

Colloque Apprentissage statistique : Théorie et application

A statistical approach for separability of classes

Djamel A. ZIGHED Stéphane LALLICH Fabrice MUHLENBACH

Laboratoire ERIC - Lyon Université Lumière Lyon 2 5, avenue Pierre Mendès-France 69676 BRON Cedex FRANCE

zighed@univ-lyon2.fr lallich@univ-lyon2.fr muhlenba@eric.univ-lyon2.fr

- General framework
- •Class separability
- Neighborhood graph and clusters
- •Cut weighted edges statistic
- •Experiments
- •Conclusions and future work

General framework

Assume that we aim to find a prediction model φ that fits the data with an accuracy rate $\varepsilon > \varepsilon^*$, whatever the machine learning algorithm.

We failed finding out such prediction model

- All the MLA aren't suitable for this specific problem, so we have to look for a new MLA,... until...
- The classes aren't separable.

Class separability

The separability of classes seems to be linked to

- The number of homogenous clusters
- The size of each cluster

Few homogenous clusters

Many homogenous clusters

Neighborhood graph and clusters

X For "natural neighborhood", we need a connected graph Х

There are many other possibilities to build such neighborhood graphs, for instance :

Voronoi Diagram, Delaunay triangulation,

Cut weighted edge statistic

Weighted edges

•Connection: w_{ii} =1 $W_{ik} = 1$ k $w_{ik} = 0$ (no edge) •Similarity : d(i,j) = 3 $w_{ij} = 1/(1+d(i,j))$ k $W_{ik} = 1/(1+d(i,k))$ d(i,k) = 1•Rank: 2 w'_{ii} =1/2=0.5 $w'_{ik} = 1/1 = 1$ k

Principle:

The classes are well separable if the global weight of the cut edges (for generating the clusters) is very small.

Notation:

Let *I* be the sum of the non cut edges weight Let *J* be the sum of the cut edges weight

Null hypothesis:

 H_0 : the vertices of the graph are labeled independently of each other, according to the same probability distribution of the labels.

Reject H_0 : the classes are not independently distributed or the probability distribution of the classes is not the same for the different vertices.

Law of J:

•Boolean case (Moran 1948, Cliff & Ord 1986):

2 classes:
$$J_{1,2} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} Z_{ij}$$

1 and 2

where Z_{ij} equals 1 if Y(i) = Y(j) and 0 if not

•Multiple classes :

we consider all the pairs of different labels r and s

Mean of J is calculated from
$$J_{r,s}$$

$$J = \sum_{r=1}^{k-1} \sum_{s=r+1}^{k} J_{r,s} \qquad J_{r,s} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} Z_{ij}$$

Decision:

 H_0 is rejected if the p-value of J^s is lower than 5% (for example)

Experiments

Domain name	n	р	k	clust.	edges	J / (I + J)	J ^s	p-value
Waves-20	20	21	3	6	25	0.400	-0.44	0.6635
Waves-50	50	21	3	11	72	0.375	-4.05	5.0E-05
Waves-100	100	21	3	12	156	0.301	-8.44	3.3E-17
Waves-1000	1000	21	3	49	2443	0.255	-42.75	0

Breiman L., Friedman J.H., Olshen R.A. and Stone J. Classification and regression trees, 1984 Wadsworth Int.

•13 benchmarks of the UCI Machine Learning Repository
•Graph: Relative Neighborhood Graph of Toussaint
•Weights: connection, distance and rank

General information						weighting: connection			weighting: distance			weighting: rank			
Domain name	n	р	k	clust.	edges	error r.	J / (I + J)	J ^s	p-value	J / (I + J)	Js	p-value	J / (I + J)	J ^s	p-value
Wine recognition	178	13	3	9	281	0.0389	0.093	-19.32	0	0.054	-19.40	0	0.074	-19.27	0
Breast Cancer	683	9	2	10	7562	0.0409	0.008	-25.29	0	0.003	-24.38	0	0.014	-25.02	0
Iris (Bezdek)	150	4	3	6	189	0.0533	0.090	-16.82	0	0.077	-17.01	0	0.078	-16.78	0
Iris plants	150	4	3	6	196	0.0600	0.087	-17.22	0	0.074	-17.41	0	0.076	-17.14	0
Musk "Clean1"	476	166	2	14	810	0.0650	0.167	-17.53	0	0.115	-7.69	2E-14	0.143	-18.10	0
Image seg.	210	19	7	27	268	0.1238	0.224	-29.63	0	0.141	-29.31	0	0.201	-29.88	0
lonosphere	351	34	2	43	402	0.1397	0.137	-11.34	0	0.046	-11.07	0	0.136	-11.33	0
Waveform	1000	21	3	49	2443	0.1860	0.255	-42.75	0	0.248	-42.55	0	0.248	-42.55	0
Pima Indians	768	8	2	82	1416	0.2877	0.310	-8.74	2E-18	0.282	-9.86	0	0.305	-8.93	4E-19
Glass Ident.	214	9	6	52	275	0.3169	0.356	-12.63	0	0.315	-12.90	0	0.342	-12.93	0
Haberman	306	3	2	47	517	0.3263	0.331	-1.92	0.054	0.321	-2.20	0.028	0.331	-1.90	0.058
Bupa	345	6	2	50	581	0.3632	0.401	-3.89	1E-04	0.385	-4.33	1E-05	0.394	-4.08	5E-05
Yeast	1484	8	10	401	2805	0.4549	0.524	-27.03	0	0.512	-27.18	0	0.509	-28.06	0
	\checkmark							t							
nb of instances / nb of classes e							rror rate	J ^s : s e on a	tandaı 1-NN	rdized c	ut edge	e weigl	ht		
nb of predictive attributes (i						n a 10-fold cross validation)									

	General information					Stat	istical v	alue	Error rate							
Domain name	n	р	k	clust.	edges	J / (I + J)	Js	p-value	1-NN	C4.5	Sipina	Perc.	MLP	N. Bayes	Mean	
Breast Cancer	683	9	2	10	7562	0.008	-25.29	0	0.041	0.059	0.050	0.032	0.032	0.026	0.040	
BUPA liver	345	6	2	50	581	0.401	-3.89	0.0001	0.363	0.369	0.347	0.305	0.322	0.380	0.348	
Glass Ident.	214	9	6	52	275	0.356	-12.63	0	0.317	0.289	0.304	0.350	0.448	0.401	0.352	
Haberman	306	3	2	47	517	0.331	-1.92	0.0544	0.326	0.310	0.294	0.241	0.275	0.284	0.288	
Image seg.	210	19	7	27	268	0.224	-29.63	0	0.124	0.124	0.152	0.119	0.114	0.605	0.206	
lonosphere	351	34	2	43	402	0.137	-11.34	0	0.140	0.074	0.114	0.128	0.131	0.160	0.124	
lris (Bezdek)	150	4	3	6	189	0.090	-16.82	0	0.053	0.060	0.067	0.060	0.053	0.087	0.063	
Iris plants	150	4	3	6	196	0.087	-17.22	0	0.060	0.033	0.053	0.067	0.040	0.080	0.056	
Musk "Clean1"	476	166	2	14	810	0.167	-17.53	0	0.065	0.162	0.232	0.187	0.113	0.227	0.164	
Pima Indians	768	8	2	82	1416	0.310	-8.74	2.4E-18	0.288	0.283	0.270	0.231	0.266	0.259	0.266	
Waveform	1000	21	3	49	2443	0.255	-42.75	0	0.186	0.260	0.251	0.173	0.169	0.243	0.214	
Wine recognition	178	13	3	9	281	0.093	-19.32	0	0.039	0.062	0.073	0.011	0.017	0.186	0.065	
Yeast	1484	8	10	401	2805	0.524	-27.03	0	0.455	0.445	0.437	0.447	0.446	0.435	0.444	
								Mean	0.189	0.195	0.203	0.181	0.187	0.259	0.202	
R ² (J/(I+J) ; error rate)								0.933	0.934	0.937	0.912	0.877	0.528	0.979		
R² (J ^s ; error rate)									0.076	0.020	0.019	0.036	0.063	0.005	0.026	
instance based loorning method a																

•Error rate in machine learning and weight of the cut edges

instance-based learning method

decision tree

induction graph

neural networks

Naive Bayes

Conclusion

The cut weighted edge statistic is a good class separability index.

The cut weighted edge statistic gives an appropriate information of the *a priori* ability of a database to be learnt.

Related work:

- Local version of the test to detect outliers (Lallich, Muhlenbach, Zighed, ISMIS 2002)
- Feature selection based on the best separability of classes (in progress)