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† Univ Paris-Sud, Supélec, Laboratoire des Signaux et Systèmes, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette cedex, France.

Email: fraysse@lss.supelec.fr
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Abstract—The objective of this paper is to design an efficient
bit allocation algorithm in the subband coding context based
on an analytical approach. More precisely, we consider the
uniform scalar quantization of subband coefficients modeled by
a Generalized Gaussian distribution. This model appears to be
particularly well-adapted for data having a sparse representation
in the wavelet domain. Our main contribution is to reformulate
the bit allocation problem as a convex programming one. For
this purpose, we firstly define new convex approximations of
the entropy and distortion functions. Then, we derive explicit
expressions of the optimal quantization parameters. Finally, we
illustrate the application of the proposed method to wavelet-based
coding systems.

I. INTRODUCTION

In wavelet-based image coding systems, a natural ressource
allocation question often arises: how a given bit budget can
be efficiently distributed among the resulting subbands ? In
other words, such a problem, referred to as the bit allocation
problem, usually aims at finding the optimal quantization
parameters satisfying some objective criterion. The standard
criterion is based on Rate-Distortion (R-D) theory where the
average distortion is minimized subject to a constraint on the
available bitrate (or vice-versa). Therefore, it can be noticed
that this constrained minimization problem requires the study
of both the rate and the distortion functions. In the literature,
two main approaches have been used to deal with this allo-
cation problem. We distinguish the numerical- and analytical-
based methods. Numerical-based methods aim at empirically
estimating the R-D functions and resort to some iterative
techniques to find the optimal quantization parameters. Most of
these methods are closely related to Lagrangian optimization
techniques [13], [15]. In [13], a bit allocation method for
completely arbitrary input signals (or blocks) and discrete
quantizer sets was considered in the case of independent
coding context. An extension of this work to the subband
coding case has been proposed in [14]. Another extension to
a dependent coding environment has been also considered in
[10]. Moreover, it should be noticed that dynamic program-
ming algorithms [9] and descent algorithms [11], [4] have also
been proposed to select the optimal quantization parameters.
It is important to note that most of these numerical methods
are computationally intensive since a large number of R-D

operating points have to be measured for each subband in
order to obtain R-D curves which are often assumed to be
both differentiable and convex [12]. In parallel, analytical
approaches, which aim at finding closed-form expressions of
the R-D functions by assuming various input distributions and
quantizer characteristics, have been developed. For instance,
the performance of optimum scalar quantizers subject to an
entropy constraint was investigated through numerical methods
[3] for different source probability densities (e.g uniform,
Gaussian, Laplacian, Generalized Gaussian) at low resolution.
In [1], a distortion measure based on differential entropy
has been introduced for image coding and uniform scalar
quantization. In this paper, we propose to design a novel bit
allocation method in the subband coding context by adopting
an analytical approach. More precisely, we present new ap-
proximations of the entropy and the distortion which allow
us to reformulate the bit allocation problem by making use
of convex analysis tools. Following this approach, we derive
explicit expression of the optimal quantization parameters of
the different subbands. The proposed optimization technique is
suitable for transform-based image coders where Lagrangian
optimization techniques are usually applied.
The remainder of this paper is organized as follows. In
Sec. II, we define the probabilistic model of the considered
wavelet subbands as well as the quantizer characteristics.
New piecewise convex approximations of the entropy and
distortion measures are given in Sec. III. The proposed bit
allocation method is described in Sec. IV. Finally, in Sec. V,
an application of the proposed method to transform coding is
given and some conclusions are drawn in Sec. VI.

II. SOURCE AND QUANTIZATION MODELS

Let us assume that the source to be quantized is composed
of J subbands having nj coefficients (j ∈ {1, . . . , J}) so that
n =

∑J
j=1 nj is the total number of coefficients. The Gener-

alized Gaussian (GG) model has been extensively employed
for modelling the distribution of the wavelet coefficients [8].
The corresponding probability density function is given by:

∀ξ ∈ R, fj(ξ) =
βjω

1/βj

j

2Γ(1/βj)
e−ωj |ξ|βj (1)



where βj > 0 is the exponent parameter, ωj > 0 is the scaling
factor and Γ is the gamma function.
These coefficients are then quantized by an uniform scalar
quantizer with dead-zone, with a quantization step qj > 0,
[6]. The output Xj of the quantizer is thus given by:

Xj = r0 = 0, if |Xj | < qj
2 , (2)

and, for all i ∈ Z such that i ̸= 0,

Xj = ri,j , if (|i| − 1
2 )qj ≤ |Xj | < (|i|+ 1

2 )qj (3)

where the reconstruction levels are given by

∀j ∈ {1, . . . , J}, ∀i ≥ 1, ri,j = −r−i,j = (i+ ζj)qj (4)

and ζj ∈ [−1/2, 1/2] is an ”offset” parameter indicating the
shift of the reconstruction level with respect to the middle
of the quantization interval. Note that we will not consider
any saturation effect. The most commonly used quantization
rule corresponds to the case when ζj = 0. (i.e mid-interval
reconstruction).
Since the objective of the paper is to focus on the bit allocation
problem of the quantized coefficients, it is necessary now to
study their rate and distortion functions. For this purpose,
we approximate the bitrate by the zero-order entropy of the
quantized coefficients [7]. Thus, the entropy of the associated
uniformly quantized variable Xj is given by:

Hfj (qj) = −
∞∑

i=−∞
P(Xj = ri,j) log2 P(Xj = ri,j). (5)

Furthermore, the distortion will be evaluated by the pj-th order
moment of the quantization error

efj (qj) = E[|Xj −Xj |pj ] (6)

where pj ≥ 1. We should note here that a close approxi-
mation of the entropy as well as asymptotic expressions of
the distortion, at high and low resolutions, are given in [5].
However, these approximations have been derived for the case
of log-concave distributions (i.e for βj ∈ [1, 2]). Knowing that
typical values of βj can be smaller than 1 in practice, we
propose in this paper to consider new approximations which
are also valid in the case when 0 < βj < 1. Once the entropy
and the distortion functions have been introduced, let us now
define new convex approximations of these functions.

III. CONVEX APPROXIMATIONS OF THE ENTROPY AND THE
DISTORTION

Generally, analytical-based R-D algorithms use the standard
Bennett formula to obtain a close approximation of the entropy
[7], [5]. This formula allows us to express the entropy of the
j-th subband as an affine function of l = (l1, l2, . . . , lJ ):

Ĥfj (lj) = −lj + hβj (ωj) + o(lj2
lj ) (7)

where
• ∀j ∈ {1, . . . , J}, lj = log2(qj)
• hβj (ωj) is the differential entropy of the GG variable:

hβj (ωj) = −
∫ ∞

−∞
f(ξ) ln f(ξ) dξ = log2

(2Γ(1/βj)

βjω
1/βj

j

)
+

1

βj
.

However, this approximation formula is only valid at high
resolution (i.e when qj is small). In order to develop a
bit allocation algorithm well-adapted for both high and low
resolutions, we propose to replace the previous approximation
of the entropy by another function of l = (l1, l2, . . . , lJ ),
given by

∑J
j=1

nj

n gj(lj), where gj has a piecewise affine form
defined for each j ∈ {1, . . . , J} by:

∀ j ∈ {1, . . . , J}, gj(lj) = akj lj+ckj if l(h,k−1)
j ≤ lj ≤ l

(h,k)
j

with k ∈ {1, 2, . . . ,m(h)} and m(h) is a given parameter
corresponding to the number of intervals (i.e. the number of
segments defined to approximate the entropy). Thus, we sup-
pose that l(h,0)j ≤ l

(h,1)
j ≤ l

(h,2)
j ≤ . . . < l

(h,m(h))
j . Note that

the superscript (h) has been used to distinguish between the
intervals of the approximation of the entropy and those of the
approximation of the distortion. In order to have a decreasing
function, the coefficients (akj )1≤k≤m(h) should be negative.
Furthermore, each coefficient ckj is chosen such that gj remains
a continuous function. Since the entropy must be a nonnegative
function, we also impose that gj(lj) = 0,∀lj ≥ l

(h,m(h))
j .

This condition allows us to deduce l
(h,m(h))
j by finding the

first point lj such that gj(lj) = 0. Concerning the other
points

(
l
(h,k)
j

)
1≤k≤m(h)−1

, they are chosen in a way that the

resulting piecewise affine function is a good approximation
of the entropy Hfj . For example, for the first interval, it is
well-known that a close approximation of the entropy at high
bitrate is given by the Bennett formula, so leading to

∀ j ∈ {1, . . . , J}, a1j = −1 and c1j = hβj (ωj)

We thus obtain the piecewise affine function gj(lj) on the
first interval [l(h,0)j , l

(h,1)
j ]. Then, we derive (a2j , c

2
j ) such that

gj(lj) on the interval [l
(h,1)
j , l

(h,2)
j ] is tangent to the entropy

function at an arbitrary point lj > l
(h,1)
j . After that, the

value of l
(h,1)
j can be selected by finding the configuration

where the approximation error between the entropy Hfj and
the function gj(lj) on the interval [l(h,0)j , l

(h,2)
j ] is small. By

following the same strategy, we deduce the remaining values
l
(h,2)
j , l

(h,3)
j , . . . , l

(h,m(h)−1)
j . Figure 1 illustrates the approxi-

mations of the entropy for two intervals (m(h) = 2) and four
intervals (m(h) = 4). As expected, increasing the number of
intervals leads to a better approximation of the entropy. In
a similar way, we use the following piecewise exponential
approximation of the distortion (for an order moment pj ≥ 1):

∀ j ∈ {1, . . . , J},

dj(lj) =
ηj(pj + 1)

νj
(αk

j 2
ljγ

k
j + δkj ), if l(d,k−1)

j < lj ≤ l
(d,k)
j

where
• k ∈ {1, 2, . . . ,m(d)} and m(d) is a given parameter corre-
sponding to the number of intervals used to approximate the
distortion
• ∀k ∈ {1, 2, . . . ,m(d)}, αk

j > 0, γk
j > 0, δkj and ηj > 0 are

some weighting factors
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Fig. 1. Approximation gj (in color dashed line) of the entropy Hfj (in
black line) of a uniformly quantized GG source versus lj : m(h) = 2 (left
side), m(h) = 4 (right side). The parameters of the GG source are βj = 0.8
and ωj = 1.

• νj = ( 12 + ζj)
pj+1 + ( 12 − ζj)

pj+1.
Similarly to the selection procedure of

(
l
(h,k)
j

)
1≤k≤m(h)

, the

values
(
l
(d,k)
j

)
1≤k≤m(d)

are also chosen in a way that the

resulting distortion function dj(lj) is a good approximation
of the distortion given by Eq. (6). In particular, by taking
γ1
j = pj , ηj = α1

j =
νj

pj+1 , we obtain a distortion dj(lj) =
νj

pj+12
ljpj on the first interval [l(d,0)j , l

(d,1)
j ] which corresponds

to the classical asymptotic behavior of the distortion at high
bitrate. Figure 2 shows the approximations of the distortion
for 2 and 4 intervals. It can be observed that setting m(d) to
2 results in a less precise approximation of the distortion ej
than m(d) = 4, especially at low bitrate.
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Fig. 2. Approximation dj (in color dashed line) of the distortion efj (in
black line) of a uniformly quantized GG source versus lj : m(d) = 2 (left
side), m(d) = 4 (right side). The parameters of the GG source are βj = 0.8
and ωj = 1.

IV. PROPOSED BIT ALLOCATION METHOD

Once such approximations are obtained, we propose now
to reformulate the bit allocation problem as an optimization
problem as follows:

Problem 1: Find l̃ minimizing the distortion function

∀ l = (l1, . . . , lJ ) ∈ RJ , D(l) =

J∑
j=1

nj

n
dj(lj)

over the set C defined as

C := {l = (l1, . . . , lJ) ∈ RJ |
J∑

j=1

nj

n
gj(lj) ≤ Rmax}. (8)

A major difficulty that arises in solving this problem stems
from the fact that the functions gj are not differentiable. In
order to define the different domains where the optimization
is performed, we sort the coefficients

(
l
(h,k)
j

)
1≤k≤m(h)

and(
l
(d,k)
j

)
1≤k≤m(d)

in ascending order for each j ∈ {1, . . . , J}.

Thus, the sorted coefficients denoted by (l1j , . . . , l
m
j ) are

such that l1j ≤ l2j ≤ . . . ≤ lmj . Furthermore, let l0j =

min(
nn−1

j Rmax−c1j
a1
j

, l1j ) for every j ∈ {1, . . . , J}, so that the
problem is equivalent to minimize the distortion over the
domain [l01, l

m
1 ] × . . . × [l0J , l

m
J ]. In order to overcome the

problem of the non-differentiability of the functions gj at(
lkj

)
1≤k<m

, we propose to subdivide the previous domain into

subdomains of the form [lb11 , lb1+1
1 ]× . . .× [lbJJ , lbJ+1

J ] where
b = (b1, . . . , bJ) ∈ {0, . . . ,m − 1}J . On each subdomain,
the entropy and distortion functions are convex. Therefore,
this subdivision technique leads to mJ subdomains where a
convex optimization problem must be solved.
Suppose that [lb11 , lb1+1

1 ] × . . . × [lbJJ , lbJ+1
J ] corresponds to

a given subdomain and let us denote by Pb the convex
minimization problem on this subdomain. For concision pur-
poses, let us introduce the following notations for every
j ∈ {1, . . . , J}:

aj = a
bj
j , γj = γ

bj
j , αj = α

bj
j , δj = δ

bj
j , cj = c

bj
j (9)

Nj = −nj aj
γj

, λj = κj2
γj l

bj
j , λj = κj2

γj l
bj+1

j (10)

where κj = −ηjαjγj ln 2/aj .
Thus, the solution to Problem (Pb) is given by:

Proposition 1:

(i) If
∑J

j=1
nj

n gj(l
bj+1

j ) > Rmax, then there is no solution.
(ii) If

∑J
j=1

nj

n gj(l
bj
j ) ≤ Rmax, then the solution is l̃ =

(lb11 , . . . , lbJJ ).
(iii) Otherwise, the solution is the vector l̃b defined by

∀j ∈ {1, . . . , J}, l̃j,b =


l
bj
j if j ∈ I
1
γj

log2

(
λ̃
κj

)
if j ∈ J

l
bj+1
j if j ∈ K

where
• λ̃NJ =

2−nRmax+
∑J

j=1 njcj−
∑

j∈I Njγj l
bj
j −

∑
j∈K Njγj l

bj+1
j

∏
j∈J

κ
Nj

j

• NJ =
∑

j∈J Nj .
• I = {j ∈ {1, . . . , J} | Φ′(λj) ≤ 0}
• K = {j ∈ {1, . . . , J} | Φ′(λj) > 0}
• J = {1, . . . , J} \ (I ∪K)
• for every j ∈ {1, . . . , J}, ∀λ ∈ R+

Φ(λ) = λ
( J∑

j=1

nj

n
cj −Rmax

)
−

J∑
j=1

φj(λ) (11)



with φj(λ) =


Nj

n (γj l
bj
j λ− λj

ln 2 ) if λ ≤ λj
Njλ
n ln 2

(
ln

(
λ
κj

)
− 1

)
if λj < λ < λj

Nj

n (γj l
bj+1
j λ− λj

ln 2 ) if λ ≥ λj .

V. APPLICATION TO TRANSFORM CODING

In this part, we apply the proposed bit allocation method in
the context of transform coding. For this purpose, we consider
the example of “Elaine” image decomposed onto a Symlet
othonormal wavelet basis of order 4 over 3 resolution levels
(i.e. J = 10). The parameters βj and ωj of each subband
are estimated using the maximum likelihood technique [2].
We illustrate in Fig. 3 (top side) the R-D curves where for
each j ∈ {1, . . . , J}, a quadratic distortion measure has been
considered (pj = 2). The PSNR curve plotted using the ‘circle’
symbol corresponds to the one predicted from Proposition 1
(i.e. resulting from quantizing the GG model). The PSNR
curve plotted using the ‘star’ symbol is obtained by performing
a uniform scalar quantization of the wavelet coefficient of
the image with the derived optimal quantization steps. The
comparison between the two distortion curves is performed
by using different numbers of intervals to approximate both
the entropy and the distortion. More precisely, we consider
the cases m(h) = m(d) = 2, m(h) = m(d) = 3 and
m(h) = m(d) = 4. It can be noticed that the behavior of
the proposed algorithm applied to a GG source model gets
closer to the one applied on the image wavelet coefficients
with increasing number of segments used for approximating
the model. In addition, one can observe from Fig. 3 (top
side) that the difference between the two distortion curves
decreases as the interval number increases, which confirms
our previous conclusions drawn from Figs. 1 and 2. Finally,
compared with the state-of-the-art allocation method based
on Lagrangian optimization technique [13] (green curve), our
method achieves an improvement of about 0.3-0.7 dB as it can
be seen in Fig. 3 (bottom side).

VI. CONCLUSION

In this paper, we have proposed new piecewise convex
approximations of the entropy and distortion measures in order
to reformulate the bit allocation problem of sparse signals as a
set of convex programming problems. The effectiveness of the
proposed bit allocation method has been shown in a typical
transform-based coding application.
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