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Syllabus
• Bayesian ML Concepts (Today)
• Bayesian ML on MapReduce (Next morning)
• Bayesian ML on Spark, SimSQL and Giraph

(Next afternoon)
• Discussions (Thursday morning)
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ML is Everywhere
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Problem 1
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Figure. An example for supervised regression.



Problem 2
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Figure.  An example for unsupervised classification.



Bayesian ML
• To apply Bayesian ML:

– Use statistical process to explain how data is generated, i.e.,
generative process, Θ .

– Learn parameters/variables in the process given data Θ .
Use Bayes' Rule to learn Θ D :

Θ D = Θ (Θ)( ) ~ Θ (Θ)
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Solution for Problem 1
• Model: Bayesian LR

1. Generate ~ (0, )
2. Generate ~ 0,
3. Generate ~ 1, 1
4. Given each age :

income ~ ( + , )
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Figure. Training set and test set
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Bayesian Inference
• Using Bayes’ theorem

Let Θ = , , ,Θ ∝ Θ × (Θ)Θ = | + ,Θ = 0, × 0, × 1, 1)
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Inference Methods

• Newton-Raphson algorithm, gradient descent algorithm, etc.
• Expectation–maximization (EM) algorithm.
• Approximate inference methods.
• Sampling methods like Monte Carlo Markov chain (MCMC).
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Markov Chain Monte Carlo
• Markov Chain

– A collection of random variables {Xt} (r = 0, 1, …) having the
property that

P(Xt|X0, X1,..Xt-1) = P(Xt|Xt-1)

• Markov Chain Monte Carlo (MCMC)
– A class of sampling algorithms to sample a distribution by

constructing a Markov chain, whose equilibrium states
approximate the desired distribution.
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Bivariate Normal Distribution
• Input:

– mean: (0, 0).
– covariance: [2, 1; 1 2].

• Output:
– A set of sampled data points.

• Steps:
– Select an initial point (x0, y0).
– Sample (xi+1, yi+1) based on

(xi, yi) repeatedly.
– After a burn-in number of

steps, collect samples
periodically.
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Monte Carlo Markov chain
• Gibbs sampling

• Learning parameters in example 1
1) Initialize a and b;2) . ∝ ∏ + , × 1, 1 ;3) . ∝ ∏ + , × 0, ;4) . ∝ ∏ + , × 0, ;5) 2) 4) .
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Initialize Θ
while(true){

choose ⊆ Θ;
sample ~ Θ − , ;

}



Monte Carlo Markov chain
• Each step is a standard distribution.

– . ∝ ∏ + , × 1, 1∝ ( |1 + 0. , 1 + 0.5 ∑ − − )
– . ∝ ∏ + , × 0,∝ | ∑ ∑ , ∑ × 0, --- It is a normal distribution.

– . ∝ ∏ + , × 0,∝ | ∑ , +
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Code for Problem 1
• example1.m
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Rejection sampling
• We want to sample from

1) Find a simple distribution .
2) Find a constant such that ∀ , ≥ ( ).
3) Generate ~ , and generate ~ 0, .4) < use as a sample;1) 4).
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ML with Big Data
• Data is big.

– Row number .
– Column number .

• Problems
– It is harder to learn.
– It is harder to model.
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Problem 3
• Problem. Given the 20newsgroup dataset, we want to create a

binary classifier to classify religion and non-religion groups.
• Dataset: http://qwone.com/~jason/20Newsgroups/20news-

19997.tar.gz
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…

~18000 non-religion documents ~2000 religion documents

Figure. Data set.



Problem Modeling
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Bayesian LR
• Create a classifier

– SVM, KNN, etc. ( ).
– I still use Bayesian LR.

• Generative model.
1. Generate ~ 0, ; // w is a column vector
2. Generate ~ 1, 1 ;
3. Given each doc : // is a column vector

generate outcome ~ , ;
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Sample all at once

• . ∝ ∏ , × 1, 1∝ ( |1 + , 1 + ∑ )
• . ∝ ∏ , × |0,∝ | + , +where

= … = … (X is a matrix, and Y is a vector).
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Problems with this approach
. ∝ | + , +

– The computational complexity of is .
– The computational complexity of is , and it is hard to

parallelize.
– Given = 10 and = 10 , both complexity can be up to 10 .
– If we use double for repressors, the complexity can be 10 .
– Up to 5 hours per iteration with Amazon 100 m2.4xlarge nodes.
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One dimension at a time
. ∝ + ∑ ! , × |0,

∝ ∑ ( ∑ )!∑ , ∑ ) |0,
It is a normal distribution.

• Problems:
– It is too slow: too many scans, and scans follow each other.
– For large and , it takes too much time.
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A Block-based Sampler
• Sample a block of dimensions( |. ) ∝ ∏ ∑ ∉ + ∑ ∈ , × ∏ |0,∈∝ exp − ( ) × ∏ |0,∈

= − ∉ − ∈~ ∑ ∑∈ + ∑ ∑ 2, ∈ , ∈ −∑ ∑ 2 − ∑ ∉∈ + const
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A Block-based Sampler
( |. ) ∝ exp − ( ) × ∏ |0,∈

~ ∈ + 2, ∈ , ∈ −∑ ∑ 2 − ∑ ∉∈ + const
• Given = , , , for each MCMC iteration

– The number of scans over data: / .

– The number of aggregates: .

– Computation cost: = × + × .
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Time Cost
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Figure. The time cost per MCMC iteration for linear regression
on 20newsgroup dataset, where 10000 distinct words and 2M
documents are used.



Problem 4
• Problem. Given the 20-newsgroup dataset with a large fraction of

missing values, the task is to recover such values.
• Dataset: http://qwone.com/~jason/20Newsgroups/20news-

19997.tar.gz

26

[ : , : ?, : , …, : ?][ : ? , : , : ?, …, : ]

[ : ? , : , : ?, …, : ]

…



Problem Modeling
• It is modelled as an imputation problem.

– Really old topic, and there are more than twenty of methods.
– One of the most widely used methods is Multi-Gaussian

distribution.
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Challenges

– Σ computed from Σ takes Θ , m is the size of dimensions.

– Σ or Σ from data takes Θ , n is the number of data points.

– Σ should be positive-definite.
– GMRF(Gaussian Markov Random Field) has similar problems.
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Solution

• PGRF (Pairwise Gaussian Random Field)
– Sidestep the covariance.
– High performance.
– Algorithm complexity is linear with the scale of data.
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Simple Case 1
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L = , = ,  and Σ =
• Multi-Gaussian model

= 1. Σ . exp{−0.5 − Σ − }
• PGRF model for complete correlations

– Let , = , , and similar

definition for , and , := , , ,∭ , , ,

Figure. Three dimensions
are strongly correlated.
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Simple Case 2
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Figure. Two dimensions are
correlated.
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• PGRF model with two correlations
– Let , = , , and

similar definition for , and , :

= , ,∭ , ,



Simple Case 3
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Figure. Four dimensions with two correlations.
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• PGRF model with two correlations
– Let , = , , and

= , , then:= , ,∭ , ,

Ψ
Ψ

Ψ



Simple Case 4
• Input

– Data: x.
– Ψ = {(1, 3), (1, 5), (3, 5) (4, 5)}.

• Model

– = , , , , ( )
– Z = ∫ , , , , ( ) …
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Figure. A PGRF model for 5
dimensional variables.



Generative Model

1. ∈ 1 … :~ 1, 1 ;~ , Σ ;2. , ∈ Ψ ∶
, ~ (− , );3. ∈ 1 … :Ω = ∏ ∈ ∏ ,, ∈
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( , )
Figure. Graphical model for Markov
random field. Ψ is known.

Figure 6. Generative process



Inference of PGRF
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variables parallel complexity

yes Θ( )
An independent subgraph of
variables can be parallelized.

Θ( )Θ(( + ) )
, Θ( )

m : the number of dimensions,
n: the number of data points,
p: the number of input correlations.



Sample and ,
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Figure. The correlation graph.



1. Find the maximum independent set (MIS).
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Figure. The correlation graph.



2. Sample and , for selected vertices.
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Figure. The correlation graph.



3. Find the MIS in the remaining graph.
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Figure. The correlation graph.



4. Sample and , for selected vertices.
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Figure. The correlation graph.



5. Sample and , for remaining vertices.
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Figure. The correlation graph.



Evaluation

• Impact of the number of correlations.
– Linear regression with PGRF.
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Evaluation

• Scalability of our approach (PGRF).
– Dataset: 20newsgroups, Dimensions: 10000
– Each machine has a simulated copy of dataset.
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Conclusion
• In “Big Data”, computation efficiency

should be considered in both modelling
and inference.
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