GRAPH THEORY .. cotsare here
2] 3o

Abstract Data Types: Stacks, Queues, and Dictionaries

Slides adapted from Champion & Chun

https://www-I2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Abstract Data Types (ADT)

Abstract Data Types
An abstract definition for expected operations and behavior
Defines the input and outputs, not the implementations

List - a collection storing an ordered sequence of elements

each element is accessible by a 0-based index

a list has a size (number of elements that have been
added) Adding an

element
elements can be added to the front, back, or elsewhere
in Java, a list can be represented as an ArrayList object
&;

element

Adding an

element

Interfaces

interface: A construct in Java that defines a set of Example

methods that a class promises to implement

Interfaces give you an is-a relationship without code sharing.
A Rectangle object can be treated as a Shape but inherits no code.

Analogous to non-programming idea of roles or certifications:

public interface Shape {
public double area();
public double perimeter();

"I'm certified as a CPA accountant. }
This assures you | know how to do taxes, audits, and consulting."
"I'm 'certified" as a Shape, because | implement the Shape interface. :
This assures you | know how to compute my area and perimeter.” «interface>»
Shape
public interface name { P
AN
public type name (type name, .., type name);
public type name (type name, .., type name) ; Circle Rectangle Triangle
radius width, height ahb,c
, Circle{radius) Rectanglew h) Triangle(a, b, ¢)
public type name (type name, .., type name) ; a0 a0 w0
perimeter perimeter perimeter

Java Collections

Java provides some implementations of ADTs for you!

ADTs Data Structures

Lists List<Integer> a = new ArrayList<Integer>();

Stacks Stack<Character> c¢ = new Stack<Character>();

Queues Queue<String> b = new LinkedList<String> () ;

Maps Map<String, String> d = new TreeMap<String, String>();

We can build other data structures from scratch, e.g.

Linked Lists - a collection of

Python Collections

Python provides some implementations of ADTs as native types

ADTs Data Structures

Lists list [1, 2, 3]

Stacks use list or collection.deque
Queues collection.deque

Maps dict, {}, { key : value }

We can build other data structures from scratch by defining new classes.

Full Definitions

Abstract Data Type (ADT)
A definition for expected operations and behavior

A mathematical description of a collection with a set of supported operations and how
they should behave when called upon

Describes what a collection does, not how it does it
Can be expressed as an interface
Examples: List, Map, Set

Data Structure
A way of organizing and storing related data points
An object that implements the functionality of a specified ADT

Describes exactly how the collection will perform the required operations
Examples: LinkedIntList, ArrayIntList

Case Study: The List ADT

list: a collection storing an ordered sequence of
elements.
Each item is accessible by an index.

A list has a size defined as the number of elements in the list

Expected Behavior:

get(index): returns the item at the given
iIndex

set(value, index): sets the item at the given Adding an

index to the given value ement
append(value): adds the given item to the
end of the list
insert(value, index): insert the given item at
Adding an

the given index maintaining order

delete(index): removes the item at the given element
index maintaining order o 1 2 3 4

Fizeo: returns the number of elements in the
ISt

Adding an

element

state
Set of ordered items
Count of items

behavior
get(index) return item at index

set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

Adding an

element

element

<. pundnen-2

ArrayList

uses an Array as underlying storage

ArrayList<E>

datal]
size

get return data[index]
set data[index] = value
append datal[size] =
value, if out of space
grow data

insert shift values to
make hole at index,
data[index] = wvalue, if
out of space grow data
delete shift following
values forward

size return size

88.

626.1|94.4 0 0

list free space

Case Study: List Implementations

LinkedList

uses nodes as underlying storage

LinkedList<E>

Node front
size

get loop until index,
return node’s value

set loop until index,
update node’s value
append create new node,
update next of last node
insert create new node,
loop until index, update
next fields

delete loop until index,
skip node

size return size

88.

6 26.1 94.

Implementing ArrayList

insert (element, index) with shifting
ArrayList<E>

insert (10, 0) 10 4 5

datal]
size

numberOfItems = 4
get return data[index]
set data[index] = value
append datal[size] =
value, if out of space
grow data . .
insert shift values to delete (index) with Shlftlng
make hole at index,
data[index] = value, if
out of space grow data
delete shift following delete (O) 10 3 4 5
values forward
size return size

numberOfItems = | 3

Implementing ArrayList

append (element) with growth

ArrayList<E>

append (2) 10 3 4 5

datal]

size

get return data[index] numberOfItems = |5
set data[index] = value
append datal[size] =
value, if out of space
grow data

insert shift values to

make hole at index,
data[index] = value, if 2

out of space grow data
delete shift following
values forward

size return size

Design Decisions

For every ADT there are lots of different ways to implement them

Based on your situation you should consider:
Memory vs Speed
Generic/Reusability vs Specific/Specialized
One Function vs Another
Robustness vs Performance

This class is all about implementing ADTs based on making the right design tradeoffs!

Q: Would you use
a LinkedList or
ArraylList
implementation
for each of these
scenarios?

state
Set of ordered items
Count of items
behavior
get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

Questions !

element

ArrayList

uses an Array as underlying storage

ArrayList

datal]
size

get return datalindex]
set data[index] = value
EEE data[size] = value,
if out of space grow
data

insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward

size return size

&QD@@Q@@Q&”

Adding an

element

LinkedList
uses nodes as underlying storage

LinkedList

Node front
size

get loop until index,
return node’s value
set loop until index,
update node’s value
add create new node,
Egaate next of last
node

insert create new
node, loop until
index, update next
fields

delete loop until
index, skip node

88.

6] 26.1 | 94.4 0

size return size

g free space

88.6 26.1 94.4

Choose a data
structure that implements the
List ADT that will be used to store
a list of songs in a playlist.

Choose a data
structure that implements the
List ADT that will be used to store
the history of a bank customer’s
transactions.

a data
structure that implements the
List ADT that will be used to store
the order of students waiting to
speak to a teacher at a tutoring
center

Design Decisions : playlist

Write a data structure that implements the List ADT that will be used to store a list of songs
in a playlist.

Common operations:

- add/delete a song (rare)

- play (iterate through the playlist)
- shuffle play

ArrayList — | want to be able to shuffle play on the playlist

Design Decisions bank

Write a data structure that implements the List ADT that will be used to store the history of
a bank customer’s transactions.

Common operations:
- add a record (frequent, large amount)

- access (iterate through the list)

ArrayList — optimize for addition to back and accessing of elements

Design Decisions students

Write a data structure that implements the List ADT that will be used to store the order of
students waiting to speak to a teacher at a tutoring center

Common operations:
- add a student to back

- remove a student from front

LinkedList - optimize for removal from front

ArrayList — optimize for addition to back

List ADT tradeoffs

Last time: we used “slow” and “fast” to describe running times. Let's be a little more precise.

Recall these basic Big-O ideas from : Suppose our list has N elements
If a method takes a constant number of steps (like 23 or 5) its running time is O(1)
If a method takes a linear number of steps (like 4N+3) its running time is O(N)

For ArrayLists and LinkedLists, what is the O() for each of these operations?
Time needed to access N™ element:

Time needed to insert at end (the array is full!)

What are the memory tradeoffs for our two implementations?
Amount of space used overall

Amount of space used per element

ArraylList<Character> myArr LinkedList<Character> myLl

ih! ie’ iI’ il’ io! front ih! ie! iI! GI! io’

List ADT tradeoffs

Time needed to access N™ element:

Arraylist: O(1) constant time ArrayList<Character> myArr
LinkedList: O(N) linear time

Time needed to insert at N element (the array is full!) | et | | | e
ArrayList: O(N) linear time

LinkedList: O(N) linear time

Amount of space used overall LinkedList<Character> myLl

ArrayList: sometimes wasted space
LinkedList: compact front ‘h’ ‘e’ ‘P ik ‘o’

Amount of space used per element
ArrayList: minimal
LinkedList: tiny extra

Note: You don’t have to understand all of this

C O m p | eXity C | a SS right now — we’ll dive into it soon.

complexity class: A category of algorithm efficiency based on the algorithm's
relationship to the input size N.

Complexity
Class

Big-O

Runtime if you
double N

Example Algorithm

constant o(1) unchanged Accessing an index of
an array

logarithmic O(log, N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log, N) | slightly more than Merge sort algorithm
doubles

quadratic O(N?) quadruples Nested loops!

exponential o(2V) multiplies drastically | Fibonacci with recursion

Operations

Fair
O(n"2)

O(n)

O(log n), O(1)

Elements

Questions?

19

What is a Stack?

stack: A collection based on the principle of adding elements and
retrieving them in the opposite order.
Last-In, First-Out ("LIFO")

push pop, peek
Elements are stored in order of insertion. \ /

We do not think of them as having indexes.
Client can only add/remove/examine the last element added (the "top").
top| 3
2
state | bottom| 1
et of ordered items push(item): Add an element to the top of stack
behavior pop(): Remove the top element and returns it
push(item) add item to top peek(): Examine the top element without removing it
pop() return and remove i))
item at top size(): how many items are in the stack?
peek() look at item at top)
size() count of items iISEmpty(): true if there are 1 or more items in stack, false otherwise

isEmpty() count of items is 0?

Implementing a Stack with an Array

state
Set of ordered items
Number of items
behavior

push(item) add item to top
pop() return and remove

item at top

peek() look at item at top
size() count of items
isEmpty() count of items is 0?

push (3)
push (4)

pop ()
push (5)

ArrayStack<E>

datal[]

size

push datal[size] = value, if
out of room grow data

pop return data[size - 1],
size-1

peek return data[size - 1]
size return size
isEmpty return size == 0

Big O Analysis

pop () O(1) Constant
peek () O(1) Constant
size () O(1) Constant

isEmpty () O(1) Constant

N) linear if you have to resize
1) otherwise

push () O(
O(

numberOfItems = | 2

What do you think the worst possible

runtime of the “push()” operation will be?

Implementing a Stack with Nodes

state

Set of ordered items
Number of items

behavior

push(item) add item to top
pop() return and remove

item at top

peek() look at item at top
size() count of items
isEmpty() count of items is 0?

push (3)
push (4)

pop ()

LinkedStack<E>

Node top
size

push add new node at top
top

peek return node at top
size return size

pop return and remove node at

isEmpty return size == 0
4
front 3

numberOfItems = 2

Big O Analysis

pop () O(1) Constant
peek () O(1) Constant
size () O(1) Constant

isEmpty () O(1) Constant
push () O(1) Constant

What do you think the worst possible
runtime of the “push()” operation will be?

Implementing a Stack with Nodes - Python

class Stack:
def __init__ (self):
self.items = []

Using the native python 115t type

See def is_empty(self):

. return len(self.items) ==
https:/ /docs.python.org /3 /tutorial /da
tastructures.html LT PUSEELT, i)t

self.items.append(item)

lef pop(self):

. . if self.is_empty():
For serious Workl use prowded raise IndexError("pop from empty stack")
efficient Typesl like return self.items.pop()
collections.deque def peek(self):
https://docs.python.org /3 /library /col if self.is_empty():

raise IndexError("peek from empty stack")
return self.items[-1]

lections.html#collections.deque

def size(self):
return len(self.items)

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/collections.html

Implementing a Stack with Nodes - Python

def __init__ (self):
self.items = []

Example usage : def is_empty(self):

return len(self.items) ==
my_stack = Stack()
my_stack.push(1)
my_stack.push(2)
my_stack.push(3)

push(self, item):
self.items.append(item)

pop(self):

print(my_stack.peek())
print(my_stack.pop()

if self.is_empty():
)
print(my_stack.size())

raise IndexError("pop from empty stack")
return self.items.pop()

F peek(self):
if self.is_empty():
raise IndexError("peek from empty stack")
return self.items[-1]

ef size(self):
return len(self.items)

Question Break

What is a Queue?

queue: Retrieves elements in the order they were
added.
First-In, First-Out ("FIFO")

Elements are stored in order of insertion but don't have indexes.

Client can only add to the end of the queue, and can only
examine/remove the front of the queue.

front back
remove, peek add

— 1 2 3 |+

state

Set of ordered items
Number of items

bi?j}:é?nr: 2dd item 1o back add(item): aka “enqueue” add an element to the back.

wgremove and return remove(): aka "dequeue” Remove the front element and return.
item at front

peek() return item at front peek(): Examine the front element without removing it.

size() count of items . . .
isEmpty() count of items is 07 size(): how many items are stored in the queue?

isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

state

Set of ordered items
Number of items

behavior
add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

add (
add (

add (
remov

O 00 U1
(vav

()

ArrayQueue<E>

datal]

Size

front index
back index

add - datal[size] = value, if
out of room grow data

remove - return data[size -

1], size-1

peek - return data[size - 1]
size — return size

isEmpty — return size == 0

Big O Analysis
O(1) Constant
O(1) Constant

remove ()

peek ()

size () O(1) Constant
isEmpty () O(1) Constant

add () O(N) linear if you have to resize

O(1) otherwise

5 8

9

numberOfItems

front =1
back = 2

What do you think the worst possible
runtime of the “add()” operation will be?

Implementing a Queue with an Array

dC
dC

dC

front
Wrapping Around : /

back

4

5

9

2

back

numberOfITtems = 5

J,—l

Implementing a Queue with Nodes

state

Set of ordered items
Number of items

behavior
add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

add (5)
add (8)
remove ()

LinkedQueue<E>

Node front
Node back
size

add - add node to back
remove — return and remove
node at front

peek - return node at front
size — return size

isEmpty — return size == 0

numberOfItems = 2

front 5 8

back

Big O Analysis

remove ()
peek ()
size ()
isEmpty ()
add ()

O(1) Constant
O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

Implementing a Queue in Python (simple)

lass Queue:
of __init__ (self):
self.items = []

Using the native python 115t type

def enqueue(self, item):
self.items.append(item)
Not recommended for real
applications due to the time def dequeue(self):
if self.is_empty():
raise IndexError("dequeue from empty queue")
return self.items.pop(0)

complexity append() and pop()

ef peek(self):
if self.is_empty():
raise IndexError("peek from empty queue")
return self.items[0]

lef size(self):
return len(self.items)

def is_empty(self):
return len(self.items) == 0

Implementing a Queue In Python (better)

class Queue:
def __init__ (self):
self.items = deque()

Using the python’s

COlleCtionS,deque def enqueue(self, item):
self.items.append(item)
type

lef dequeue(self):
Efficient because append () and i STl GIET)E

raise IndexError("dequeue from empty queue")
popleft () are O(]) return self.items.popleft()

lef peek(self):
if self.is_empty():
raise IndexError("peek from empty queue")
return self.items[0]

lef size(self):
return len(self.items)

lef is_empty(self):
return len(self.items) ==

Questions?

32

Design Decisions

Discuss in your Breakouts: For each scenario select the appropriate ADT and
implementation to best optimize for the given scenario.

You are writing a program to schedule jobs sent to a laser printer. The laser
printer should process these jobs in the order in which the requests were received. There
are busy and slow times for requests that can have large differences in the volume of jobs
sent to the printer. Which ADT and what implementation would you use to store the jobs
sent to the printer?

ADT options: Implementation options:
- List - darray
- Stack - linked nodes

- Queve

‘ Dictionaries

Dictionaries (aka Maps)

Every Programmer’s Best Friend

You'll probably use one in almost every programming project.
Because it's hard to make a big project without needing one sooner or later.

CSE 373 19 Su - Robbie Weber

Maps

map: Holds a set of distinct keys and a collection of
values, where each key is associated with one value.
a.k.a. "dictionary"

map.get ("the") 56

put(key, value): Adds a given item into KEYS VALUES

collection with associated key, Jan 327.2

state . i) Feb 368.2

Set of items & keys if the map previously had a mapping Mar 197.6

Count of items for the given key, old value is Apr 1784

i M 100.0

behavior replaced. s P~

put(key, item) add item to . i Jul 323
collection indexed with key ghet(llfe)/) Retrieves the value mapped to Aug —— | Aug 37.3 —» 373

get(key) return item the ey Sep 19.0

associated with key containsKey(key): returns true if key is Oct 37.0

containsKey(key) return if key already associated with value in map Nov 732

already in use fal th . ! Dec 110.9

remove(key) remove item alse otherwise Annual 1551.0

and sssociated key remove(key): Removes the given key and
size() return count of items its mapped value

Implementing a Dictionary with an Array

Big O Analysis — (if key is the last one
ArrayDictionary<K, V> looked at / not in the dictionary)

state put () O(N) linear
. Pair<K, V>[] data .
sttt v get 0 O finear
behavior put find key, overwrite value if there. containsKey () O(N) linear
put(key, item) add item to Otherwise create new pair, add to next
coIIekctlon indexed with key available spot, grow array if necessary remove () O(N) linear
gﬂg%rgtu'rphl'lc(em get scan all pairs looking for given .
assn?(aiiseKeV\;II(e)iZturn i ke key, return associated item if found size () O(1) constant
:Ioreaa:jy in l]/se Y y containsKey scan all pairs, return if
remove(key) remove item key is found , , Big O Analysis — (if the key is the first one
and associated key remove scan all pairs, replace pailr to | k d t
size“return Count of |tems be removed Wlth laSt pair ln Collection oo e a)
size return count of items in
dictionary put () 0(1) constant
get () O(1) constant
: \ .
containsKey (‘'c’) containsKey () O(1) constant
get ('d’)
£t (‘b’ 07 I ' , remove () 0(1) constant
put (*o%,27) (a’, 1) | (b’ 97) (¢, 3) | (‘d,4) (%,20) _.
put (‘e’, 20) 1 . | size() O(1) constant

Implementing a Dictionary with Nodes

Big O Analysis — (if key is the last one

LinkedDictionary <K, V> looked at / not in the dictionary)

state put () O(N) linear
Set of items & keys front .
Count of items ! size get () O(N) linear
behavior put if key is unused, create new with containsKey () O(N) linear

put(key, item) key, item) add item to pair, add to front of list, else

collection indexed with key . .
remove
et(key) return item replace with new value () O(N) |Inear

associated with key
containsKey(key) return if key
already in use

get scan all pairs looking for given
key, return associated item if found size () O(']) constant
containsKey scan all pairs, return if
key is found

4;?222§ok§atggmgye item remove scan all pairs, skip pair to be Blg O AnaIySiS - (lf the key is the first one
size() return count of items r?moved , , looked at)
size return count of items in
dictionary put () 0(1) constant
containsKey ('c’) O(1) constant
7 front get ()
get ("d") O(1) constant
put (‘b’, 20) containsKey ()

remove () O(1) constant

‘a’ | 1 ‘b’ | 20 ‘e’ | 9 \d'| 4 , O(1) constant
size ()

