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Shortest Path

l Given a weighted directed graph, one 
common problem is finding the shortest 
path between two given vertices

l Recall that in a weighted graph, the 
length of a path is the sum of the weights 
of each of the edges in that path



Applications

l One application is circuit design:  the 
time it takes for a change in input to 
affect an output depends on the shortest 
path

http://www.hp.com/



Shortest Path

l Given the graph below, suppose we wish 
to find the shortest path from vertex 1 to 
vertex 13



Shortest Path

l After some consideration, we may 
determine that the shortest path is as 
follows, with length 14

l Other paths exists, but they are longer



Negative Cycles

l Clearly, if we have negative vertices, it may 
be possible to end up in a cycle whereby 
each pass through the cycle decreases the 
total length

l Thus, a shortest length would be undefined 
for such a graph

l Consider the shortest path
from vertex 1 to 4...

l We will only consider non-
negative weights.



Shortest Path Example

l Given:
l Weighted Directed graph G = (V, E).
l Source s, destination t.

l Find shortest directed path from s to t.

Cost of path s-2-3-5-t
     =  9 + 23 + 2 + 16
     = 48.
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Discussion Items

l How many possible paths are there from s to t?
l Can we safely ignore cycles? If so, how?
l Any suggestions on how to reduce the set of possibilities?
l Can we determine a lower bound on the complexity like we did for 

comparison sorting?
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Key Observation

l A key observation is that if the shortest path 
contains the node v, then:
l It will only contain v once, as any cycles will only add to 

the length.
l The path from s to v must be the shortest path to v from 

s.
l The path from v to t must be the shortest path to t from 

v.
l Thus, if we can determine the shortest path to all 

other vertices that are incident to the target vertex 
we can easily compute the shortest path.
l Implies a set of sub-problems on the graph with the 

target vertex removed.



Dijkstra’s Algorithm

• Works when all of the weights are positive.
• Provides the shortest paths from a source 

to all other vertices in the graph.
– Can be terminated early once the shortest 

path to t is found if desired.



Shortest Path

• Consider the following graph with positive 
weights and cycles.



Dijkstra’s Algorithm
• A first attempt at solving this problem might require an 

array of Boolean values, all initially false, that indicate 
whether we have found a path from the source.

1 F
2 F
3 F
4 F
5 F
6 F
7 F
8 F
9 F



Dijkstra’s Algorithm

• Graphically, we will denote this with check 
boxes next to each of the vertices (initially 
unchecked)



Dijkstra’s Algorithm

• We will work bottom up.
– Note that if the starting vertex has any adjacent 

edges, then there will be one vertex that is the 
shortest distance from the starting vertex. This is 
the shortest reachable vertex of the graph.

• We will then try to extend any existing paths 
to new vertices.

• Initially, we will start with the path of length 0
– this is the trivial path from vertex 1 to itself



Dijkstra’s Algorithm

• If we now extend this path, we should 
consider the paths
– (1, 2)  length 4
– (1, 4)  length 1
– (1, 5)  length 8

The shortest path so far is (1, 4) which is of 
length 1.



• Thus, if we now examine vertex 4, we may 
deduce that there exist the following paths:
– (1, 4, 5) length 12
– (1, 4, 7) length 10
– (1, 4, 8) length 9

Dijkstra’s Algorithm



Dijkstra’s Algorithm

• We need to remember that the length of 
that path from node 1 to node 4 is 1

• Thus, we need to store the length of a 
path that goes through node 4:
– 5 of length 12
– 7 of length 10
– 8 of length 9



Dijkstra’s Algorithm

• We have already discovered that there is a 
path of length 8 to vertex 5 with the path 
(1, 5).

• Thus, we can safely ignore this longer 
path.



Dijkstra’s Algorithm
• We now know that: 

– There exist paths from vertex 1 to 
vertices {2,4,5,7,8}.

– We know that the shortest path 
from vertex 1 to vertex 4 is of 
length 1.

– We know that the shortest path to 
the other vertices {2,5,7,8} is at 
most the length listed in the table 
to the right.

Vertex Length
1 0
2 4
4 1
5 8
7 10
8 9



Dijkstra’s Algorithm
• There cannot exist a shorter path to either of the vertices 

1 or 4, since the distances can only increase at each 
iteration.

• We consider these vertices to be 
visited

Vertex Length
1 0
2 4
4 1
5 8
7 10
8 9

If you only knew this information and 
nothing else about the graph, what is the 

possible lengths from vertex 1 to vertex 2? 
What about to vertex 7?



Relaxation

l Maintaining this shortest discovered 
distance d[v] is called relaxation:

Relax(u,v,w) {
if (d[v] > d[u]+w) then

d[v]=d[u]+w;
}



Dijkstra’s Algorithm

• In Dijkstra’s algorithm, we always take the 
next unvisited vertex which has the current 
shortest path from the starting vertex in 
the table.

• This is vertex 2 



Dijkstra’s Algorithm

• We can try to update the shortest paths to 
vertices 3 and 6 (both of length 5) 
however:
– there already exists a path of length 8 < 10 to 

vertex 5 (10 = 4 + 6)
– we already know the shortest path to 4 is 1



Dijkstra’s Algorithm

• To keep track of those vertices to which no 
path has reached, we can assign those 
vertices an initial distance of either
– infinity (∞ ),
– a number larger than any possible path, or
– a negative number

• For demonstration purposes, we will use ∞



Dijkstra’s Algorithm

• As well as finding the length of the 
shortest path, we’d like to find the 
corresponding shortest path

• Each time we update the shortest distance 
to a particular vertex, we will keep track of 
the predecessor used to reach this vertex 
on the shortest path.



Dijkstra’s Algorithm

• We will store a table of pointers, each 
initially 0

• This table will be updated each
time a distance is updated

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0



Dijkstra’s Algorithm

• Graphically, we will display the reference 
to the preceding vertex by a red arrow
– if the distance to a vertex is ∞, there will be no 

preceding vertex
– otherwise, there will be exactly one preceding 

vertex



Dijkstra’s Algorithm

• Thus, for our initialization:
– we set the current distance to the initial vertex 

as 0
– for all other vertices, we set the current 

distance to ∞
– all vertices are initially marked as unvisited
– set the previous pointer for all vertices to null



Dijkstra’s Algorithm
• Thus, we iterate:

– find an unvisited vertex which has the shortest 
distance to it

– mark it as visited
– for each unvisited vertex which is adjacent to 

the current vertex:
• add the distance to the current vertex to the weight 

of the connecting edge
• if this is less than the current distance to that 

vertex, update the distance and set the parent 
vertex of the adjacent vertex to be the current 
vertex



Dijkstra’s Algorithm

• Halting condition:
– we successfully halt when the vertex we are 

visiting is the target vertex
– if at some point, all remaining unvisited 

vertices have distance ∞, then no path from 
the starting vertex to the end vertex exits

• Note:  We do not halt just because we 
have updated the distance to the end 
vertex, we have to visit the target vertex.



Example

• Consider the graph:
– the distances are appropriately initialized
– all vertices are marked as being unvisited



Example

• Visit vertex 1 and update its neighbours, 
marking it as visited
– the shortest paths to 2, 4, and 5 are updated



Example

• The next vertex we visit is vertex 4
– vertex 5  1 + 11 ≥ 8  don’t update
– vertex 7  1 +   9 < ∞  update
– vertex 8  1 +   8 < ∞  update



Example

• Next, visit vertex 2
– vertex 3  4 + 1 < ∞  update
– vertex 4     already visited
– vertex 5  4 + 6 ≥ 8  don’t update
– vertex 6  4 + 1 < ∞  update



Example

• Next, we have a choice of either 3 or 6
• We will choose to visit 3

– vertex 5  5 + 2 < 8  update
– vertex 6  5 + 5 ≥ 5  don’t update



Example

• We then visit 6
– vertex 8  5 + 7 ≥ 9  don’t update
– vertex 9  5 + 8 < ∞  update



Example

• Next, we finally visit vertex 5:
– vertices 4 and 6 have already been visited
– vertex 7  7 + 1 < 10  update
– vertex 8  7 + 1 <   9  update
– vertex 9  7 + 8 ≥ 13  don’t update



Example

• Given a choice between vertices 7 and 8, 
we choose vertex 7
– vertices 5 has already been visited
– vertex 8  8 + 2 ≥ 8  don’t update



Example

• Next, we visit vertex 8:
– vertex 9  8 + 3 < 13  update



Example

• Finally, we visit the end vertex
• Therefore, the shortest path from 1 to 9 

has length 11



Example

• We can find the shortest path by working 
back from the final vertex:
– 9, 8, 5, 3, 2, 1

• Thus, the shortest path is (1, 2, 3, 5, 8, 9)



Example

• In the example, we visited all vertices in 
the graph before we finished

• This is not always the case, consider the 
next example



Example

• Find the shortest path from 1 to 4:
– the shortest path is found after only three vertices are 

visited
– we terminated the algorithm as soon as we reached 

vertex 4
– we only have useful information about 1, 3, 4
– we don’t have the shortest path to vertex 2



Dijkstra’s algorithm
d[s] ¬ 0
for each v Î V – {s}

do d[v] ¬ ¥
S ¬ Æ
Q ¬ V  ⊳ Q is a priority queue maintaining V – S
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
S ¬ S È {u}
for each v Î Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ¬ d[u] + w(u, v)
 p[v] ¬ u



Dijkstra’s algorithm
d[s] ¬ 0
for each v Î V – {s}

do d[v] ¬ ¥
S ¬ Æ
Q ¬ V  ⊳ Q is a priority queue maintaining V – S
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
S ¬ S È {u}
for each v Î Adj[u]

do if d[v] > d[u] + w(u, v)
 then d[v] ¬ d[u] + w(u, v)
 p[v] ¬ u

relaxation 
step

Implicit DECREASE-KEY



Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Example of Dijkstra’s algorithm
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Summary

• Given a weighted directed graph, we can 
find the shortest distance between two 
vertices by:
– starting with a trivial path containing the initial 

vertex
– growing this path by always going to the next 

vertex which has the shortest current path



Shortest Path

Other algorithms



- Bellman-Ford algorithm :  generalize Dijkstra
Slower than Dijkstra’s algorithm for the same problem, 
but more versatile, as it is capable of handling graphs in 
which some of the edge weights are negative (but with 
no negative cycles !).

- Floyd–Warshall algorithm finds the shortest paths in a 
directed weighted graph with positive or negative edge 
weights. A single execution of the algorithm will find the 
lengths (summed weights) of shortest paths between all 
pairs of vertices

- Johnson's algorithm is a way to find the shortest 
paths between all pairs of vertices in an edge-
weighted (positive or negative) directed graph.



The single-source shortest path problem consists in 
finding the shortest paths from the source node to all 
other nodes in a weighted graph with n nodes
and m edges. 



The single-source shortest path problem consists in 
finding the shortest paths from the source node to all 
other nodes in a weighted graph with n nodes
and m edges. 



All-pairs shortest path : find the shortest paths between
all pairs of nodes in a weighted graph with n nodes
and m edges.
Usually solved using the Floyd-Warshall or Johnson's
algorithm. Johnson's algorithm is quite fast; Floyd-Warshall
is easier to implement and often preferred.



All-pairs shortest path : find the shortest paths between
all pairs of nodes in a weighted graph with n nodes
and m edges.
Usually solved using the Floyd-Warshall or Johnson's
algorithm. Johnson's algorithm is quite fast; Floyd-Warshall
is easier to implement and often preferred.


