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Complexity of algorithms – Review (or introduction ?)

Slides adapted from Champion & Chun
Documents are here: 

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs 

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs


Questions?
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Dictionaries (or maps)



Dictionaries (aka Maps)
Every Programmer’s Best Friend

You’ll probably use one in almost every programming project.
-Because it’s hard to make a big project without needing one sooner or later.

// two types of Map implementations
Map<String, Integer> map1 = new HashMap<>();
Map<String, String> map2 =  new TreeMap<>();

In Python, builtin type dict :

   d = {} # empty dictionnary
   colors = {

"red" : (1, 0, 0),
"green" : (0, 1, 0),
"blue" : (0, 0, 1)

}



Review: Maps 
map: Holds a set of distinct keys and a collection of 
values, where each key is associated with one value.
-a.k.a. "dictionary"

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

supported operations:
- put(key, value): Adds a given item into 

collection with associated key, 
- if the map previously had a mapping 

for the given key, old value is 
replaced.  

- get(key): Retrieves the value mapped to 
the key

- containsKey(key): returns true if key is 
already associated with value in map, 
false otherwise

- remove(key): Removes the given key and 
its mapped value



Implementing a Dictionary with an Array
ArrayDictionary<K, V>

put find key, overwrite value if there. 
Otherwise create new pair, add to next 
available spot, grow array if necessary
get scan all pairs looking for given 
key, return associated item if found
containsKey scan all pairs, return if 
key is found
remove scan all pairs, replace pair to 
be removed with last pair in collection
size return count of items in 
dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis – (if key is the last one 
looked at / not in the dictionary) 
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

0 1 2 3
containsKey(‘c’)
get(‘d’)
put(‘b’, 97)
put(‘e’, 20)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)

Big O Analysis – (if the key is the first one 
looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant
4

(‘e’, 20)



Implementing a Dictionary with Nodes
LinkedDictionary<K, V>

put if key is unused, create new with 
pair, add to front of list, else 
replace with new value
get scan all pairs looking for given 
key, return associated item if found
containsKey scan all pairs, return if 
key is found
remove scan all pairs, skip pair to be 
removed 
size return count of items in 
dictionary

state

behavior

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20

Big O Analysis – (if key is the last one 
looked at / not in the dictionary) 
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

Big O Analysis – (if the key is the first one 
looked at)
put()

get()

containsKey()

remove()

size()
O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant



Implementing a Dictionary
Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

Dictionaries are usually implemented using 
more efficient data structures like hash tables

to get O(1) access 
(or O(n) in the worst case)



Big O      complexity



Review: Complexity Class 
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complexity class: A category of algorithm efficiency based on the algorithm's 
relationship to the input size N.

Complexity 
Class

Big-O Runtime if you 
double N

Example Algorithm

constant O(1) unchanged Accessing an index of 
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than 
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

... ... ... ...

exponential O(2N) multiplies drastically Fibonacci with recursion

Note: You don’t have to understand all of this 
right now – we’ll dive into it soon.



Code to Big-Oh
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General patterns: “O(1) constant is no loops, O(n) is one loop, O(n2) is nested loops”

But we can go much more in depth: for instance we can explain more about why, and how to handle more 
complex cases when they arise (which they will!)

CODE BIG-OH

for (i = 0; i < n; i++) {
  a[i] = 1;
  b[i] = 2;
}

O(n)



Meet Algorithmic Analysis
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COMPLEXITY

CLASSCODE Code Modeling
RUNTIME

FUNCTION Asymptotic Analysis

Algorithmic Analysis: The overall process of characterizing code with a complexity class, 
consisting of:
- Code Modeling: Code à Function describing code’s runtime
- Asymptotic Analysis: Function à Complexity class describing asymptotic behavior

1 2

for (i = 0; i < n; i++) {
  a[i] = 1;
  b[i] = 2;
}

O(n)f(n) = 2n



Code Modeling
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Code Modeling – the process of mathematically representing how many operations 
a piece of code will run in relation to the input size n.

-Convert from code to a function representing its runtime

CODE Code Modeling
RUNTIME

FUNCTION

1



What Counts?
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We don’t know exact runtime of every operation, but for now let’s try simplifying 
assumption: all basic operations take the same time

• Basics:
- +, -, /, *, %, ==
- Assignment
- Returning
- Variable/array access

• Function Calls
- Total runtime in body
- Remember: new calls a function 

(constructor)
• Conditionals

- Test + time for the followed branch
- Learn how to reason about branch later

• Loops
- Number of iterations * total runtime in 

condition and body



Code Modeling Example 1
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public void method1(int n) {
    int sum = 0;
    int i = 0;
    while (i < n) {
        sum = sum + (i * 3);
        i = i + 1;
    }
    return sum;
}

+1
+1

+1
+3

+2

+1

+6 *n

Loop runs n times

f(n) = 6n + 3



Code Modeling Example 2
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public void method2(int n) {
    int sum = 0;
    int i = 0;
    while (i < n) {
        int j = 0;    
        while (j < n) {
            if (j % 2 == 0) {
                // do nothing
            }
            sum = sum + (i * 3) + j;
            j = j + 1;
        }
        i = i + 1;
    } return sum;
}

+1
+1

+1

+2

+1

+9 *n

This inner loop 
runs n times

f(n) = (9n+4)n + 3

+1
+1

+2

+2

+4

9n + 4 *n

This outer loop
runs n times



Exercice 

17

public void mystery2(ArrayList<String> list) {

   for (int i = 0; i < list.size(); i++) {

      for (int j = 0; j < list.size(); j++) {

         System.out.println(list.get(0));

      }

   }

}

+2
n(2)

n(n(2))

Construct a mathematical function modeling the runtime for the following functions

Approach
-> start with basic operations, work inside 
out for control structures
- Each basic operation = +1
- Conditionals = test operations + 

appropriate branch
- Loop = iterations (loop body)



Where are we?
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We just turned a piece of code into a function!
- We’ll look at better alternatives for code modeling later

Now to focus on step 2, asymptotic analysis

COMPLEXITY
CLASS

CODE Code Modeling
RUNTIME

FUNCTION Asymptotic Analysis

1 2

for (i = 0; i < n; i++) {
  a[i] = 1;
  b[i] = 2;
}

O(n)f(n) = 2n



Finding a Big Oh
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We have an expression for 𝑓(𝑛). How do 
we get the 𝑂() that we’ve been talking 
about?
1. Find the “dominating term” and delete all 
others. 
-The “dominating” term is the one that is 
largest as 𝑛 gets bigger. In this class, often 
the largest power of 𝑛.

2. Remove any constant factors.

= 9n2 + 3n + 3
≈ 9n2

≈ n2

f(n) is O(n2)

f(n) = (9n+3)n + 3

COMPLEXITY
CLASS

RUNTIME

FUNCTION Asymptotic Analysis

2



Can we really throw away all that info?
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Big-Oh is like the “significant digits” of computer science
Asymptotic Analysis: Analysis of function behavior as its input approaches infinity
-We only care about what happens when n approaches infinity
-For small inputs, doesn’t really matter: all code is “fast enough”
-Since we’re dealing with infinity, constants and lower-order terms don’t meaningfully 
add to the final result. The highest-order term is what drives growth!

Simple
We don’t care about tiny differences in 
implementation, want the big picture result

Decisive
Produce a clear comparison indicating 
which code takes “longer”

Remember our goals:



Function growth
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…but since both are linear 
eventually look similar at large 
input sizes

whereas h(n) has a distinctly 
different growth rate

The growth rate for f(n) and 
g(n) looks very different for 
small numbers of input

But for very small input values 
h(n) actually has a slower growth 
rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between. 
Each has already been reduced to its mathematical model 𝑓 𝑛 = 𝑛 𝑔 𝑛 = 4𝑛 ℎ 𝑛 = 𝑛!

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛

𝑇 𝑛

𝑛



Definition: Big-O
We wanted to find an upper bound on our algorithm’s 
running time, but
- We don’t want to care about constant factors.
- We only care about what happens as 𝑛 gets large.
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𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛( such that for all 𝑛 ≥ 𝑛(, 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

We also say that 𝑔 𝑛  “dominates” 𝑓(𝑛)

Why 𝑛!?

Why 𝑐?



Applying Big O Definition
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𝑓 𝑛 = 10𝑛 + 15 𝑂 𝑛Show that is

𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛", 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Apply definition term by term

10𝑛 ≤ 𝑐・𝑛	when	𝑐 = 10	for	all	values	of	𝑛

15 ≤ 𝑐・𝑛	when	𝑐 = 15	𝑓𝑜𝑟	𝑛 ≥ 1

Add up all your truths

10𝑛 + 15 ≤ 10𝑛 + 15𝑛 = 25𝑛	for	𝑛 ≥ 1

Select values for 𝑐 and 𝑛" and prove they fit the definition
Take 𝒄 = 𝟐𝟓 and 𝒏𝟎 = 𝟏
10𝑛 ≤ 10𝑛	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣𝑎𝑙𝑢𝑒𝑠	𝑜𝑓	𝑛
15 ≤ 15𝑛	𝑓𝑜𝑟	𝑛 ≥ 1
So 10𝑛	 + 	15 ≤ 25𝑛	 for all 𝑛 ≥ 1, as required.
because a 𝑐 and 𝑛" exist, 𝑓(𝑛) is 𝑂(𝑛)



Exercise: Proving Big O
Demonstrate that 5𝑛2	 + 	3𝑛	 + 	6 is dominated by 𝑛2 
(i.e. that 5𝑛" + 3𝑛 + 6 is 𝑂 𝑛" , by finding a 𝑐 and 𝑛0 
that satisfy the definition of domination

5n2 + 3n + 6 ≤ 5n2 + 3n2 + 6n2 when n ≥ 1
5n2 + 3n2 + 6n2  = 14n2

5n2 + 3n + 6 ≤ 14n2 for n ≥ 1
14n2 ≤ c*n2 for c = ? n >= ?
𝒄 = 14 & 𝒏𝟎 = 1
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𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛", 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O



Note: Big-O definition is just an upper-bound, 
not always an exact bound
True or False:  10𝑛" + 15𝑛	 is 𝑂(𝑛$)
It’s true – it fits the definition

25

10𝑛2 ≤ 𝑐・𝑛3	𝑤ℎ𝑒𝑛	𝑐 = 10	𝑓𝑜𝑟	𝑛 ≥ 1
15𝑛 ≤ 𝑐・𝑛3	𝑤ℎ𝑒𝑛	𝑐 = 15	𝑓𝑜𝑟	𝑛 ≥ 1
10𝑛2 + 15𝑛 ≤ 10𝑛3 + 15𝑛3 ≤ 25𝑛3	𝑓𝑜𝑟	𝑛 ≥ 1
10𝑛! + 15𝑛	 is 𝑂(𝑛$) because 10𝑛! + 15𝑛 ≤ 25𝑛3	𝑓𝑜𝑟	𝑛 ≥ 1

Big-O is just an upper bound that may be loose and not describe the function fully. 
For example, all of the following are true:

10𝑛Q + 15𝑛	 is 𝑂(𝑛R)
10𝑛Q + 15𝑛	 is 𝑂 𝑛S
10𝑛Q + 15𝑛	 is 𝑂 𝑛T
10𝑛Q + 15𝑛	 is 𝑂(𝑛U)
10𝑛Q + 15𝑛	 is 𝑂(𝑛!) … and so on

It is (almost always) technically correct to say your 
code runs in time 𝑂(	𝑛!	)
DO NOT TRY TO PULL THIS TRICK IN AN INTERVIEW 
(or exam).



Note: Big-O definition is just an upper-bound, 
not always an exact bound (plots)
What do we want to look for on a plot to determine if one function is in the big-O of the 
other?

 You can sanity check that your g(n) function (the dominating one) overtakes or is equal to 
your f(n) function after some point and continues that greater-than-or-equal-to trend 
towards infinity
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10𝑛! + 15𝑛	 is 𝑂(𝑛$)
10𝑛! + 15𝑛	 is 𝑂 𝑛%
10𝑛! + 15𝑛	 is 𝑂 𝑛&

… and so on …

𝑇 𝑛

𝑛

n3

n5

n4

10n2 + 15n

The visual representation 
of big-O and 

asymptotic analysis is a 
big idea!  



Tight Big-O Definition Plots
If we want the most-informative upper bound, we’ll ask you for a simplified, tight big-O bound.

𝑂 𝑛!  is the tight bound for the function f(n) = 10n2+15n.  See the graph below – the tight big-O 
bound is the smallest upperbound within the definition of big-O.

Computer scientists It is almost always technically correct to say your code runs in time 𝑂(𝑛!). 
(Warning: don’t try this  trick in an interview or exam)

If you zoom out a bunch,
the your tight bound and your function will 
be overlapping compared to other 
complexity classes.

27

𝑇 𝑛

𝑛

n2

10n2 + 15n



Questions?
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Uncharted Waters: a different type of code 
model
Find a model 𝑓 𝑛  for the running time of this code on input 𝑛. What’s the Big-O?
boolean isPrime(int n){
    int toTest = 2;
    while(toTest < n){
        if(toTest % n == 0) {
            return true;
        } else {
            toTest++;
        }
    }
    return false;
}

Operations per iteration: let’s just call it 1 to keep all the future slides simpler.

Number of iterations? 
- Smallest divisor of 𝑛

29

Remember, 𝑓(𝑛) = the 
number of basic operations 
performed on the input 𝑛.



Prime Checking Runtime
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Is the running time of 
the code 𝑂 1  or 𝑂 𝑛 ?

More than half the time 
we need 3 or fewer 
iterations. Is it 𝑂(1)?

But there’s still always 
another number where 
the code takes 𝑛 
iterations. So 𝑂 𝑛 ?

This is why we have definitions!

𝑓(𝑛)
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𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛", 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

Is the running time 𝑂(𝑛)?
Can you find constants 𝑐 and 𝑛"?

How about 𝑐 = 1 and 𝑛" = 5, 
𝑓 𝑛 =smallest divisor of 𝑛 ≤ 1 ⋅ 𝑛 for 𝑛 ≥ 5

Is the running time 𝑂(1)?
Can you find constants 𝑐 and 𝑛"?

No! Choose your value of 𝑐. I can find a prime 
number 𝑘	bigger than 𝑐.
And 𝑓 𝑘 = 𝑘 > 𝑐 ⋅ 1 so the definition isn’t met!

It’s 𝑂(𝑛) but not 𝑂 1

𝑓(𝑛)



Big-O isn’t everything
Our prime finding code is 𝑂(𝑛). But so is, for example, printing all the elements of a list.

32

Your experience running these two pieces of code is going to be very different. 
It’s disappointing that the 𝑂() are the same – that’s not very precise. 
Could we have some way of pointing out the list code always takes AT LEAST 𝑛 operations?

𝑂(𝑛) 𝑂(𝑛)



Big-Ω [Omega]
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𝑓(𝑛) is Ω(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛! such that for all 𝑛 ≥ 𝑛(, 

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑂(𝑛)

Ω(1)

The formal definition of Big-Omega is the 
flipped version of Big-Oh. 

When we make Big-Oh statements about a 
function and say f(n) is O(g(n)) we’re saying 
that f(n) grows at most as fast as g(n).

But with Big-Omega statements like f(n) is 
Ω(g(n)), we’re saying that f(n) will grows at 
least as fast as g(n).

Visually: what is the lower limit of this function? 
What is bounded on the bottom by?



Big-Omega definition Plots
2𝑛2	is	Ω(1)
2𝑛2	is	Ω(n)
2𝑛2	is	Ω(𝑛3)
2𝑛2	is	Ω(𝑛2)

2𝑛2	is	lowerbounded	by	all	the	complexity	classes	listed	above	(1, n, 𝑛3, 𝑛2)
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𝑇 𝑛

𝑛

2n3

n2

n

1

n3



Big-O and Big-Ω	shown	together

35

Note: this right graph’s tight O bound is O(n) and its 
tight Omega bound is Omega(n).  This is what most 
of the functions we’ll deal with will look like, but there 
exists some code that would produce runtime 
functions like on the left.

f(n) = n
prime runtime function

𝑂(𝑛) 𝑂(𝑛)

Ω(1) Ω(n)



O, and Omega, and Theta [oh my?]
Big-O is an upper bound 
-My code takes at most this long to run

Big-Omega is a lower bound
-My code takes at least this long to run

Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order terms
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𝑓(𝑛) is Ω(𝑔 𝑛 ) if there exist positive constants 
𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛", 

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) is Θ(𝑔 𝑛 ) if 
𝑓 𝑛  is 𝑂(𝑔 𝑛 ) and 𝑓 𝑛  is Ω(𝑔 𝑛 ).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛# 
such that for all 𝑛 ≥ 𝑛#)
c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛  ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛", 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O



O, and Omega, and Theta [oh my?]
Big Theta is “equal to”
- My code takes “exactly”* this long to run
- *Except for constant factors and lower order terms
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𝑓(𝑛) is Θ(𝑔 𝑛 ) if 
𝑓 𝑛  is 𝑂(𝑔 𝑛 ) and 𝑓 𝑛  is Ω(𝑔 𝑛 ).
(in	other	words:	there exist positive constants 𝑐1, c2, 𝑛# 
such that for all 𝑛 ≥ 𝑛#)
c1 ⋅ 𝑔 𝑛 ≤ 𝑓 𝑛  ≤ c2 ⋅ 𝑔 𝑛

Big-Theta

𝑂(𝑛) Ω(n) Θ(𝑛)

f(n) = n

To define a big-Theta, you expect the 
tight big-Oh and tight big-Omega 
bounds to be touching on the graph 
(meaning they’re the same complexity 
class)



Examples
4n2 ∈ Ω(1)
true
4n2 ∈ Ω(n) 
true
4n2 ∈ Ω(n2) 
true
4n2 ∈ Ω(n3) 
false
4n2 ∈ Ω(n4) 
false
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4n2 ∈ O(1) 
false
4n2 ∈ O(n) 
false
4n2 ∈ O(n2) 
true
4n2 ∈ O(n3) 
true
4n2 ∈ O(n4) 
true

𝑓(𝑛) ∈ 𝑂(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛", 

𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

Big-O

𝑓(𝑛) ∈ 	Ω(𝑔 𝑛 ) if there exist positive 
constants 𝑐, 𝑛" such that for all 𝑛 ≥ 𝑛", 

𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

Big-Omega

𝑓(𝑛) ∈ Θ(𝑔 𝑛 ) if 
𝑓 𝑛  is 𝑂(𝑔 𝑛 ) and 𝑓 𝑛  is Ω(𝑔 𝑛 ).

Big-Theta


