# Graph Theory [6]

Maximum flows Ford-Fulkerson method

Edmonds and Karp's algorithm

Emmanuel Viennet

emmanuel.viennet@univ-paris13.fr

Documents are here:



https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs





#### Soviet Rail Network, 1955



Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

•material coursing through a system from a source to a sink

#### Flow networks:

- A flow network G=(V,E): a directed graph, where each edge (u,v)∈E has a nonnegative capacity c(u,v)>=0.
- If  $(u,v) \notin E$ , we assume that c(u,v)=0.
- two distinct vertices :a source s and a sink t.



#### Flow:

- G=(V,E): a flow network with capacity function c.
- s-- the source and t-- the sink.
- A flow in G: a real-valued function f:V\*V → R satisfying the following three properties:
- Capacity constraint: For all u,v ∈V, we require f(u,v) ≤ c(u,v).
- Flow conservation: For all  $u \in V$ -{s,t}, we require



### Net flow and value of a flow f:

- The quantity f (u,v), which can be positive or negative, is called the net flow from vertex u to vertex v.
- The value of a flow is defined as

$$\left|f\right| = \sum_{v \in V} f(s, v)$$

- The total flow from source to any other vertices.
- The same as the total flow from any vertices to the sink.



A flow f in G with value |f| = 19.

## Maximum-flow problem:

- Given a flow network G with source s and sink t
- Find a flow of maximum value from s to t.
- How to solve it efficiently?



## The Ford-Fulkerson method

This section presents the Ford-Fulkerson method for solving the maximum-flow problem. We call it a "method" rather than an "algorithm" because it encompasses several implementations with different running times. The Ford-Fulkerson method depends on three important ideas that transcend the method and are relevant to many flow algorithms and problems: residual networks, augmenting paths, and cuts.

These ideas are essential to the important max-flow min-cut theorem, which characterizes the value of maximum flow in terms of cuts of the flow network.

## The Ford-Fulkerson method

Given a graph G and two nodes (s, t)

- initialize flow f to 0
- while there exists an *augmenting* path *p*
- do *augment* flow *f* along *p*
- return f

#### **Residual networks**

- Given a flow network and a flow, the residual network consists of edges that can admit more net flow.
- G=(V, E) a flow network with source s and sink t
- f: a flow in G.
- The amount of additional net flow from u to v before exceeding the capacity c(u,v) is the residual capacity of (u,v), given by: c<sub>f</sub>(u,v) = c(u,v) - f(u,v)

#### **Example of residual network**



(a)

11

#### Example of Residual network (continued)



(b)

#### Fact 1

- Let G=(V,E) be a flow network with source s and sink t, and let f be a flow in G
- Let  $G_{\rm f}$  be the residual network of G induced by f, and let f' be a flow in  $G_{\rm f}$

Then, the flow sum f+f' is a flow in G with value

$$\left|f+f'\right| = \left|f\right| + \left|f'\right|$$

#### Augmenting paths

- Given a flow network G=(V,E) and a flow f, an augmenting path is a simple path from s to t in the residual network G<sub>f</sub>.
- Residual capacity of p : the maximum amount of net flow that we can ship along the edges of an augmenting path p, i.e., c<sub>f</sub>(p)=min{c<sub>f</sub>(u,v):(u,v) is on p}.



#### **Example of an augment path (bold edges)**



(b)

# The basic Ford-Fulkerson algorithm:

- FORD-FULKERSON(G,s,t)
- for each edge  $(u,v) \in E[G]$
- do  $f[u,v] \leftarrow 0$
- $f[v,u] \leftarrow 0$
- while there exists a path p from s to t in the residual network  $G_f$
- do  $c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is in } p\}$
- for each edge (u,v) in p
- do  $f[u,v] \leftarrow f[u,v] + c_f(p)$

## Example: next slides (a) to (e)

Execution of the basic Ford-Fulkerson algorithm (successive iterations of the while loop)

- The **left side** of each part shows the **residual network**  $G_f$  with a shaded augmenting path p.
- The **right side** of each part shows the **new flow** f that results from adding  $f_p$  to f.

The residual network in (a) is the input network G.

(e) The residual network at the last while loop test. It has no augmenting paths, and the flow f shown in (d) is therefore a maximum flow.



(a)



(b)



(c)



(d)



## No augmenting path ! stop

#### Time complexity

Time complexity of the Ford-Fulkerson's algorithm is

O(max\_flow \* E)

We run a loop while there is an augmenting path. In worst case, we may add 1 unit flow in every iteration. Therefore the time complexity becomes O(max\_flow \* E).

## Cuts of flow networks



The proof of the correctness of the Ford-Fulkerson method depends on a concept "cut".

- A cut (S,T) of flow network G=(V,E) is a partition of V into S and T=V-S such that s∈S and t ∈T.
- If f is a flow, then the net flow across the cut (S,T) is F(S,T)=∑<sub>u∈S&v∈T</sub> f(u, v).
- The capacity of the cut (S,T) is

 $c(S, T) = \Sigma_{u \in S\&v \in T} c(u, v).$ 



A cut (S,T), where S={s,v1,v2} and T={v3,v4,t}. The net flow across (S,T) is f(S,T) = 12-4+11 = 19and the capacity is c(S,T)=12+14=26.

#### Property of cuts

- Let f be a flow in a flow network G with source s and sink t, and let (S,T) be a cut of G. Then, the net flow across (S,T) is f(S,T)=|f|.
- Proof: 1. f(S-s, V)=0 by flow conservation.
  - 2. f(S, S)=0 since f(u, v)=-f(v, u).
- f(S, T)=f(S, V)-f(S, S)=f(S, V)=f(s, V)+f(S-s, V)=f(s, V)=|f|.

#### Property of cuts (cont.)

- The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.
- Proof:  $f(S, T) \leq c(S, T)$ .

#### Max-flow min-cut theorem

If f is a flow in a flow network G=(V,E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G;
- 2. The residual network G<sub>f</sub> contains no augmenting paths;
- 3. |f| = c(S,T) for some cut (S,T) of G.

Proof:

- 1→2: Otherwise, if a aug. path exists, we can further increase the flow.
- 2→3. If no aug. path exists, then we construct S as the set of vertices that is reachable from s. T=V-S. By construction, there is no edge (u, v) in the residual graph such that u∈S and v∈T. Thus, |f|=f(S,T)=c(S, T).
- 3→1 |f|=f(S, T)=c(S,T). Recall that  $|f|=f(S, T) \le c(S,T)$ . Thus, |f| is maximum.

### The Edmonds-Karp algorithm

 Find the augmenting path using breadthfirst search (BFS)

Breadth-first search gives the shortest path for graphs (Assuming the length of each edge is 1.)

• Time complexity of Edmonds-Karp algorithm is O(VE<sup>2</sup>).

Playground: <u>https://visualgo.net/en/maxflow</u>

More examples:

<u>https://www.hackerearth.com/practice/algori</u> <u>thms/graphs/maximum-flow/tutorial</u>