

Vector Lifting Schemes for Stereo Images Coding

M. Kaaniche¹, A. Benazza², B. Pesquet-Popescu¹ and J.-C. Pesquet³

¹ Telecom-ParisTech, Département Signal et Images

² Ecole Supérieure des Communications de Tunis Unité de Recherche en Imagerie Satellitaire et ses Applications (URISA)

³ Université de Paris-Est, Marne-la-Vallée, Laboratoire d'Informatique, Equipe Signal et Communications

October 23, 2008

- Context of study
- Basic approach for joint coding of stereo image
- Novel joint SI coding
- Performances evaluation
- Sonclusions and perspectives

Part I

Context of study

A. Benazza (SUP'COM)

October 23, 2008 3 / 33

Type of data

Stereo Image (SI): Two images, captured from two viewpoints, corresponding to the same scene

Interest of SI:

3D shape reconstruction in remote sensing, medical imaging

3D reconstruction of the SI pair "pentagon"

Our objectives: design a Stero Image (SI) coding scheme with

Lossless reconstruction

 \Longrightarrow exact decoding of SI (required for remote sensing imaging applications)

• Progressive reconstruction

 \implies gradual decoding that generates two compact multiresolution representations of SI (suitable for telebrowsing applications)

Part II

Basic approach for joint coding of stereo image

Binocular imaging system:

Assumption: rectified images.

A. Benazza (SUP'COM)

If the two images are superimposed

Generic decomposition scheme for SI progressive coding

$$\hat{I}^{(r)}(m,n) = I^{(l)}(m+v_x, n+v_y).$$
(1)
$$I^{(e)}(m,n) = I^{(r)}(m,n) - \hat{I}^{(r)}(m,n)$$
(2)

< 17 ▶

A. Benazza (SUP'COM)

Part III

Novel joint SI coding

A. Benazza (SUP'COM)

October 23, 2008 11 / 33

Novel joint SI coding

Motivation:

A new approach based on the Vector Lifting Scheme (VLS).

3

- 4 同 6 4 日 6 4 日 6

Advantages:

- No generation of a residual image, but two multiresolution representations of $I^{(I)}$ and $I^{(r)}$.
- \bullet Separable decompositions \Longrightarrow Simplicity of their implementation

Two decomposition examples:

- VLS-I
- VLS-II

Version 1: VLS-I

Principle of VLS-I decomposition

3

• • • •

Equations of VLS-I

For the reference image $I^{(l)}$:

$$\tilde{d}_{j}^{(l)}(m,n) = I_{j-1}^{(l)}(m,2n+1) - \lfloor \frac{1}{2}(I_{j-1}^{(l)}(m,2n) + I_{j-1}^{(l)}(m,2n+2)) \rceil$$
(3)

$$\tilde{I}_{j}^{(l)}(m,n) = I_{j-1}^{(l)}(m,2n) + \lfloor \frac{1}{4} (\tilde{d}_{j}^{(l)}(m,n-1) + \tilde{d}_{j}^{(l)}(m,n)) \rceil$$
(4)

A. Benazza (SUP'COM)

Equations of VLS-I

For the right image $I^{(r)}$:

$$\tilde{d}_{j}^{(r)}(m,n) = I_{j-1}^{(r)}(m,2n+1) - \lfloor p_{j-1,1}^{(r)} I_{j-1}^{(r)}(m,2n) + p_{j-1,2}^{(r)} I_{j-1}^{(r)}(m,2n+2) + p_{j-1,3}^{(r,l)} I_{j-1}^{(l)}(m+v_{x,j-1}(m,2n+1),2n+1+v_{y,j-1}(m,2n+1)) \rceil$$
(5)

$$\tilde{I}_{j}^{(r)}(m,n) = I_{j-1}^{(r)}(m,2n) + \lfloor \frac{1}{4} (\tilde{d}_{j}^{(r)}(m,n-1) + \tilde{d}_{j}^{(r)}(m,n)) \rceil$$
(6)

A. Benazza (SUP'COM)

Motivation:

VLS-I: P-U structure \Rightarrow approximation coefficients $\tilde{I}_{j}^{(l)}(m, n)$ inserted into $\tilde{d}_{j}^{(r)}(m, n)$ and then into $\tilde{I}_{i}^{(r)}(m, n) \Rightarrow$ an update leakage effect.

Proposed solution VLS-II: Another lifting with a P_1 -U- P_2 structure.

- P₁ step: compute an intermediate detail signal by exploiting only the intra-image redundancies.
- U step: compute the approximation signal based on this intermediate detail signal.
- P₂ step: compute the final detail signal by exploiting the intra and inter-images redundancies.

Version 2: VLS-II

Principle of VLS-II decomposition

Equations of VLS-II

$$\tilde{d}_{j}^{(r)}(m,n) = I_{j-1}^{(r)}(m,2n+1) - \lfloor \frac{1}{2}(I_{j-1}^{(r)}(m,2n) + I_{j-1}^{(r)}(m,2n+2)) \rceil,$$
(7)

$$\tilde{I}_{j}^{(r)}(m,n) = I_{j-1}^{(r)}(m,2n) + \lfloor \frac{1}{4} (\tilde{d}_{j}^{(r)}(m,n-1) + \tilde{d}_{j}^{(r)}(m,n)) \rceil,$$
(8)

$$\check{d}_{j}^{(r)}(m,n) = \tilde{d}_{j}^{(r)}(m,n) - \lfloor q_{j-1}(\tilde{I}_{j}^{(r)}(m,n) + \tilde{I}_{j}^{(r)}(m,n+1)) + \sum_{k=-3}^{3} p_{j-1,k}^{(r,l)} s_{j-1}^{(l)}(m + v_{x,j-1}(m,2n+1), 2n+1 + v_{y,j-1}(m,2n+1) - k)],$$
(9)

A. Benazza (SUP'COM)

Version 2: VLS-II

Advantage of VLS-II:

If
$$I^{(r)} = I^{(l)}$$
 and $\{0, 1, -1\} \subseteq \mathcal{P}_{j}^{(r,l)} \Rightarrow \tilde{I}^{(r)} = \tilde{I}^{(l)}$ and $\check{d}^{(r)} = 0 \Rightarrow I_{1}^{(r)} = I_{1}^{(l)}$
and $d_{1}^{(r,o)} = 0$, $o \in \{1, 2, 3\}$

э

・ロン ・四 と ・ ヨン ・ ヨン

Version 2: VLS-II

Advantage of VLS-II:

Finally, at the last resolution level j = J, instead of coding $I_J^{(r)}$, we code the residual subimage:

$$\mathcal{P}_{J}^{(r)}(m,n) = I_{J}^{(r)}(m,n) - I_{J}^{(l)}(m+v_{x,J}(m,n),n+v_{y,J}(m,n))$$
(10)

A. Benazza (SUP'COM)

Assumption

$$\begin{cases} i_j^{(r)}(k) &= \sin(\theta_j) x_j(k) + \cos(\theta_j) y_j(k) \\ i_j^{(l)}(k) &= \cos(\theta_j) x_j(k) + \sin(\theta_j) y_j(k) \end{cases},$$
(12)

where

• x_j , y_j : AR(1), independent.

•
$$E[x_j(k)] = E[y_j(k)] = 0.$$

•
$$E[\{x_j(k)\}^2] = E[\{y_j(k)\}^2] = \sigma_j^2$$
.

. .

э

Some properties

• $E[x_j(k)x_j(k-l)] = E[y_j(k)y_j(k-l)] = \sigma_j^2 \rho_j^{|l|}.$

•
$$E\left[i_{j}^{(r)}(n)i_{j}^{(r)}(n-k)\right] = E\left[i_{j}^{(l)}(n)i_{j}^{(l)}(n-k)\right] = \rho_{j}^{|k|}$$

•
$$E\left[i_{j}^{(r)}(n)i_{j}^{(l)}(n-k)\right] = \mathbf{s}_{j}\rho_{j}^{|k|}$$

where $\mathbf{s}_{j} = \sin(2\theta_{j})$.

• The factor θ_j controls the cross-redundancies between the samples $i_j^{(l)}(k)$ and $i_j^{(r)}(k)$.

Minimum prediction error variance

• independent scheme:

$$E[\{\tilde{d}_j^{(r)}(k)\}^2] = \frac{1}{2}(1-\rho_j)(3-\rho_j)$$
(13)

$$\varepsilon_{1,j}(\rho_j,\theta_j) = \sigma_j^2 \gamma_{1,j} \cos^2(2\theta_j)(\rho_j^2 - 1)$$
(14)

where

$$\gamma_{1,j} = 2\sin^2(2\theta_j)(\rho_j^2 - \rho_j^2 - 1)^{-\frac{1}{2}}$$

• VLS-II:

$$\varepsilon_{2,j}(\rho_j,\theta_j) = \frac{1}{2}\sigma_j^2\gamma_{2,j}\cos^2(2\theta_j)(1-\rho_j)(3\rho_j^4 - 16\rho_j^3 + 4\rho_j^2 + 24\rho_j + 113)$$
(15)
where $\gamma_{2,j} = (\rho_j^5 - 5\rho_j^4 - \rho_j^3 + 13\rho_j^2 + 18\rho_j + 38)^{-1}.$

э

A D N A P N A P N

Performances of independent scheme, VLS-I and VLS-II in terms of prediction effeciency

$$\begin{split} & E[\{\tilde{d}_j^(r)(n)\}^2] \\ & \varepsilon_{1,j}(\rho_j,\theta_j) \\ & \varepsilon_{2,j}(\rho_j,\theta_j) \end{split}$$

Part IV

Performances evaluation

A. Benazza (SUP'COM)

October 23, 2008 27 / 33

3

Experiments setup:

- Test images: natural and satellite (SPOT5) stereo images.
- Block size: 8×8 .
- Search area S: [50,±2] for SPOT5 stereo images and [30,±4] for natural ones.
- Decomposition depth: J = 2.
- Performances evaluation in terms of bit rate, PSNR and SSIM (Structural SIMilarity)

Methods used for comparison:

- Independent scheme : Applying the 5/3 transform separately to original images $I^{(l)}$ and $I^{(r)}$.
- Scheme B : Applying the 5/3 transform to the reference and residual images $I^{(l)}$ and $I^{(e)}$.
- Scheme C (version of JPEG2000 scheme): Applying the 5/3 transform to $\tilde{I}^{(l)}$ and $I^{(e)}$, where

$$\begin{cases} I^{(e)}(m_{x}, m_{y}) &= I^{(r)}(m_{x}, m_{y}) - I^{(l)}(m_{x} + v_{x}, m_{y} + v_{y}) \\ \tilde{I}(m_{x} + v_{x}, m_{y} + v_{y}) &= \lfloor (I^{(r)}(m_{x}, m_{y}) + I^{(l)}(m_{x} + v_{x}, m_{y} + v_{y}))/2 \rfloor \\ \text{if } (m_{x} + v_{x}, m_{y} + v_{y}) \in S \\ \tilde{I}(m_{x}, m_{y}) &= I^{(l)}(m_{x}, m_{y}) & \text{if } (m_{x}, m_{y}) \notin S \end{cases}$$

$$(16)$$

with ${\cal S}$ is the set of connected pixels in the left image. For all methods, wavelets coefficients are encoded by applying the JPEG2000 codec.

Performances evaluation

PSNR curve

Figure: PSNR (in dB) versus the bitrate (bpp) after JPEG 2000 encoding for the SI pair "shrub" (a) and "spot5-6" (b).

Performances evaluation

Image visual quality (PSNR and SSIM)

(a): PSNR=30.03 dB, SSIM=0.80 (b): PSNR=31.48 dB, SSIM=0.83 Figure: Reconstructed target image $I^{(r)}$ of the "spot5-5" SI at 0.13 bpp: (a) scheme B; (b) VLS-II.

Performances evaluation

Final bitrate

Transform	scheme B	scheme C	VLS-I	VLS-II
spot5-1	3.63	3.58	3.49	3.35
spot5-2	3.85	3.78	3.67	3.53
spot5-3	4.27	4.24	4.03	3.93
spot5-4	4.22	4.21	4.05	3.92
spot5-5	3.91	3.89	3.80	3.73
spot5-6	3.89	3.81	3.73	3.63
fruit	4.05	3.97	3.78	3.72
shrub	3.73	3.69	3.81	3.63
birch	4.52	4.47	4.44	4.37
pentagon	5.37	5.2	5.12	5.04
Average	4.14	4.08	3.99	3.88

Presentation of two versions of a novel joint coding methods for stereo pairs.

₩

Improvement by designing more sophisticated prediction/update operators.