
GRAPH THEORY
[2]

Abstract Data Types: Stacks, Queues, and Dictionaries

Slides adapted from Champion & Chun

Documents are here:

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Abstract Data Types (ADT)
Abstract Data Types
- An abstract definition for expected operations and behavior
- Defines the input and outputs, not the implementations

2

- each element is accessible by a 0-based index
- a list has a size (number of elements that have been

added)
- elements can be added to the front, back, or elsewhere
- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements

Review: Interfaces
interface: A construct in Java that defines a set of
methods that a class promises to implement
- Interfaces give you an is-a relationship without code sharing.

- A Rectangle object can be treated as a Shape but inherits no code.

- Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
- "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

public interface name {
 public type name(type name, ..., type name);
 public type name(type name, ..., type name);
 ...
 public type name(type name, ..., type name);
}

3

Example

// Describes features common to all
// shapes.
public interface Shape {
 public double area();
 public double perimeter();
}

Review: Java Collections
Java provides some implementations of ADTs for you!

Lists List<Integer> a = new ArrayList<Integer>();

Stacks Stack<Character> c = new Stack<Character>();

Queues Queue<String> b = new LinkedList<String>();

Maps Map<String, String> d = new TreeMap<String, String>();

We can build other data structures from scratch, e.g.
 Linked Lists - LinkedIntList a collection of ListNode

4

ADTs Data Structures

Review: Python Collections
Python provides some implementations of ADTs as native types

Lists list [1, 2, 3]

Stacks use list or collection.deque
Queues collection.deque

Maps dict, {}, { key : value }

We can build other data structures from scratch by defining new classes.

5

ADTs Data Structures

Full Definitions
Abstract Data Type (ADT)
-A definition for expected operations and behavior
-A mathematical description of a collection with a set of supported operations and how
they should behave when called upon

-Describes what a collection does, not how it does it
-Can be expressed as an interface
-Examples: List, Map, Set

Data Structure
-A way of organizing and storing related data points
-An object that implements the functionality of a specified ADT
-Describes exactly how the collection will perform the required operations
-Examples: LinkedIntList, ArrayIntList

6

Case Study: The List ADT
list: a collection storing an ordered sequence of
elements.
-Each item is accessible by an index.
-A list has a size defined as the number of elements in the list

7

Expected Behavior:
- get(index): returns the item at the given
index

- set(value, index): sets the item at the given
index to the given value

- append(value): adds the given item to the
end of the list

- insert(value, index): insert the given item at
the given index maintaining order

- delete(index): removes the item at the given
index maintaining order

- size(): returns the number of elements in the
list

Case Study: List Implementations

8

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] =
value, if out of space
grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

LinkedList<E>

get loop until index,
return node’s value
set loop until index,
update node’s value
append create new node,
update next of last node
insert create new node,
loop until index, update
next fields
delete loop until index,
skip node
size return size

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space

Implementing ArrayList

9

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] =
value, if out of space
grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

0 1 2 3

insert(10, 0) 3 4 5

numberOfItems = 3

insert(element, index) with shifting

0 1 2 3

3 4 5

numberOfItems = 43

delete(index) with shifting

54310

4

delete(0) 10 3 4 5

0 1 2 3 4 5 6 7

Implementing ArrayList

10

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] =
value, if out of space
grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

0 1 2 3

append(2) 3 5

numberOfItems =

append(element) with growth

410

4

2

5

Design Decisions
For every ADT there are lots of different ways to implement them
Based on your situation you should consider:

-Memory vs Speed
-Generic/Reusability vs Specific/Specialized
-One Function vs Another
-Robustness vs Performance

This class is all about implementing ADTs based on making the right design tradeoffs!

11

Questions !

12

ArrayList

get return data[index]
set data[index] = value
add data[size] = value,
if out of space grow
data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

ArrayList
uses an Array as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0

list free space

LinkedList

get loop until index,
return node’s value
set loop until index,
update node’s value
add create new node,
update next of last
node
insert create new
node, loop until
index, update next
fields
delete loop until
index, skip node
size return size

state

behavior

Node front
size

LinkedList
uses nodes as underlying storage

88.6 26.1 94.4

Q: Would you use
a LinkedList or
ArrayList
implementation
for each of these
scenarios?

Situation #1: Choose a data
structure that implements the
List ADT that will be used to store
a list of songs in a playlist.

Situation #2: Choose a data
structure that implements the
List ADT that will be used to store
the history of a bank customer’s
transactions.

Situation #3: Choose a data
structure that implements the
List ADT that will be used to store
the order of students waiting to
speak to a teacher at a tutoring
center

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

Design Decisions : Situation #1 playlist
Write a data structure that implements the List ADT that will be used to store a list of songs
in a playlist.

Common operations:

- add/delete a song (rare)
- play (iterate through the playlist)
- shuffle play

ArrayList – I want to be able to shuffle play on the playlist

Design Decisions Situation #2 bank
Write a data structure that implements the List ADT that will be used to store the history of
a bank customer’s transactions.

Common operations:

- add a record (frequent, large amount)
- access (iterate through the list)

ArrayList – optimize for addition to back and accessing of elements

Design Decisions Situation #3 students
Write a data structure that implements the List ADT that will be used to store the order of
students waiting to speak to a teacher at a tutoring center

Common operations:

- add a student to back
- remove a student from front

LinkedList - optimize for removal from front
ArrayList – optimize for addition to back

List ADT tradeoffs
Last time: we used “slow” and “fast” to describe running times. Let’s be a little more precise.
Recall these basic Big-O ideas from : Suppose our list has N elements
- If a method takes a constant number of steps (like 23 or 5) its running time is O(1)
- If a method takes a linear number of steps (like 4N+3) its running time is O(N)

For ArrayLists and LinkedLists, what is the O() for each of these operations?
- Time needed to access 𝑁!" element:
- Time needed to insert at end (the array is full!)

What are the memory tradeoffs for our two implementations?
- Amount of space used overall
- Amount of space used per element

16

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘h’ ‘o’ /‘e’ ‘l’ ‘l’

ArrayList<Character> myArr

front

LinkedList<Character> myLl

List ADT tradeoffs
Time needed to access 𝑁!" element:
- ArrayList: O(1) constant time
- LinkedList: O(N) linear time

Time needed to insert at 𝑁!" element (the array is full!)
- ArrayList: O(N) linear time
- LinkedList: O(N) linear time

Amount of space used overall
- ArrayList: sometimes wasted space
- LinkedList: compact

Amount of space used per element
- ArrayList: minimal
- LinkedList: tiny extra

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’

‘h’ ‘o’ /‘e’ ‘l’ ‘l’front

ArrayList<Character> myArr

LinkedList<Character> myLl

Review: Complexity Class

18

complexity class: A category of algorithm efficiency based on the algorithm's
relationship to the input size N.

Complexity
Class

Big-O Runtime if you
double N

Example Algorithm

constant O(1) unchanged Accessing an index of
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

...

exponential O(2N) multiplies drastically Fibonacci with recursion

Note: You don’t have to understand all of this
right now – we’ll dive into it soon.

Questions?

19

Review: What is a Stack?
stack: A collection based on the principle of adding elements and
retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")
- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine the last element added (the "top").

20

top 3
2

bottom 1

pop, peekpush

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

supported operations:
- push(item): Add an element to the top of stack
- pop(): Remove the top element and returns it
- peek(): Examine the top element without removing it
- size(): how many items are in the stack?
- isEmpty(): true if there are 1 or more items in stack, false otherwise

Implementing a Stack with an Array

0 1 2 3

21

push(3)
push(4)
pop()
push(5)

3 45

numberOfItems = 012

ArrayStack<E>

push data[size] = value, if
out of room grow data
pop return data[size - 1],
size-1
peek return data[size - 1]
size return size
isEmpty return size == 0

state

behavior

data[]
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(N) linear if you have to resize
O(1) otherwise

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Question

What do you think the worst possible
runtime of the “push()” operation will be?

Implementing a Stack with Nodes

22

push(3)
push(4)
pop() numberOfItems = 012

LinkedStack<E>

push add new node at top
pop return and remove node at
top
peek return node at top
size return size
isEmpty return size == 0

state

behavior

Node top
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

4

3front

Question

What do you think the worst possible
runtime of the “push()” operation will be?

Implementing a Stack with Nodes - Python

23

Using the native python list type
See
https://docs.python.org/3/tutorial/da
tastructures.html

For serious work, use provided
efficient types, like
collections.deque
https://docs.python.org/3/library/col
lections.html#collections.deque

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/collections.html

Implementing a Stack with Nodes - Python

24

Example usage :

Question Break

25

Review: What is a Queue?
queue: Retrieves elements in the order they were
added.
- First-In, First-Out ("FIFO")
- Elements are stored in order of insertion but don't have indexes.
- Client can only add to the end of the queue, and can only

examine/remove the front of the queue.

26

front back
1 2 3

addremove, peekQueue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items supported operations:

- add(item): aka “enqueue” add an element to the back.
- remove(): aka “dequeue” Remove the front element and return.
- peek(): Examine the front element without removing it.
- size(): how many items are stored in the queue?
- isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

0 1 2 3 4

27

add(5)
add(8)
add(9)
remove()

numberOfItems = 0

5 8 9

123

ArrayQueue<E>

add – data[size] = value, if
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

front = 0
back = 0

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(N) linear if you have to resize
O(1) otherwise

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

12
1

Question

What do you think the worst possible
runtime of the “add()” operation will be?

Implementing a Queue with an Array

28

0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

add(7)
add(4)
add(1) *ouch* ?

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

Wrapping Around :

Implementing a Queue with Nodes

29

add(5)
add(8)
remove()

LinkedQueue<E>

add – add node to back
remove – return and remove
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

numberOfItems = 012

85front

back

Implementing a Queue in Python (simple)

30

Using the native python list type

Not recommended for real
applications due to the time
complexity append() and pop()

Implementing a Queue in Python (better)

31

Using the python’s
collections.deque
type

Efficient because append() and
popleft() are O(1)

Questions?

32

Design Decisions
Discuss in your Breakouts: For each scenario select the appropriate ADT and
implementation to best optimize for the given scenario.

Situation: You are writing a program to schedule jobs sent to a laser printer. The laser
printer should process these jobs in the order in which the requests were received. There
are busy and slow times for requests that can have large differences in the volume of jobs
sent to the printer. Which ADT and what implementation would you use to store the jobs
sent to the printer?

33

Take 5 Minutes

ADT options:
- List
- Stack
- Queue

Implementation options:
- array
- linked nodes

Dictionaries

Dictionaries (aka Maps)
Every Programmer’s Best Friend
You’ll probably use one in almost every programming project.
-Because it’s hard to make a big project without needing one sooner or later.

CSE 373 19 Su - Robbie Weber

Review: Maps
map: Holds a set of distinct keys and a collection of
values, where each key is associated with one value.
- a.k.a. "dictionary"

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

supported operations:
- put(key, value): Adds a given item into

collection with associated key,
- if the map previously had a mapping

for the given key, old value is
replaced.

- get(key): Retrieves the value mapped to
the key

- containsKey(key): returns true if key is
already associated with value in map,
false otherwise

- remove(key): Removes the given key and
its mapped value

Implementing a Dictionary with an Array
ArrayDictionary<K, V>

put find key, overwrite value if there.
Otherwise create new pair, add to next
available spot, grow array if necessary
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, replace pair to
be removed with last pair in collection
size return count of items in
dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis – (if key is the last one
looked at / not in the dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

0 1 2 3
containsKey(‘c’)
get(‘d’)
put(‘b’, 97)
put(‘e’, 20)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)

2 Minutes

Big O Analysis – (if the key is the first one
looked at)
put()

get()

containsKey()

remove()

size() O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant
4

(‘e’, 20)

Implementing a Dictionary with Nodes
LinkedDictionary<K, V>

put if key is unused, create new with
pair, add to front of list, else
replace with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in
dictionary

state

behavior

front
size

containsKey(‘c’)
get(‘d’)
put(‘b’, 20)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘c’ 9‘b’ 7 ‘d’ 4‘a’ 1 20

2 Minutes

Big O Analysis – (if key is the last one
looked at / not in the dictionary)
put()

get()

containsKey()

remove()

size() O(1) constant

O(N) linear

O(N) linear

O(N) linear

O(N) linear

Big O Analysis – (if the key is the first one
looked at)
put()

get()

containsKey()

remove()

size()
O(1) constant

O(1) constant

O(1) constant

O(1) constant

O(1) constant

