elements.
 14 kinds of queries.

TypeChecker
 23 checker classes.
 > 100 check rules.

SQL Unnesting
 Almost arbitrary

queries.

Translator
 10 relational

operators.
 12 math expressions.
 5 Boolean predicates.
 5 Meta-data.

Preoptimization
 Keep lineage of

attributes.
 Remove redundancy.

Prolog
code

Frame Generation
 Incremental

optimization.
 MCMC iteration plan.

VGWrapper and Seed

Stochastic tables

traditional plan 40

SimSQL for LDA (≈50 lines)
create table Theta[0](doc_id, topic_id, probability) as
for each d in docs

with newprobs as Dirichlet (
select topic_id, 1.0 from topics

)
select d.doc_id, n.out_id, n.probability
from newprobs as n;

create table W[0] (doc_id, word_id, topic_id, count_num) as
for each dw in word_in_doc

with topic_count as Multinomial (
(select tm.topic_id, tm.probability
from Theta[0] tm
where tm.doc_id = dw.doc_id),

(select dw.count_num)
)

select dw.doc_id, dw.word_id, wt.out_id, wt.out_count
from topic_count wt;

create table Psi[i] (topic_id, word_id, probability) as
for each t in topics

with newprobs as Dirichlet (
select pw.word_id, sum(count_num) + 1.0
from W[i] pw
where pw.topic_id = t.topic_id
group by pw.word_id

)
select t.topic_id, n.out_id, n.probability
from newprobs n;

create table Theta[i] (doc_id, topic_id, probability) as
for each d in docs

with newprobs as Dirichlet(
select pw.topic_id, sum(count_num) + 1.0
from W[i-1] pw, topics t
where pw.doc_id = d.doc_id and pw.topic_id = t.topic_id
group by pw.topic_id

)
select d.doc_id, n.out_id, n.probability
from newprobs n;

create table W[i] (doc_id, word_id, topic_id, count_num) as
for each dw in word_in_doc

with topic_count as Multinomial
(

(
select tm.topic_id, wpt.probability * tm.probability
from Psi[i-1] wpt, Theta[i] tm
where wpt.word_id = dw.word_id and
wpt.topic_id = tm.topic_id and
tm.doc_id = dw.doc_id

),
(

select dw.count_num
)

)
select dw.doc_id, dw.word_id, wt.out_id, wt.out_count
from topic_count wt;

41

One Iteration Plan for LDA

JOIN(/data/simsql_query_block61_59)

JOIN (/data/simsql_query_block71_69)

SELECT (/data/simsql_query_block58_56)

VGWRAPPER(/data/simsql_query_block91_89)

SELECT(/data/simsql_query_block63_61)

JOIN(/data/simsql_query_block66_64)

VGWRAPPER(/data/simsql_query_block70_68)

SELECT(/data/simsql_query_block73_71)

VGWRAPPER(/data/simsql_query_block82_80)

JOIN (/data/simsql_query_block75_73)

JOIN(/data/simsql_query_block77_75)

AGGREGATE (/data/simsql_query_block80_78)

SELECT (/data/word_prob_in_topic_1_91)

JOIN(/data/simsql_query_block85_83)

JOIN(/data/simsql_query_block86_84)

AGGREGATE (/data/simsql_query_block89_87)

SELECT(/data/topic_mixture_2_92)

SELECT (/data/simsql_query_block93_93)

node_999750

node_999744 node_999745

node_999771

node_999763node_999768

node_999758

node_999762

node_999783

node_999781

node_999779

node_999777node_999778

node_999776

node_999784

node_999760

node_999751

node_999754

node_999756node_999755node_999757

node_999802

node_999800

node_999798

node_999796 node_999797

node_999795

node_999803

node_999791

node_999792

node_999789

node_999794

node_999805

node_999772

node_999770

node_999773

node_999775

node_999786

frameOutput

42

A chain of these plans
• Thousands of operators
• Optimize the whole plan together:

– No way for optimization
– No reliability

• Optimize random tables one by one:
– Optimizer overhead
– Hurts the optimization

Theta[0]

W[0]

Psi[0] Theta[1]

W[1]

Psi[1] Theta[2]

W[2]

Psi[2] Theta[3]

W[3]

43

Solution
• Frame-based Optimization/Execution

– Find the cut for the check-pointing.
– Slice the plan, optimize, and execute frames alternatively.

44

Steps
1. Compiler links together two non-baseline iteration of plans.
2. Compiler sends the plan for optimization.
3. System analyzes the plan, and figures out the minimum cut.

S E

Theta[i-1]

W[i]W[i-1]

Theta[i]

Psi[i]Psi[i-1]
+∞ +∞ +∞

+∞
+∞

+∞
+∞+∞+∞

+∞
100

500

100

500

100 100

45

Steps
4. Generate the first piece of plan, optimize

and execute it, and update the statistics.

Theta[0]

W[0]

Psi[0] Theta[1]

W[1]

Psi[1] Theta[2]

W[2]

Psi[2] Theta[3]

W[3]

Theta[0]

W[0]

Psi[0] Theta[1]

46

Steps
5. Generate the second plan, optimize and

execute it, and update the statistics.

Theta[0]

W[0]

Psi[0] Theta[1]

W[1]

Psi[1] Theta[2]

W[2]

Psi[2] Theta[3]

W[3]

W[1]

Psi[1] Theta[2]

47

SimSQL for GMM

48

data(data_id, dim_id, dim_value)
cluster(clus_id, pi_prior)

We use four random tables to represent four parameters.

clus_means[i] (clus_id, dim_id, dim_value)
clus_covas[i] (clus_id, dim_id1, dim_id2, dim_value)
clus_prob[i] (clus_id, prob)
membership[i] (data_id, clus_id)

SimSQL for GMM

49

Initialize hyper-parameters, e.g,
create view mean_prior(dim_id, dim_value) as

select dim_id, avg(dim_value) from data group by dim_id;

Initialize parameters, e.g.,

create table clus_prob[0] (clus_id, prob) as
with diri_res as Dirichlet(

select clus_id, pi_piror from cluster)
select diri_res.out_id, diri_res.prob
from diri_res;

SimSQL for GMM

50

Update parameters, e.g.,

create table clus_prob[i] (clus_id, prob) as
with diri_res as Dirichlet
(

select cmem.clus_id, cmem.c_num+clus.pi_piror
from clus,

(select cm.clus_id as clus_id, count(cm.data_id) as c_num
from membership[i-1] as cm) as cmem

where cmem.clus_id = clus.clus_id
)
select diri_res.out_id, diri_res.prob
from diri_res;

Outline
• Gaussian Mixture Model
• MapReduce extensions
• Parallel DB
• Graph ML
• Benchmark

51

Parallel ML in A Higher Level

ML Code ML Code ML Code

System/Hardware
Architecture, e.g.,
distributed cluster

Application Application Application Application

Analytics Platform with
public API, e.g., map() and

reduce()

52

Graph Processing Systems

53

Figure. MapReduce Framework.

In
pu

t D
at

a

Input

Input

Input

Input

apply

apply

apply

apply

apply

apply

apply

apply

apply

apply

apply

apply

Result

Result

Result

Result

…

Figure. Graph Processing

Single Shortest Path

54

1 1

11
1 1

Figure. A graph with five nodes. The task is to
find the length from A to all the nodes in the
graph.

Pregel

55

Figure. The execution procedures of Pregel for
the single shortest path problem.

Algorithm

56

Figure. Single shortest path algorithm with Pregel model.

Gaussian Mixture Model

57

Figure. The execution procedures of GMM in Giraph.

Optimization

58

1. In Step 1, 5, 9, ..., using combiner to reduce communication overhead.
2. In Step 4, 8 ,12, …, broadcasting the model to data vertices.

Outline
• Gaussian Mixture Model
• MapReduce extensions
• Parallel DB
• Graph ML
• Benchmark

59

public ML libraries
• Mahout
• MLlib
• Pregasus
• …

60

Benchmark configuration
Systems Spark, SimSQL, GraphLab, Giraph.
Hardware Amazon EC2, m.2.4x large instance, 8 cores,

64 GB RAM per machine, with 5, 20, 100
machines.

Problems Gaussian mixture model (GMM)
Latent Dirichlet Allocation (LDA)
Bayesian Lasso
Hidden Markov Model(HMM)
Gaussian Imputation

Datasets 200 GB ~ 1TB
Comparison metrics Programmability and performance

70, 000 + hours of Amazon EC2 time, $100, 000 @ on-
demand price, 5 researchers, 5 months’ work.

61

GMM
• Infer this:

62

Programmability

The programmability of different platforms for
GMM in the “natural” implementation.

63

Performance

The “natural” implementation for GMM, and the data
scale is: × ×× (= , ,).

64

The problem of GraphLab

• GraphLab
– pull-based model: each cluster needs access to its neighbors.
– Memory usage for the machine holding clusters is too large:

1cluster * 1 billion data points * 100 bytes = 100 G.

• Giraph
– push-based model, combiner, aggregator.

data points
clusters

mixing proportion
vertex

GraphLab / Giraph graphical model

65

Super Vertex Implementation

b super vertices
clusters

mixing proportion
vertex

• Super-vertex implementation for GraphLab
Super Vertex 10 dimensions

Lines of code 5 machines 20 machines 100 machines

GraphLab 681 6:13 4:36 6:09

66

Performance Improvement of
Super Vertex

The impact of using super-vertex implementation.

67

Problem 3. LDA

12
…

1 …
12

…

1 … 1 …

12
…

1 …

… 1

1
…+ +

LDA learns the topics of a set
of documents for classification.

68

Performance

The “multi-docs”-based LDA, and the data scale is:× × × ×= , , .
69

Why GraphLab fails again?

70

b super vertices
100

A topic vertex needs memory:∗ ∗∗ () =

Homework
• Try to implement the LDA model in all

three systems.

71

