Learning Very Large Data Sets

Apprentissage pour Très Grands Echantillons

Léon Bottou \& Yann Le Cun
NEC Research Institute, 4 Independence Way,
Princeton NJ 08540, USA
Email: \{leonb,yann\}@research.nj.nec.com

Large Learning System

Example:

- Computer monitors radio broadcasts for a few months and learns how to recognize speech.

Obstacles

- Statement: statistics, statistic learning theory,...
- Engineering: http://lush.sourceforge.net.
- Algorithms: learning algorithms do not scale well enough!

Learning algorithms do not scale well enough

Comparing computers in 1992 and 2002:

- Speed multiplied by 100
- Disk storage multiplied by 500+

Comparing large learning systems in 1992 and 2002 :

- From 10^{5} to 10^{6} examples,
- From 10^{5} to 10^{6} parameters,

Very computer intensive attempts to improve upon these numbers (Bengio \& Ducharme, 2001)

SVMs are not running in this race.
Boosting does (Drucker, 1993)

Online algorithms

Large data sets are best handled by online algorithms.

1994 Bottou, Cortes \& al MNIST experiments.

1998 LeCun, Bottou, Bengio, Haffner -Gradient-based Learning for Document Recognition.

1998 LeCun, Bottou, Müller, Orr Efficient learning.

How fast can online algorithms be?

Previous work

Comparing online and batch learning algorithms:

1970 Tsypkin \& others Optimal (online) learning systems.

1997 Saad, Solla, Caticha Optimal online algorithms in statistical physics (teacher network / student network).

1997 Murata, Amari Natural Gradient achieves Cramer-Rao bound (maximum likelihood)

Our contribution

- A simple and general statement on the relative speed of online and batch learning algorithms.
- Answers about the scaling laws of learning algorithms.

Cost functions

- Many cost functions are sums/averages of many terms.

$$
C_{L}(\theta)=\frac{1}{L} \sum_{i=1}^{L} L\left(z_{i}, \theta\right)
$$

- There are typically as many terms as examples z_{i}.
- $L(z, \theta)$ is known as the Loss function.
$J(z, \theta)=\frac{\partial}{\partial \theta} L(z, \theta)$ is known as the Jacobian.

Batch Learning

- Generic form of a batch learning algorithm:

$$
\theta(t)=\theta(t-1)-\Phi_{t} \frac{1}{L} \sum_{i=1}^{L} J\left(z_{i}, \theta(t-1)\right)
$$

Each iteration involves a loop over all the terms.
All examples must be stored in memory beforehand.

- Superlinear convergence is achieved when the rescaling matrix Φ_{t} is well chosen.

$$
\left(\theta(t)-\theta_{L}^{*}\right)^{2}=\mathcal{O}\left(\frac{1}{e^{e^{t}}}\right)
$$

Online Learning (1)

- Idea: Only use one random example Z_{t} per iteration.
- Generic form of an online learning algorithm:

$$
\theta(t)=\theta(t-1)-\Phi_{t} \frac{1}{t} J\left(Z_{t}, \theta(t-1)\right)
$$

- No need to store examples beforehand.
- Converges almost surely to a local minimum.
- Note the learning rate $1 / t$.

Online Learning (2)

- Residual noise depends on learning rate.

Learning rate cannot decrease too fast.
Optimal schedule is $1 / t$.

- Consequence: $\left(\theta(t)-\theta^{*}\right)^{2}=\mathcal{O}\left(\frac{1}{t}\right)$ at best!.
- Online learning seems hopelessly slow ...but ...

Generalization (1)

- Empirical error (i.e. training error)

$$
C_{L}(\theta)=\frac{1}{L} \sum_{i=1}^{L} L\left(z_{i}, \theta\right)
$$

Expected error (i.e. generalization error)

$$
C_{\infty}(\theta)=\mathrm{E}(L(Z, \theta))=\int L(Z, \theta) d p(Z)
$$

- Batch learning converges quickly to the optimum θ_{L}^{*} of the empirical error.
- Online learning converges to the optimum θ^{*} of the expected error.

Generalization (2)

Online learning

Dynamics of the empirical optimum θ_{L}^{*}

- Simple expansion shows

$$
\theta_{L}^{*}=\theta_{L-1}^{*}-\Psi_{L} \frac{1}{L} J\left(Z_{L}, \theta_{L-1}^{*}\right)+\mathcal{O}\left(\frac{1}{L^{2}}\right)
$$

where Ψ_{L} converges to the inverse Hessian matrix

$$
\Psi_{L} \longrightarrow H^{-1} \text { with } H=\mathbf{E}\left(\frac{\partial^{2}}{\partial \theta^{2}} C\left(\theta^{*}\right)\right)
$$

Compare. . .

- Convergence of the empirical optimum:

$$
\theta_{L}^{*}=\theta_{L-1}^{*}-\Psi_{L} \frac{1}{L} J\left(Z_{L}, \theta_{L-1}^{*}\right)+\mathcal{O}\left(\frac{1}{L^{2}}\right)
$$

- Online learning:

$$
\theta(t)=\theta(t-1)-\Phi_{t} \frac{1}{t} J\left(Z_{t}, \theta(t-1)\right)
$$

Same thing?

Theorem

We consider the process

$$
\theta_{t}=\theta_{t-1}-\Phi_{t} \frac{1}{L} J\left(Z_{t}, \theta_{t-1}\right)+\mathcal{O}\left(\frac{1}{t^{2}}\right)
$$

with $\mathbf{E}\left(\left\|\Phi_{t}-H^{-1}\right\|\right) \rightarrow 0$ and many mild assumptions.
Then

$$
\mathrm{E}\left(\left(\theta_{t}-\theta^{*}\right)^{2}\right)=\frac{K}{t}+o\left(\frac{1}{t}\right)
$$

Remark: the constant K does not depend on the details.

$$
K=\operatorname{tr}\left(H^{-1} \mathbf{E}\left(J\left(Z, \theta^{*}\right) J^{\prime}\left(Z, \theta^{*}\right)\right) H^{-1}\right)
$$

Corollary

Special Case: Maximum Likelihood

- Log loss $L(z, \theta)=-\log \phi_{\theta}(z)$
- Hessian H equals Fisher information matrix $\mathcal{I}\left(\theta^{*}\right)$.

We reach Cramer-Rao efficiency as soon as $\Phi_{t} \rightarrow \mathcal{I}^{-1}\left(\theta^{*}\right)$.

Example:

Natural Gradient achieves Cramer-Rao bound.
(Murata \& Amari, 1998)

Conclusion (1)

A batch algorithm that optimizes the cost function faster than an efficient online algorithm...
... is just overfitting!

Conclusion (2)

We have a very large number of examples at hand. Should we:

1. run an efficient online algorithm and process as many examples as we can?
2. run a superlinear batch algorithm on the largest set of examples we can process in the same time.

Conclusion (3)

Learning N examples.
Fixed capacity.

	Memory	CPU
Efficient online learning	$\mathcal{O}(1)$	$\mathcal{O}(N)$
Superlinear batch	$\mathcal{O}(N)$	$\mathcal{O}(N \log \log N)$
SVM (!)	$\mathcal{O}\left(N^{2 ?}\right)$	$\mathcal{O}\left(N^{3 ?}\right)$

Future work

Assumption

$$
\mathbf{E}\left(\left\|\Phi_{t}-H^{-1}\right\|\right) \rightarrow 0
$$

means that Φ_{t} is a full rank matrix.

We do not want to handle this.

- Find a way to use reduced rank approximations.
- Find a way to make the Hessian H block-diagonal.

