
 Shortest Paths
Djikstra’s algorithm

Based on CSE 680
by Prof. Roger Crawfis

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Shortest Path

l Given a weighted directed graph, one
common problem is finding the shortest
path between two given vertices

l Recall that in a weighted graph, the
length of a path is the sum of the weights
of each of the edges in that path

Applications

l One application is circuit design: the
time it takes for a change in input to
affect an output depends on the shortest
path

http://www.hp.com/

Shortest Path

l Given the graph below, suppose we wish
to find the shortest path from vertex 1 to
vertex 13

Shortest Path

l After some consideration, we may
determine that the shortest path is as
follows, with length 14

l Other paths exists, but they are longer

Negative Cycles

l Clearly, if we have negative vertices, it may
be possible to end up in a cycle whereby
each pass through the cycle decreases the
total length

l Thus, a shortest length would be undefined
for such a graph

l Consider the shortest path
from vertex 1 to 4...

l We will only consider non-
negative weights.

Shortest Path Example

l Given:
l Weighted Directed graph G = (V, E).
l Source s, destination t.

l Find shortest directed path from s to t.

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 48.

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6

Discussion Items

l How many possible paths are there from s to t?
l Can we safely ignore cycles? If so, how?
l Any suggestions on how to reduce the set of possibilities?
l Can we determine a lower bound on the complexity like we did for

comparison sorting?

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6

Key Observation

l A key observation is that if the shortest path
contains the node v, then:
l It will only contain v once, as any cycles will only add to

the length.
l The path from s to v must be the shortest path to v from

s.
l The path from v to t must be the shortest path to t from

v.
l Thus, if we can determine the shortest path to all

other vertices that are incident to the target vertex
we can easily compute the shortest path.
l Implies a set of sub-problems on the graph with the

target vertex removed.

Dijkstra’s Algorithm

• Works when all of the weights are positive.
• Provides the shortest paths from a source

to all other vertices in the graph.
– Can be terminated early once the shortest

path to t is found if desired.

Shortest Path

• Consider the following graph with positive
weights and cycles.

Dijkstra’s Algorithm
• A first attempt at solving this problem might require an

array of Boolean values, all initially false, that indicate
whether we have found a path from the source.

1 F
2 F
3 F
4 F
5 F
6 F
7 F
8 F
9 F

Dijkstra’s Algorithm

• Graphically, we will denote this with check
boxes next to each of the vertices (initially
unchecked)

Dijkstra’s Algorithm

• We will work bottom up.
– Note that if the starting vertex has any adjacent

edges, then there will be one vertex that is the
shortest distance from the starting vertex. This is
the shortest reachable vertex of the graph.

• We will then try to extend any existing paths
to new vertices.

• Initially, we will start with the path of length 0
– this is the trivial path from vertex 1 to itself

Dijkstra’s Algorithm

• If we now extend this path, we should
consider the paths
– (1, 2) length 4
– (1, 4) length 1
– (1, 5) length 8

The shortest path so far is (1, 4) which is of
length 1.

• Thus, if we now examine vertex 4, we may
deduce that there exist the following paths:
– (1, 4, 5) length 12
– (1, 4, 7) length 10
– (1, 4, 8) length 9

Dijkstra’s Algorithm

Dijkstra’s Algorithm

• We need to remember that the length of
that path from node 1 to node 4 is 1

• Thus, we need to store the length of a
path that goes through node 4:
– 5 of length 12
– 7 of length 10
– 8 of length 9

Dijkstra’s Algorithm

• We have already discovered that there is a
path of length 8 to vertex 5 with the path
(1, 5).

• Thus, we can safely ignore this longer
path.

Dijkstra’s Algorithm
• We now know that:

– There exist paths from vertex 1 to
vertices {2,4,5,7,8}.

– We know that the shortest path
from vertex 1 to vertex 4 is of
length 1.

– We know that the shortest path to
the other vertices {2,5,7,8} is at
most the length listed in the table
to the right.

Vertex Length
1 0
2 4
4 1
5 8
7 10
8 9

Dijkstra’s Algorithm
• There cannot exist a shorter path to either of the vertices

1 or 4, since the distances can only increase at each
iteration.

• We consider these vertices to be
visited

Vertex Length
1 0
2 4
4 1
5 8
7 10
8 9

If you only knew this information and
nothing else about the graph, what is the

possible lengths from vertex 1 to vertex 2?
What about to vertex 7?

Relaxation

l Maintaining this shortest discovered
distance d[v] is called relaxation:

Relax(u,v,w) {
if (d[v] > d[u]+w) then

d[v]=d[u]+w;
}

Dijkstra’s Algorithm

• In Dijkstra’s algorithm, we always take the
next unvisited vertex which has the current
shortest path from the starting vertex in
the table.

• This is vertex 2

Dijkstra’s Algorithm

• We can try to update the shortest paths to
vertices 3 and 6 (both of length 5)
however:
– there already exists a path of length 8 < 10 to

vertex 5 (10 = 4 + 6)
– we already know the shortest path to 4 is 1

Dijkstra’s Algorithm

• To keep track of those vertices to which no
path has reached, we can assign those
vertices an initial distance of either
– infinity (∞),
– a number larger than any possible path, or
– a negative number

• For demonstration purposes, we will use ∞

Dijkstra’s Algorithm

• As well as finding the length of the
shortest path, we’d like to find the
corresponding shortest path

• Each time we update the shortest distance
to a particular vertex, we will keep track of
the predecessor used to reach this vertex
on the shortest path.

Dijkstra’s Algorithm

• We will store a table of pointers, each
initially 0

• This table will be updated each
time a distance is updated

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

Dijkstra’s Algorithm

• Graphically, we will display the reference
to the preceding vertex by a red arrow
– if the distance to a vertex is ∞, there will be no

preceding vertex
– otherwise, there will be exactly one preceding

vertex

Dijkstra’s Algorithm

• Thus, for our initialization:
– we set the current distance to the initial vertex

as 0
– for all other vertices, we set the current

distance to ∞
– all vertices are initially marked as unvisited
– set the previous pointer for all vertices to null

Dijkstra’s Algorithm
• Thus, we iterate:

– find an unvisited vertex which has the shortest
distance to it

– mark it as visited
– for each unvisited vertex which is adjacent to

the current vertex:
• add the distance to the current vertex to the weight

of the connecting edge
• if this is less than the current distance to that

vertex, update the distance and set the parent
vertex of the adjacent vertex to be the current
vertex

Dijkstra’s Algorithm

• Halting condition:
– we successfully halt when the vertex we are

visiting is the target vertex
– if at some point, all remaining unvisited

vertices have distance ∞, then no path from
the starting vertex to the end vertex exits

• Note: We do not halt just because we
have updated the distance to the end
vertex, we have to visit the target vertex.

Example

• Consider the graph:
– the distances are appropriately initialized
– all vertices are marked as being unvisited

Example

• Visit vertex 1 and update its neighbours,
marking it as visited
– the shortest paths to 2, 4, and 5 are updated

Example

• The next vertex we visit is vertex 4
– vertex 5 1 + 11 ≥ 8 don’t update
– vertex 7 1 + 9 < ∞ update
– vertex 8 1 + 8 < ∞ update

Example

• Next, visit vertex 2
– vertex 3 4 + 1 < ∞ update
– vertex 4 already visited
– vertex 5 4 + 6 ≥ 8 don’t update
– vertex 6 4 + 1 < ∞ update

Example

• Next, we have a choice of either 3 or 6
• We will choose to visit 3

– vertex 5 5 + 2 < 8 update
– vertex 6 5 + 5 ≥ 5 don’t update

Example

• We then visit 6
– vertex 8 5 + 7 ≥ 9 don’t update
– vertex 9 5 + 8 < ∞ update

Example

• Next, we finally visit vertex 5:
– vertices 4 and 6 have already been visited
– vertex 7 7 + 1 < 10 update
– vertex 8 7 + 1 < 9 update
– vertex 9 7 + 8 ≥ 13 don’t update

Example

• Given a choice between vertices 7 and 8,
we choose vertex 7
– vertices 5 has already been visited
– vertex 8 8 + 2 ≥ 8 don’t update

Example

• Next, we visit vertex 8:
– vertex 9 8 + 3 < 13 update

Example

• Finally, we visit the end vertex
• Therefore, the shortest path from 1 to 9

has length 11

Example

• We can find the shortest path by working
back from the final vertex:
– 9, 8, 5, 3, 2, 1

• Thus, the shortest path is (1, 2, 3, 5, 8, 9)

Example

• In the example, we visited all vertices in
the graph before we finished

• This is not always the case, consider the
next example

Example

• Find the shortest path from 1 to 4:
– the shortest path is found after only three vertices are

visited
– we terminated the algorithm as soon as we reached

vertex 4
– we only have useful information about 1, 3, 4
– we don’t have the shortest path to vertex 2

Dijkstra’s algorithm
d[s] ¬ 0
for each v Î V – {s}

do d[v] ¬ ¥
S ¬ Æ
Q ¬ V ⊳ Q is a priority queue maintaining V – S
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
S ¬ S È {u}
for each v Î Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ¬ d[u] + w(u, v)
 p[v] ¬ u

Dijkstra’s algorithm
d[s] ¬ 0
for each v Î V – {s}

do d[v] ¬ ¥
S ¬ Æ
Q ¬ V ⊳ Q is a priority queue maintaining V – S
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
S ¬ S È {u}
for each v Î Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ¬ d[u] + w(u, v)
 p[v] ¬ u

relaxation
step

Implicit DECREASE-KEY

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2

Graph with
nonnegative
edge weights:

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2

Initialize:

A B C D EQ:
0 ¥ ¥ ¥ ¥

S: {}

0

¥

¥ ¥

¥

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2A B C D EQ:
0 ¥ ¥ ¥ ¥

S: { A }

0

¥

¥ ¥

¥“A” ¬ EXTRACT-MIN(Q):

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2A B C D EQ:
0 ¥ ¥ ¥ ¥

S: { A }

0

10

3 ¥

¥

10 3

Relax all edges leaving A:

¥ ¥

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2A B C D EQ:
0 ¥ ¥ ¥ ¥

S: { A, C }

0

10

3 ¥

¥

10 3

“C” ¬ EXTRACT-MIN(Q):

¥ ¥

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2A B C D EQ:
0 ¥ ¥ ¥ ¥

S: { A, C }

0

7

3 5

11

10 3
7 11 5

Relax all edges leaving C:

¥ ¥

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2A B C D EQ:
0 ¥ ¥ ¥ ¥

S: { A, C, E }

0

7

3 5

11

10 3
7 11 5

“E” ¬ EXTRACT-MIN(Q):

¥ ¥

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2A B C D EQ:
0 ¥ ¥ ¥ ¥

S: { A, C, E }

0

7

3 5

11

10 3 ¥ ¥
7 11 5
7 11

Relax all edges leaving E:

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2A B C D EQ:
0 ¥ ¥ ¥ ¥

S: { A, C, E, B }

0

7

3 5

11

10 3 ¥ ¥
7 11 5
7 11

“B” ¬ EXTRACT-MIN(Q):

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2A B C D EQ:
0 ¥ ¥ ¥ ¥

S: { A, C, E, B }

0

7

3 5

9

10 3 ¥ ¥
7 11 5
7 11

Relax all edges leaving B:

9

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2A B C D EQ:
0 ¥ ¥ ¥ ¥

S: { A, C, E, B, D }

0

7

3 5

9

10 3 ¥ ¥
7 11 5
7 11

9

“D” ¬ EXTRACT-MIN(Q):

Summary

• Given a weighted directed graph, we can
find the shortest distance between two
vertices by:
– starting with a trivial path containing the initial

vertex
– growing this path by always going to the next

vertex which has the shortest current path

Shortest Path

Other algorithms

- Bellman-Ford algorithm : generalize Dijkstra
Slower than Dijkstra’s algorithm for the same problem,
but more versatile, as it is capable of handling graphs in
which some of the edge weights are negative (but with
no negative cycles !).

- Floyd–Warshall algorithm finds the shortest paths in a
directed weighted graph with positive or negative edge
weights. A single execution of the algorithm will find the
lengths (summed weights) of shortest paths between all
pairs of vertices

- Johnson's algorithm is a way to find the shortest
paths between all pairs of vertices in an edge-
weighted (positive or negative) directed graph.

The single-source shortest path problem consists in
finding the shortest paths from the source node to all
other nodes in a weighted graph with n nodes
and m edges.

The single-source shortest path problem consists in
finding the shortest paths from the source node to all
other nodes in a weighted graph with n nodes
and m edges.

All-pairs shortest path : find the shortest paths between
all pairs of nodes in a weighted graph with n nodes
and m edges.
Usually solved using the Floyd-Warshall or Johnson's
algorithm. Johnson's algorithm is quite fast; Floyd-Warshall
is easier to implement and often preferred.

All-pairs shortest path : find the shortest paths between
all pairs of nodes in a weighted graph with n nodes
and m edges.
Usually solved using the Floyd-Warshall or Johnson's
algorithm. Johnson's algorithm is quite fast; Floyd-Warshall
is easier to implement and often preferred.

