
GRAPH THEORY

2 - Graph Traversal Algorithms

Emmanuel Viennet
emmanuel.viennet@univ-paris13.fr

Documents are here:

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

mailto:emmanuel.viennet@univ-paris13.fr
https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Graph Theory 2 – Graph Traversal 2

Paths

• For example, the sequence 3, 0, 1, 2 is a
path,
but the sequence 0, 3, 2 is not a path
because (0,2) is not an edge

• In this graph, the sequence John, Mary,
Joe, Helen is a path, but the sequence
Helen, Tom, Paul is not a path

A path in a graph G is a sequence of nodes x1, x2, …,xk,
such that there is an edge from each node the next one in the sequence

Graph Theory 2 – Graph Traversal 3

Undirected Graphs

In the following, unless explicitly stated, we will focus on
undirected graphs.

Most results and algorithms can be generalized to directed
graphs.

Graph Theory 2 – Graph Traversal 4

Graph Connectivity
• A graph is said to be connected if there is a path

between every pair of nodes.
Otherwise, the graph is disconnected

Informally, a graph is connected if it hangs in one piece

Disconnected Connected

Graph Theory 2 – Graph Traversal 5

Connected Components

• If a graph is not connected, then each “piece” is called a connected component.
• A piece in itself is connected, but if you bring any other node to it from the

graph, it is no longer connected

• If the graph is connected, then the whole graph is one single connected
component

• Of Interest: Given any undirected graph G,
• Is G connected?
• If not, find its connected components.

Graph Theory 2 – Graph Traversal 6

Graph Traversal techniques

The previous connectivity problem, as well as many other graph
problems, can be solved using graph traversal techniques

There are two standard graph traversal techniques:

• Depth-First Search (DFS)

• Breadth-First Search (BFS)

Graph Theory 2 – Graph Traversal 7

Graph Traversal techniques (2)
In both DFS and BFS, the nodes of the undirected graph are visited in a
systematic manner so that every node is visited exactly one.

Both BFS and DFS give rise to a tree:

• When a node x is visited, it is labeled as visited, and it is added to the tree

• If the traversal got to node x from node y,
y is viewed as the parent of x,
and x a child of y

Graph Theory 2 – Graph Traversal 8

Graphs are a data structure

https://medium.com/codex/a-dummys-guide-to-linked-lists-part-1-44469f35f65a

Graph Theory 2 – Graph Traversal 9

https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials

https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials

Graph Theory 2 – Graph Traversal 10

Depth-First Search (DFS)
DFS algorithm:

1. Select an unvisited node x, visit it, and treat as the current node
2. Find an unvisited neighbor of the current node, visit it, and make

it the new current node
3. If the current node has no unvisited neighbors, backtrack to the

its parent, and make that parent the new current node
4. Repeat steps 3 and 4 until no more nodes can be visited
5. If there are still unvisited nodes, repeat from step 1

Graph Theory 2 – Graph Traversal 11

Depth-First Search (DFS)
DFS algorithm:
Keep exploring from most recently added node until you have to backtrack

Graph Theory 2 – Graph Traversal 12

Depth-First Search (DFS)
Theorem: Let T be a depth-first search tree. Let x and y be 2 nodes in
the tree. Let (x,y) be an edge that is in G but not in T.
Then either x is an ancestor of y or y is an ancestor of x in T.

Graph Theory 2 – Graph Traversal 13

Depth-First Search (DFS)
DFS algorithm: recursive formulation

def DFS(u):
 mark u as “explored”
 for each edge (u, v) incident to u:
 if v is not marked as “explored”:
 DFS(v)

Graph Theory 2 – Graph Traversal 14

Coming next:
1. DFS Algorithm with a stack

2. Implement DFS in Python
3. Algorithms complexity

4. Breadth-First-Search (BFS)

Documents are here:

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Graph Theory 2 – Graph Traversal 15

Conclusion
Graph theory is a fundamental component of computer science with wide-ranging applications

• Data Structures and Algorithms: Graphs are essential in representing complex data structures like networks, which
are central to various algorithms in computer science, such as those used in searching (like BFS and DFS), shortest
path algorithms (like Dijkstra's and Bellman-Ford), and network flow algorithms.

• Network Analysis: Analyzing and optimizing computer networks, social networks, and web networks, including
understanding the internet's topology, routing protocols, and analyzing social media interactions.

• Problem Solving and Optimization: Many complex computer science problems are modeled using graphs, including
scheduling problems, resource allocation, and optimization problems (like the Traveling Salesman Problem), making
graph theory a key tool for developing efficient solutions.

• Database Theory: Graphs are used in the modeling of databases, particularly in understanding relationships within
network databases and for designing efficient data retrieval algorithms, including the use of graph databases in big
data applications.

• Artificial Intelligence and Machine Learning: Graph theory plays a role in AI and ML, particularly in areas like
semantic networks, neural networks, and in developing algorithms for clustering and pattern recognition,
enhancing machine learning models' effectiveness in interpreting complex datasets.

