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Functional Data

Deville (1974), Besse & Ramsay (1986), Ramsay & Silverman (1997), ...

An observation is a function (growth curve, temperature curve, ...)

Consider a continuous time process

� �	� � 
 � � 
� 
and the associated

random function

� �	� �

supposed to take values in
��� � ��  ���

(more generally

�

can be separable Hilbert space).

If

�� � � � � � ��� we can define the expectation � � 
 � � �� � � � 
 � �

and the
covariance operator

� � �"! # ��
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where 4 �	5 � 
 � � cov

� � �5 � � � � 
 � ��

�

is nonnegative and nuclear (and thus compact).
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Growth curves
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Figure 1: Growth curves of babies after birth.
Statistical modelling of functional data – p.3/19



PCA for functional Data
The first studies on that issue were dealing with the statistical description
(representation in small dimension space), extending Principal
Components Analysis to function spaces.

We would like to approximate

� � 
� � � 6 �87 � � � 
 � � � � 
 �:9 7
;=< > ? ; �	� �	@ ; � 
 �

If @ ; is the

A

th eigenfunction of

�
associated to the

A

th largest eigenvalueB ;, we have, with ? ; �	� � � � �� @ ; C �

�� � �ED � 7 � � � F
;< 7 G > B ;�

Empirical Orthogonal Functions, Obhukov (1960),
Karhunen-Loeve expansion, Karhunen (1947), Loeve (1945).
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Smoothing and Penalization

From an “aesthetic” point of view: smooth representation can lead to
better interpretation (Ramsay, Besse, ...)

From a mathematical point of view: improves accuracy
(Pezzulli & Silverman 1993, Silverman 1996, Cardot 2000, ...).

Suppose we observe a sample of curves

� > � 
 � � � � � � �IH � 
 � � 
 � �� H � 
 �

the empirical mean and

� H the empirical covariance operator.

Let

J �� � � KML �"! # N G

be a penalty operator (such as

J �	O � � � O P � Q � � �

.

RSTU V W � � H @ � @ C D X J �@ �
Rice & Silverman (1991)

RSTU V W

� � H @ � @ C� @ � � 9 X J �@ � Silverman (1996)

Y Z\[]^V _a`
b

c
H

d < >
e � � dD f d � �9 X J � f d � g

Besse et al. (1997)
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Models with functional covariates

Linear Model, (Ramsay & Dalzell 1993, Goutis 1998, Cardot et al.
1999)
a sample

�h d� � d � d < >jik k k i H � where

h d is real and

� d is functional

lnm * o p + q & / )r m & / )0 / pts m

Functional Autoregressive Process (Bosq 1991, Bosq 2000),

r m & / ) * o & / ) p + u &('.- / )r mwv x &(' )0 ' pts m & / )

GLM for functional data (Marx & Eilers 1999, Cardot et al. 2000, ...,

lEm y r m * z { | &~} q- z � )
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Estimation procedures

Covariance matrices are compact operators in an infinite dimension space
and so estimation is an ill-posed problem.
In the linear model, the score equation

b
c

H
d < > � � d� ��� C � d � b

c
H

d < > h d � d�

has an infinite number of solutions.

Regularization is needed

by a dimension reduction approach

by adding a penalty
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Dimension reduction

Denoting by

�@ > � � � � � �@ 7 the orthonormal eigenfunctions of the empirical
covariance operator associated to the eigenvalues

�B > ��� � � � �B 7 �
we get a solution in the function space

���7 span by

�@ > � � � � � �@ 7 �

��7 � 7
;< >

� � H � �@ ; C�B ; �@ ;�
where

� H � >H H d < > h d � d�

Smoothing steps can also be combined with this approach and generally
give better results on real data sets (Besse and Cardot 1996, Besse et al.
2000).

Asymptotic properties of such estimators have been derived (Bosq, 1991,
Bosq 2000, Cardot et al. 1999, ...):

� must not tend too rapidly to infinity as the sample size c increases.
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Penalty approach

Adding a penalty allows to get a stable and a unique solution
(Leurgans et al. 1993, Marx and Eilers 1999, Mas 1999, ...).

For the linear model we are seeking for

��(� satisfying

b
c

H
d < > � � d� ��� C � d9 X� J � �� � � b

c
H

d < > h d � d�

X

being a tuning parameter that controls the trade off between the fidelity
to the data and the “regularity” of the solution.
We have ��(� � � � H 9 X� J �� > � H �

The solution is generally expanded in a basis of B-splines or Fourier
series.
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A more general framework
More generally, we can consider a loss function

�

such as a least squares
criterion or the opposite of the log-likelihood.

The regularization approach consists in minimizing

Y Z\[��V W � �h > � � � � � h H � � > � � � � � �8H � � � 9 X J � � �

in a space

K L ��

The dimension reduction approach leads to find the optimum of

Y Z\[�V �W ` � �h > � � � � � h H � ��� 7 � > � � � � � �� 7 �8H � � �

where

�K7 is a �-dimensional function space and

��� 7 is a projector onto

�K7 �

The values of the tuning parameters � and

X

are chosen with criterions
based on cross-validation.
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Remarks on the convergence

For both approaches some consistency results have been obtained.
In general rates of convergence are rather slow compared to parametric
and usual nonparametric ones.

For instance, in the context of Generalized Linear Models, we get the
bound (Cardot & Sarda 2002), for

X � c � P >� � Q� � � � C �

�� � � �D ����� � � C � � � � � c � ��� � P� � G > Q � �

�� �� �  �

Are these rates the best ones ?

What is the influence of the eigenvalues ?
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Remote sensing application

Satellite SPOT4 with sensor Végétation launched in March 1998

Gives daily measures of relected radiations for 4 wavelengths
at a low spatial resolution, a pixel representing an area of 1km

�
.

The size of plots being much less than 1 km

� � a pixel corresponds to
different crops (maize, wheat, forest, ...), and the observed reflectances
are a mixture of “pure” reflectances.

Land use

Digital Elevation Model

Agronomic growth models

Weather data

� 	 � � 	 �¡
 � 	 � � 	¢

£ Crops yield prediction

at a regional scale
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Scale change and mixed pixels

Résolution 20 m x 20 m

100 140 180

Resolution 1 km x 1 km

151 174

170166

Wheat 37 %, Forest 37 %

Wheat 40 %, Barley 22 %, Peas 24 % Wheat 45 %, Barley 26 %, Sunflower 22 %

Wheat 50 %, Barley 21 %, Sunflower 24 %
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The data

¤ d ;� A � b � � � � � ¥� is the proportion of land use of crop

A

in pixel
¦

of 1 km

��

In our application, the observed area is about

§ �

km ¨ § �
km,

we have c � b© © §

pixels at each date.
Ten ( ¥� b �

) different classes of crops were present
(winter crops 49 %, forest 13.5 %, rapeseed 12 %, urban 6 %, ...)

The curves of reflectance of a pixel

¦

is denoted by

ª¬« � � � d � 
 > � � � � � � � d � 
	 � � ®

where


 > � � � � � 
�¯ � � � � � 
	 are the instants of measure.

The images in which the clouds were too important were removed.

We finally get

°�� ±²
different images from March to August 1998.
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The multilogit model

We suppose that the proportions ¤ d ; given the temporal evolution of the
reflectance

³ � d � 
 � � 
�  ´

can be modelled as resulting from a multinomial
distribution whose parameters satisfy

µ � ¤ d ; ¶ � d � � ·¸T � ;9 ® � ; � 
 � � d � 
 �¹ 


�
� < > ·¸T � � 9 ® ��� � 
 � � d � 
 �¹ 
 �

For identifiability reasons we took
�� � �

and

�� � ��

We aim at estimating the vector

º � � � > � � � � � �� � > � ®

and the functional coefficients

� ; � 
 � � A � b � � � � � ¥D b�
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A learning sample composed of 1055 pixels.

A test sample composed of 499 pixels.

For computational purposes, we prefered the dimension reduction
approach based on a functional principal components analysis.

The number of covariates (the principal components) still may be large.

We decided to select the most significative parameters by means of the
likelihood ratio test with an ascendent procedure.
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Figure 2: Functional coefficients of the multilogit ap-

proach for the NDVI index.
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Results

Themes NDVI PVI Blue Red NIR SWIR
» ¼

urban 0.49 0.36 0.47 0.54 0.41 0.51 0.86

water 0.43 0.29 0.78 0.62 0.61 0.31 1.30

rapeseed 0.48 0.46 0.45 0.50 0.47 0.47 0.59

winter crops 0.20 0.21 0.19 0.20 0.22 0.19 0.30

spring crops 0.58 0.56 0.60 0.61 0.65 0.61 0.69

peas 0.50 0.43 0.45 0.43 0.48 0.46 0.63

summer crops 0.61 0.68 0.61 0.60 0.76 0.53 0.88

permanent crops 0.47 0.46 0.52 0.49 0.46 0.50 0.61

forest 0.34 0.36 0.34 0.31 0.45 0.35 0.98

potatoes 0.90 0.93 0.94 0.90 1.06 0.85 1.31

The criterion is

� d ;� ½¿¾ ^À� Á¾ ^À½¾ÃÂ À and we take the median in the test sample.

Model

ÄÆÅ consists in predicting by the mean value of the learning sample.
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Statistical Learning for functional data

Many links with Statistical Learning: problems with high dimension,
regularization techniques, common applications, ....

A large community (hundreds of papers published), particularly in France.

In Toulouse, a working group “Staph”
statistics for functional data and/or statistics for Hilbert.
Nonparametric models for functional data:
regression, supervised learning, additive models, ...
Decomposition of stationary processes (PCA in the frequency domain, ...)
Statistics on operators and non-commutative probabilities,
.....

A web site: http://www.lsp.ups-tlse.fr/Fp/Ferraty/staph.html
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