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• Parallel DB
• Graph ML
• Benchmark
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Parallel ML in A Higher Level

ML Code ML Code ML Code

System/Hardware
Architecture, e.g.,
distributed cluster

Application Application Application Application

Analytics Platform with
public API, e.g., map() and

reduce()
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Analytics Platform,
e.g., Hadoop.

Data Independence

ML Code ML Code ML Code

Application Application Application Application

Design a new
platform?

Rewrite all the
code?

CPU with GPU
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Repeated Work in ML code

ML Code ML Code ML Code

Application Application Application Application

Analytics Platform,
e.g., Hadoop.

System/Hardware
Architecture, e.g.,
distributed cluster 5



Flume/Spark

ML Code ML Code ML Code

Application Application Application Application

MapReduce

System/Hardware
Architecture, e.g.,
distributed cluster 6

Functional Language



Problem 5
• Given 20news-group dataset, for each word, compute its count in

the whole dataset.
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HDFS file Splitting Mapping Shuffling Reducing Final result
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PySpark for WordCount
sc = SparkContext(appName="WordCount")lines= sc.textFile(sys.argv[1], 1)wordCount= lines.flatMap(lambda x: split(x, “"\":;, (){}\t\r\n,|”)).map(lambda x: (x,1)).reduceByKey(add)output =wordCount.collect()
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JavaSpark for WordCount
JavaSparkContext sc = new JavaSparkContext(conf);JavaRDD<String> lines= sc.textFile(args[1]);JavaRDD<String, Integer>wordCount= lines.flatMap(new FlatMapFunction<String, String>() {public Iterable<String> call(String s) {return Arrays.asList(split(x, “"\":;, (){}\t\r\n,|”));}}).map(new PairFunction<String, String, Integer>() {public Tuple2<String, Integer> call(String s) {return new Tuple2<String, Integer>(s, 1);}}).reduceByKey(new Function2<Integer, Integer, Integer>() {public Integer call(Integer a, Integer b) {return a + b;   }});Map<Integer, Vector> tempMap = cluster_model.collectAsMap();
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Gaussian Mixture Model
• Infer this:
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Generative Model for GMM

12

Figure. Graphical model for Gaussian Mixture Model

1. Generate the centroids of clusters ( , Σ ) from a multi-Gaussian and
inverse-wishart distribution.

2. Generate the fraction vector , i.e., the fraction of data points in each
cluster.

3. Generate the membership of each data point and data values.



Learning steps
Initialize the parameters for each cluster.
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Learning steps
Sample the membership for each data point.
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Learning steps
Update the parameters for each clusters.
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MCMC Algorithm
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~ Λ + Σ Λ + Σ , Λ + Σ
Σ ~ Ψ + − − , +~ + [ , , … , ]~ ([ , , … , ]), ∝ × ( | , Σ )



MapReduce Job Design
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1. Initialize , Σ and .
2. MapReduce job

Mapper takes in , Σ and , samples membership of each data point ,
output , − − and , . Both are key-value pairs.

Reducer aggregates ∑ − − , and sample Σ and then .

3. Collect , , Σ from reducers and sample .
4. Go to step 2.



PySpark for GMM
// read data from hdfs, and create RDD data.lines= sc.textFile(“hdfs://master:54310/data.txt”data= lines.map(parseLine).cache()// initialization hyper-parametersnum = data.count()hyper_mean = data.reduce(add)/numhyper_cov_diagonal = data.map(lambda x: square(x - hyper_mean)).reduce(add)/numnumpy.fill_diagonal(hyper_cov, hyper_cov_diagonal)
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PySpark for GMM
// Initial the model.c_model = sc.parallelize(range(0, K)).map(lambda x:(x, (mvnrnd(hyper_mean, hyper_cov), invWishart(hyper_cov, len(hyper_mean)+2)))).collectAsMap()pi = np.zeros(K, float)pi.fill(1.0/K)
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PySpark for GMM
// MCMC iterations.// First sample membership and compute sum of X and gram matrix sum.c_agg= data.map(lambda x: sample_mem(x, pi, c_model)).reduceByKey(lambda (x1, y1, z1), (x2, y2, z2):(x1+x2, y1+y2, z1+z2))// Update model.c_model = c_agg.mapValues(lambda (c_num, x_sum, sq_sum):updateModel(c_num, x_sum, sq_sum, len(hyper_mean)+2, hyper_mean, hyper_cov)).collectAsMap()// update pi.c_num = c_agg.mapValues(lambda (c_num, x_sum, sq_sum): c_num).collectAsMap()pi = sample_dirichlet(c_num)

20



Code
• PySpark GMM.py
• Java version Gmm.java
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Parallel ML in A Higher Level

ML Code ML Code ML Code

System/Hardware
Architecture, e.g.,
distributed cluster

Application Application Application Application

Analytics Platform with
public API, e.g., map() and

reduce()
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Flume/Spark

ML Code ML Code ML Code

Application Application Application Application

MapReduce

System/Hardware
Architecture, e.g.,
distributed cluster 24

Functional Language



Database

Code Code Code

Application Application Application Application

Database Engine

System/Hardware
Architecture, e.g.,
distributed cluster 25



SimSQL

ML Code ML Code ML Code

Application Application Application Application

MapReduce

System/Hardware
Architecture, e.g.,
distributed cluster 26

SQL Compiler
Optimizer



SimSQL Applications

Traditional Database:
 DDL: table/view/UDF
 DML: select-query

Stochastic query:
 Stochastic table, vg function
E.g., what-if query

Complex analytics:
 Iterative algorithm, i.e., EM, PageRank
 Markov chain simulations
 Bayesian ML, e.g., LDA, GMM, HMM, LR
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Random Walk on Graphs

1

2

3

5

4

6

7

8

A simulation example: each user starts from itself, and then
walks randomly in the graph.
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Initializing Position[0]
CREATE TABLE Position[0] (source,  target) AS

FOR EACH u IN User
WITH next AS DiscreteChoice (

SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

Data Schema:
Link (id1, id2)
User (id)
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CREATE TABLE Position[0] (source,  target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

Initializing Position[0]

loop through User

User(id)
1 |
2 |
3 |
4 |
…

u: (1)
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Initializing Position[0]

id2: [(2), (7), (9)]
u: (1)

CREATE TABLE Position[0] (source,  target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

Link(id1, id2)
1 |2 |
1 |7 |
1 |9 |
2 |3 |
3 |5 |
4 |6 |
…

User(id)
1 |
2 |
3 |
4 |
…
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Initializing Position[0]

id2: [(2), (7), (9)]

Link(id1, id2)
1 |2 |
1 |7 |
1 |9 |
2 |3 |
3 |5 |
4 |6 |
…

u: (1)

next: (7)

CREATE TABLE Position[0] (source,  target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (

SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

User(id)
1 |
2 |
3 |
4 |
…
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Initializing Position[0]

id2: [(2), (7), (9)]
u: (1)

next: (7)

(1, 7)

CREATE TABLE Position[0] (source,  target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT id2 FROM Link
WHERE id1 = u.id

)

SELECT u.id, next.id FROM next;

Link(id1, id2)
1 |2 |
1 |7 |
1 |9 |
2 |3 |
3 |5 |
4 |6 |
…

User(id)
1 |
2 |
3 |
4 |
…
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Updating Position[i]
CREATE TABLE Position[i] (source,  target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT l.id2
FROM Position[i-1] AS p, Link AS l
WHERE p.source = u.id AND

p.target = l.id1
)
SELECT u.id, next.id FROM next;

Link(id1, id2)
1 |2 |
…
7 |16 |
7 |26 |
8 |6 |
9 |10 |
…

Position[0]
1 |7 |
2 |3 |
3 |9 |
4 |3 |
5 |9 |
6 |6 |
…

User(id)
1 |
2 |
3 |
4 |
…

Data Schema:
Link (id1, id2)
User (id)
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SimSQL Tasks

seed

VGWrapper
(DiscreteChoice)

User

Πseed

Π

Link

seed

VGWrapper
(DiscreteChoice)

User

Πseed

Π

Link

seed

VGWrapper
(DiscreteChoice)

User

Πseed

Π

Link

CREATE TABLE Position[0] (source,  target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT id2 FROM Link
WHERE id1 = u.id

)
SELECT u.id, next.id FROM next;

CREATE TABLE Position[i] (source,  target) AS
FOR EACH u IN User

WITH next AS DiscreteChoice (
SELECT l.id2
FROM Position[i-1] AS p, Link AS l
WHERE p.source = u.id AND

p.target = l.id1
)

SELECT u.id, next.id FROM next;
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Gaussian Mixture Model
• GMM.sql
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Compiler

SimSQL query

Scanner, Parser
 200 grammar rules.
 9 predicates.
 12 math expressions.
 18 SQL elements.
 14 kinds of queries.

TypeChecker
 23 checker classes.
 > 100 check rules.

SQL Unnesting
 Almost arbitrary

queries.

Translator
 10 relational

operators.
 12 math expressions.
 5 Boolean predicates.

Preoptimization
 Keep lineage of

attributes.
 Remove redundancy.

Prolog
code

Frame Generation
 Incremental

optimization.
 MCMC iteration plan.

traditional plan 37



Logical Optimizer

Prolog
code

Logical Optimization
 Remove redundancy.
 Reorder the logical operators.
 A*-search algorithm.
 Different weights for different type of operators.
 Linear regression to learn weights.

Prolog
code

…
38



Physical Optimizer

… Prolog
code

Physical Optimization
 Merge logical operators into MapReduce jobs.
 Pipelining.
 Determine the types of joins.

MapReduce
Jobs (Java)
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Changes to RDBMS

SimSQL query

Scanner, Parser
 200 grammar rules.
 9 predicates.
 12 math expressions.
 18 SQL elements.
 14 kinds of queries.

TypeChecker
 23 checker classes.
 > 100 check rules.

SQL Unnesting
 Almost arbitrary

queries.

Translator
 10 relational

operators.
 12 math expressions.
 5 Boolean predicates.
 5 Meta-data.

Preoptimization
 Keep lineage of

attributes.
 Remove redundancy.

Prolog
code

Frame Generation
 Incremental

optimization.
 MCMC iteration plan.

VGWrapper and Seed

Stochastic tables

traditional plan 40



SimSQL for LDA (≈50 lines)
create table Theta[0](doc_id, topic_id, probability) as
for each d in docs

with newprobs as Dirichlet (
select topic_id, 1.0 from topics

)
select d.doc_id, n.out_id, n.probability
from newprobs as n;

create table W[0] (doc_id, word_id, topic_id, count_num) as
for each dw in word_in_doc

with topic_count as Multinomial (
(select tm.topic_id, tm.probability
from Theta[0] tm
where tm.doc_id = dw.doc_id),

(select dw.count_num)
)

select dw.doc_id, dw.word_id, wt.out_id, wt.out_count
from topic_count wt;

create table Psi[i] (topic_id, word_id, probability) as
for each t in topics

with newprobs as Dirichlet (
select pw.word_id, sum(count_num) + 1.0
from W[i] pw
where pw.topic_id = t.topic_id
group by pw.word_id

)
select t.topic_id, n.out_id, n.probability
from newprobs n;

create table Theta[i] (doc_id, topic_id, probability) as
for each d in docs

with newprobs as Dirichlet(
select pw.topic_id, sum(count_num) +  1.0
from W[i-1] pw, topics t
where pw.doc_id = d.doc_id and pw.topic_id = t.topic_id
group by pw.topic_id

)
select d.doc_id, n.out_id, n.probability
from newprobs n;

create table W[i] (doc_id, word_id, topic_id, count_num) as
for each dw in word_in_doc

with topic_count as Multinomial
(

(
select tm.topic_id, wpt.probability * tm.probability
from Psi[i-1] wpt, Theta[i] tm
where wpt.word_id = dw.word_id and
wpt.topic_id = tm.topic_id and
tm.doc_id = dw.doc_id

),
(

select dw.count_num
)

)
select dw.doc_id, dw.word_id, wt.out_id, wt.out_count
from topic_count wt;
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One Iteration Plan for LDA

JOIN(/data/simsql_query_block61_59)

JOIN (/data/simsql_query_block71_69)

SELECT (/data/simsql_query_block58_56)

VGWRAPPER(/data/simsql_query_block91_89)

SELECT(/data/simsql_query_block63_61)

JOIN(/data/simsql_query_block66_64)

VGWRAPPER(/data/simsql_query_block70_68)

SELECT(/data/simsql_query_block73_71)

VGWRAPPER(/data/simsql_query_block82_80)

JOIN (/data/simsql_query_block75_73)

JOIN(/data/simsql_query_block77_75)

AGGREGATE (/data/simsql_query_block80_78)

SELECT (/data/word_prob_in_topic_1_91)

JOIN(/data/simsql_query_block85_83)

JOIN(/data/simsql_query_block86_84)

AGGREGATE (/data/simsql_query_block89_87)

SELECT(/data/topic_mixture_2_92)

SELECT (/data/simsql_query_block93_93)

node_999750

node_999744 node_999745

node_999771

node_999763node_999768

node_999758

node_999762

node_999783

node_999781

node_999779

node_999777node_999778

node_999776

node_999784

node_999760

node_999751

node_999754

node_999756node_999755node_999757

node_999802

node_999800

node_999798

node_999796 node_999797

node_999795

node_999803

node_999791

node_999792

node_999789

node_999794

node_999805

node_999772

node_999770

node_999773

node_999775

node_999786

frameOutput

42



A chain of these plans
• Thousands of operators
• Optimize the whole plan together:

– No way for optimization
– No reliability

• Optimize random tables one by one:
– Optimizer overhead
– Hurts the optimization

Theta[0]

W[0]

Psi[0] Theta[1]

W[1]

Psi[1] Theta[2]

W[2]

Psi[2] Theta[3]

W[3]
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Solution
• Frame-based Optimization/Execution

– Find the cut for the check-pointing.
– Slice the plan, optimize, and execute frames alternatively.
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Steps
1. Compiler links together two non-baseline iteration of plans.
2. Compiler sends the plan for optimization.
3. System analyzes the plan, and figures out the minimum cut.

S E

Theta[i-1]

W[i]W[i-1]

Theta[i]

Psi[i]Psi[i-1]
+∞ +∞ +∞

+∞
+∞

+∞
+∞+∞+∞

+∞
100

500

100

500

100 100
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Steps
4. Generate the first piece of plan, optimize

and execute it, and update the statistics.

Theta[0]

W[0]

Psi[0] Theta[1]

W[1]

Psi[1] Theta[2]

W[2]

Psi[2] Theta[3]

W[3]

Theta[0]

W[0]

Psi[0] Theta[1]
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Steps
5. Generate the second plan, optimize and

execute it, and update the statistics.

Theta[0]

W[0]

Psi[0] Theta[1]

W[1]

Psi[1] Theta[2]

W[2]

Psi[2] Theta[3]

W[3]

W[1]

Psi[1] Theta[2]

47



SimSQL for GMM

48

data(data_id, dim_id, dim_value)
cluster(clus_id, pi_prior)

We use four random tables to represent four parameters.

clus_means[i] (clus_id, dim_id, dim_value)
clus_covas[i] (clus_id, dim_id1, dim_id2, dim_value)
clus_prob[i] (clus_id, prob)
membership[i] (data_id, clus_id)



SimSQL for GMM

49

Initialize hyper-parameters, e.g,
create view mean_prior(dim_id, dim_value) as

select dim_id, avg(dim_value) from data group by dim_id;

Initialize parameters, e.g.,

create table clus_prob[0] (clus_id, prob) as
with diri_res as Dirichlet(

select clus_id, pi_piror from cluster)
select diri_res.out_id, diri_res.prob
from diri_res;



SimSQL for GMM

50

Update parameters, e.g.,

create table clus_prob[i] (clus_id, prob) as
with diri_res as Dirichlet
(

select cmem.clus_id, cmem.c_num+clus.pi_piror
from clus,

(select cm.clus_id as clus_id, count(cm.data_id) as c_num
from membership[i-1] as cm) as cmem

where cmem.clus_id = clus.clus_id
)
select diri_res.out_id, diri_res.prob
from diri_res;
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Parallel ML in A Higher Level

ML Code ML Code ML Code

System/Hardware
Architecture, e.g.,
distributed cluster

Application Application Application Application

Analytics Platform with
public API, e.g., map() and

reduce()
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Graph Processing Systems
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Figure. MapReduce Framework.
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Figure. Graph Processing



Single Shortest Path
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1 1

11
1 1

Figure. A graph with five nodes. The task is to
find the length from A to all the nodes in the
graph.



Pregel
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Figure. The execution procedures of Pregel for
the single shortest path problem.



Algorithm
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Figure. Single shortest path algorithm with Pregel model.



Gaussian Mixture Model
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Figure. The execution procedures of GMM in Giraph.



Optimization
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1. In Step 1, 5, 9, ..., using combiner to reduce communication overhead.
2. In Step 4, 8 ,12, …, broadcasting the model to data vertices.
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public ML libraries
• Mahout
• MLlib
• Pregasus
• …

60



Benchmark configuration
Systems Spark, SimSQL, GraphLab, Giraph.
Hardware Amazon EC2, m.2.4x large instance, 8 cores,

64 GB RAM per machine, with 5, 20, 100
machines.

Problems Gaussian mixture model (GMM)
Latent Dirichlet Allocation (LDA)
Bayesian Lasso
Hidden Markov Model(HMM)
Gaussian Imputation

Datasets 200 GB ~ 1TB
Comparison metrics Programmability and performance

70, 000 + hours of Amazon EC2 time, $100, 000 @ on-
demand price, 5 researchers, 5 months’ work.
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GMM
• Infer this:

62



Programmability

The programmability of different platforms for
GMM in the “natural” implementation.
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Performance

The “natural” implementation for GMM, and the data
scale is: × ×× ( = , , ).

64



The problem of GraphLab

• GraphLab
– pull-based model: each cluster needs access to its neighbors.
– Memory usage for the machine holding clusters is too large:

1cluster * 1 billion data points * 100 bytes = 100 G.

• Giraph
– push-based model, combiner, aggregator.

data points
clusters

mixing proportion
vertex

GraphLab / Giraph graphical model
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Super Vertex Implementation

b super vertices
clusters

mixing proportion
vertex

• Super-vertex implementation for GraphLab
Super Vertex 10 dimensions

Lines of code 5 machines 20 machines 100 machines

GraphLab 681 6:13 4:36 6:09
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Performance Improvement of
Super Vertex

The impact of using super-vertex implementation.
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Problem 3. LDA

12
…

1 …
12

…

1 … 1 …

12
…

1 …

… 1

1
…+ +

LDA learns the topics of a set
of documents for classification.
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Performance

The “multi-docs”-based LDA, and the data scale is:× × × ×= , , .
69



Why GraphLab fails again?

70

b super vertices
100

A topic vertex needs memory:∗ ∗∗ ( ) =



Homework
• Try to implement the LDA model in all

three systems.
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