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•material coursing through a system from a source  to a sink
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Flow networks:
• A flow network G=(V,E): a directed graph, where each 

edge (u,v)ÎE has a nonnegative capacity c(u,v)>=0.
• If (u,v)ÏE, we assume that c(u,v)=0.
• two distinct  vertices :a source s and a sink t.
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Flow:

• G=(V,E):  a flow network with capacity function c.
•  s-- the source and  t-- the sink.
• A flow in G: a real-valued function f:V*V à   R  satisfying 

the following three properties:
• Capacity constraint: For all u,v ÎV, 
                  we require f(u,v) £   c( u,v).
• Flow conservation: For all u ÎV-{s,t}, we require 
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Net flow and value of a flow f:

• The quantity f (u,v), which can be positive or 
negative, is called the net flow from vertex u to 
vertex v.

• The value of a flow is defined as 

– The total flow from source to any other vertices.
– The same as the total flow from any vertices to 

the sink.
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Maximum-flow problem:
• Given a flow network G with source s and sink t
• Find a flow of maximum value from s to t.

• How to solve it efficiently?
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The Ford-Fulkerson method

This section presents the Ford-Fulkerson method for solving 
the maximum-flow problem. We call it a “method” rather 
than an “algorithm” because it encompasses several 
implementations with different running times.
The Ford-Fulkerson method depends on three important 
ideas that transcend the method and are relevant to many 
flow algorithms and problems: residual networks, 
augmenting paths, and cuts. 
These ideas are essential to the important max-flow min-cut 
theorem, which characterizes the value of maximum flow in 
terms of cuts of the flow network.
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Given a graph G and two nodes (s, t)
• initialize flow f to 0
• while there exists an augmenting path p
•           do augment flow f along p
• return f

The Ford-Fulkerson method
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Residual networks

• Given a flow network and a flow, the residual 
network consists of edges that can admit more net 
flow. 

•  G=(V, E) a flow network  with source s and sink t
•  f: a flow in G.
• The amount of additional net flow  from u to v 

before exceeding the capacity c(u,v) is the residual 
capacity of (u,v), given by: cf(u,v) = c(u,v) - f(u,v) 



11

s

20

79

v2 v4

t

v3v116

13

12

10 4

4
14

4/9
s

v2 v4

t

v3v14/16

13

4/12

10 4

20

4/4

7

4/14

(a)

Example of residual network
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Fact 1

• Let G=(V,E) be a flow network with source s and sink t, and 
let f be a flow in G

• Let Gf be the residual network of G induced by f, and let f’ 
be a flow in Gf
Then, the flow sum f+f’ is a flow in G with value

'' ffff +=+
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Augmenting paths

• Given a flow network G=(V,E) and a flow f, an augmenting 
path is a simple path from s to t in the residual network Gf.

• Residual capacity of p : the maximum amount of net flow 
that we can ship along the edges of an augmenting path p, 
i.e.,  cf(p)=min{cf(u,v):(u,v) is on p}.

2 3 1

The residual capacity is 1
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The basic Ford-Fulkerson 
algorithm:

• FORD-FULKERSON(G,s,t)
• for each edge (u,v) Î E[G]
•         do  f[u,v]        0
•               f[v,u]        0
• while there exists a path p from s to t in the residual 

network Gf

•         do cf(p)       min{cf(u,v): (u,v) is in p}
•              for each edge (u,v) in p
•                   do f[u,v]       f[u,v] + cf(p)
•                        

¬
¬

¬

¬
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Example: next slides (a) to (e)

Execution of the basic Ford-Fulkerson algorithm (successive 
iterations of the while loop)
The left side of each part shows the residual network Gf with 
a shaded augmenting path p.
The right side of each part shows the new flow f that results 
from adding fp to f. 
The residual network in (a) is the input network G.
(e) The residual network at the last while loop test. It has no 
augmenting paths, and the flow f shown in (d) is therefore a 
maximum flow.
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residual network Gf new flow f
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residual network Gf new flow f
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No augmenting path !
stop
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Time complexity

Time complexity of the Ford-Fulkerson’s algorithm is 

 O(max_flow * E)

We run a loop while there is an augmenting path.
In worst case, we may add 1 unit flow in every iteration. 
Therefore the time complexity becomes O(max_flow * E).
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Cuts of flow networks

The proof of the correctness of the Ford-Fulkerson 
method depends on a concept “cut”. 
• A cut (S,T) of flow network G=(V,E) is a partition of 

V into S and T=V-S such that sÎS and t ÎT.
• If f is a flow, then the net flow across the cut (S,T) 

is  F(S,T)=S uÎS&vÎT   f(u, v).
• The capacity  of the cut (S,T) is 
                 c(S, T)= S uÎS&vÎT   c(u, v).
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Property of cuts

• Let f be a flow in a flow network G with source s 
and sink t, and let (S,T) be a cut of G.
Then, the net flow across (S,T) is f(S,T)=       .

• Proof: 1. f(S-s, V)=0 by flow conservation.
•            2. f(S, S)=0 since f(u, v)=-f(v, u).
• f(S, T)=f(S, V)-f(S, S)=f(S, V)
              =f(s, V)+f(S-s, V)=f(s, V)=|f|. 

f
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Property of cuts (cont.)

• The value of any flow f in a flow network G is bounded 
from above by the capacity of any cut of G. 

• Proof: f(S, T) £ c(S, T). 
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Max-flow min-cut theorem
If f is a flow in a flow network G=(V,E) with source s and sink t, 
then the following conditions are equivalent:
1. f is a maximum flow in G;
2. The residual network Gf contains no augmenting paths;
3. |f| = c(S,T) for some cut (S,T) of G.
Proof:  
1è2: Otherwise, if a aug. path exists, we can further increase 

the flow.
2è3. If no aug. path exists, then we construct S as the set of 

vertices that is reachable from s. T=V-S.  By construction, 
there is no edge (u, v) in the residual graph such that uÎS 
and vÎT. Thus, |f|=f(S,T)=c(S, T).

3è1 |f|=f(S, T)=c(S,T). Recall that |f|= f(S, T) £ c(S,T). 
Thus, |f| is maximum.
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The Edmonds-Karp algorithm

• Find the augmenting path using breadth-
first search (BFS)

 Breadth-first search gives the shortest 
path for graphs (Assuming the length of each 
edge is 1.)
• Time complexity of Edmonds-Karp 

algorithm is O(VE2).
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Playground: 
https://visualgo.net/en/maxflow 

More examples:
https://www.hackerearth.com/practice/algori
thms/graphs/maximum-flow/tutorial 

https://visualgo.net/en/maxflow
https://www.hackerearth.com/practice/algorithms/graphs/maximum-flow/tutorial
https://www.hackerearth.com/practice/algorithms/graphs/maximum-flow/tutorial

