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the features extracted from the quantized wavelet codfficief the
query and model images. However, the latter techniques olyen

Recent research efforts have been devoted to the impro¥eshen efficient when the query and model images have differentitigsl

image retrieval systems when datasets are represented oma
pressed form. In this context, new studies have shown thmapoes-
sion has a negative impact on the performances of the waditre-
trieval systems. In this work, we are mainly interested isigieing
an efficient retrieval approach well adapted to waveleetasom-
pressed images. More precisely, we first propose to applynpies-

C (i.e. they are quantized at very different bitrates). Imfjéehas been

shown that compression adversely affects the performahcelar
and texture image retrieval algorithms [6, 7, 8]. Theref@eey
issue is to design more efficient indexing methods that autcfou
the quantization step. To the best of our knowledge, few wbdve
addressed this problem [6, 9, 10]. For instance, in our rteeerk

sion scheme based on the Moment Preserving QuantizatioQIMP 10}, we have improved the retrieval performances of wavetsed

Then, the feature vectors will be defined in an appropriatghy&o-
cusing on the quantized subbands where some given staltiste
ments have been preserved. Experimental results indibatete
proposed approach outperforms the most recent one whiolves
the conventional uniform quantizer and constrains theygaed the
model images to have similar qualities during the retrist@p.

compressed datasets by forcing the model and the query griage
have similar qualities through a recompression strategyreMbre-
cisely, when the query and DB images are compressed at \fégy- di
ent qualities, and before performing the feature extraciiod com-
parison steps, we have proposed to reconstruct the hightyquma#
age and then, to quantize again the recovered WT coeffici e

Index Terms— Content based image retrieval, wavelet domain,bitrate of the low quality image. It is worth pointing out thesimi-

moment preserving quantization, feature extractioniewt perfor-
mance.

1. INTRODUCTION
The recent advances in acquisition and display techndolgive

lar requantization approach has also been investigatértiodntext
of DCT-based CBIR system [9, 11]. However, this recompssi
strategy has some limitations. Indeed, when the imagesuam®-q
tized at very low bitrates, the resulting quantization elvecomes
higher and therefore, the recompression technique witeshly im-
pact the feature relevance. Furthermore, the reconstruetid the

led to the constitution of huge image databases (DB) andatligi requantization steps lead to a computational overheae aettieval

archives. In order to reduce the storage requirementgrdifft com-

stage.

pression schemes have been developed such as those adoptediie main objective of this paper is to alleviate these shantngs
JPEG and JPEG2000 standards based respectively on Di€wrete by resorting to a compression scheme that can preserve astet o
sine Transform (DCT) and Wavelet Transform (WT) [1]. For in- tistical features of the wavelet coefficients to be quantiz€o this

stance, much attention was paid to wavelet-based compretgsih-
niques due to the sparsity of the multiscale representatimhthe
good space frequency localization. Furthermore, the requictase
of digital archives has allowed the widespread use of meltiza
indexing systems. Indeed, Content-Based Image RetriSBIR)

systems aim to provide an efficient tool for managing largagen
databases based on their visual contents [2]. Thereforb, the
increased need for both image compression and retrievddy®
CBIR systems tend to involve images not only in their orijivex-

sions, but also in their compressed forms. Consequenfig;esft

end, we propose to apply the Moment Preserving QuantizeQMP
which has been designed to preserve the moments of the igpat.s
Furthermore, we propose to adapt the state-of-the-art mbbhesed
feature extraction method to the preserved statistical emsof the
different quantized subbands.

The rest of this paper is organized as follows. In Sec. 2, v fir
present the generic wavelet-based coding system as wék asdst
current feature extraction techniques operating in the \&fain.
Then, we recall the recent image retrieval algorithm for ¢ben-
pressed images. In Sec. 3, we describe a novel retrievabagipiby

CBIR systems should enable a fast and accurate image irglexirusing a MPQ-based coding scheme. Finally, in Sec. 4, expetih

from the stored wavelet coefficients. In this respect, sdwveavelet-
based image retrieval methods have been developed [3, B#hé&ir
related indexing step aims at computing the features froth tiee

original wavelet coefficients of the query and DB images |échl

hereafter model images). While such methods are well addpte
images which are losslessly encoded, a particular attestiould be
paid to the case of lossy data compression. In this casentiliéve

results are given and some conclusions are drawn in Sec. 5.

2. COMPRESSED-DOMAIN CBIR SYSTEM

2.1. Classical wavelet-based compression scheme

A typical wavelet-based coding system consists of three ulesd

retrieval strategy will consist directly computing and comparing namely wavelet-based transform, quantization and entcopyng.



More precisely, a discrete wavelet decomposition is firapplied  to a parametric modeling of the distribution of each wavslgb-
to the original data to be encoded. To this end, a Lifting &whe band [3, 14]. In particular, the generalized Gaussianitigion [4]
(LS)-based implementation has been introduced by Sweiderrs  and the Gaussian mixture model [16] were found to be wetksui
der to construct bi-orthogonal wavelets by a simple, rébrsand  for modeling the wavelet coefficients in every subband. Etated
fast process. A generic one dimensional LS consists of auply  feature vector of the image is built by taking the distribatparam-
prediction and update steps to the input sigrjdk) in order to gen-  eters of all the wavelet subbands. It is worth noting thatsihéar
erate the detail sub-signals. (k) and the approximation;1 (k) proposed statistical models concern the unquantized cieeftsz ;

ones: considered as realizations of a continuous random variaiiese
. models are no longer valid for quantized coefficienfswhich are
dj+1(k) = a;(2k +1) — p; a;(k) (1)  samples of a discrete random variable.
aji1 (k) = a;(2k) + ude]-H(k:) @) Once the feature vectors of the query and model images are ex-

tracted, the retrieval step can be applied by searchingaid® the

wherea, (k) (resp.d;1(k)) is a reference vector containing some candidate model imoges Whooe .fea.rture vectors are closbatt@ﬁ
even samples (resp. detail coefficients) used in the piediétesp. the query one. To this end, a similarity measure should beelt:fo

update) step, ang; (resp. u;) is the prediction (resp. update) perform t_his comparison. The most widely used one is the abrm
weighting vector. Such 1D structure is generally applieshglthe ~ 12€d Euclidean distance [14].

lines then the columns (or inversely) of the image in ordepr

duce an approximation subband and three detail ones aliéiote  2.3. Image retrieval after recompression

izontally, vertically and diagonally. By successively bppg this . ) .
procedure to the resulting approximation subband, a restiiu- Now, we assume that the original versions of the DB imagestaad

tion representation of the input image ovklevels is generated. In GUery one are not available as they are represented in a esseuf
the following, z, will denote the;™" subband of size; x L; with form by using the standard uniform quantizer. Thus, thetedléea-
je{l,....3J+1}. ture vectors will be computed from these lossy versions.raigitt-

Once this multiscale transform is performed, the coeffisiefieach ~ forward solution to design a CBIR consists difectly comparing
subbandr; are quantized using an uniform quantizer with a centralth® guery and model images as it is generally considereceindbe

deadzone. Thus, for each coefficient located at position), the ~ ©f unquantized data. However, recent studies [11, 10] haye-h
outputz; of the quantizer is given by: lighted the drop of retrieval performances when these imdgee

different qualities. For this reason, we have recently pseg to im-
~ ) |z (K, 1)] prove the CBIR system by integrating, before the featureaetibn
z; (k,1) = sign(z; (k,1)) {TJ (3)  module, a pre-processing step that constrains the querynacde!

’ images to have similar qualities [10]. Since the resultingrgiza-
tion error at low bitrate is more important than the one otsédiat
high bitrate, our main idea consists of keeping the low dyan-
age unchanged whereas the high quality one is transformetbte
quality version through a coarse requantization. Moreipedy; the
reconstructed wavelet coefficients(k, 1) are firstly computed from

whereg; denotes the quantization step retained in fAesubband.
It is worth noting that a small (resp. high) value corresponds to a
high (resp. low) bitrate-; and, results in a high (resp. low) recon-
structed subband quality.

Generally, the different quantization ste@s g2, ..., gss+1 (and, X X ~
hence the related bitrates, .. .,s,.1) can be found by using an the finely quantized ones; (k, ) as follows:
optimal bit allocation algorithm based on a rate-distortiiterion. )
Indeed, the average distortion in the WT domain is minimizel- (@; (k) +7)q; if z; (k1) >0
ject to a constraint on the total available bitr&te zj (k1) =9 (@ (k1) =) ¢ ifz; (k1) <0 (6)

) 0 otherwise

ST K Ly
R= 723(1? KL @ whereo < ~ < 1is a reconstruction parameter chosen by the de-
=

coder. Note that choosing = 0.5 corresponds to a mid-point re-
construction as used in many encoding strategies [17]. , Ttherre-
constructed wavelet coefficients (k, [) are quantizedgain at the
same bitrate of the image having a lower quality. Finallg,fématures
are extracted from the requantized wavelet coefficients.

This constrained minimization problem can be solved udiegLia-
grangian optimization approach [12]. Finally, the quastdizoeffi-
cients are entropy encoded to generate the compressedeaitas

2.2. Feature extraction
3. PROPOSED IMAGE RETRIEVAL METHOD UNDER

A wavelet-based CBIR consists of computing relevant festitom MPQ-BASED COMPRESSION SCHEME
the wavelet coefficients. The most popular and fast teclenajons
at retaining the first moments of the subbandas a salient feature 3.1. Motivation

[3], especially the energfs; of the subband [13, 14 Although some benefits can be drawn from the previous salutio
K; L, this requantization strategy presents also some shomgsmkirstly,
Ej = 1 Z x; (k, 1)2 ) (5) when the images are coarsely quantized, the related qatiatizr-
K;L; = ror increases and hence, the recompression will negatffdygt the

feature relevance. Moreover, such technique leads to a uamp
Note that several statistical features such as inertisppyand local  tional overhead at the retrieval stage since the recorigiruand re-
homogeneity, defined on the co-occurrence matrix, can &ssbd  quantization operations should be performed for each miotkje
[15, 14]. Moreover, other works have been developed by tiegpr if the query image has the lowest quality. In order to overedhe

~




drawbacks of this recompression approach, it would beéstarg to
preserve the image features through the compression preeeld-
deed, using a coding method where features are still predeeven
at low bitrates, can improve the retrieval system perforreand in-
crease its robustness against compression effects. Fudle it is
well known that popular indexing methods in the WT domainsisin
in retaining the first moments of the wavelet subbands asrddka-
tures [3, 13]. In such indexing framework, the solution igt@mran-
tee that these moments (the features) are preserved by essigor.
This is the reason why we propose to replace the uniform qent
(currently used in most of the wavelet-based compressidhaus)
by an efficient one, referred to as moment preserving quantls],
which keeps the moments of the output equal to those of the.inp
It is important to note here that the MPQ has also been suodgss
used for image coding schemes [19].

3.2. MPQ-based compression scheme

Before describing the MPQ, let us first assume that the wagele

the separation theorem, the reader is referred to [18].

Once the principle of the design of MPQ is described, a keyeiss
is the adjustment of the valu¥; associated to the MPQ of theth
subband. To this end, a bit allocation among the subbandsried
out in order to compute the leve(&Vi, No, ..., N3s11) according
to a rate-distortion criterion. More precisely, the averagstortion
in the WT domain is minimized subject to a constraint on thalto
available bitrate. The Lagrangian optimization approat?y fcan
also been used to solve this constrained minimization prabl

3.3. Appropriate feature extraction procedure

Unlike the energy-based feature extraction method wheresélt-
ond order moments of all the subbands are retained to defene th
descriptor, the feature vector in the context of MPQ-bassting
scheme should be appropriately defined according taNhdevel
associated to the MP quantizer of each subband. More phgdise

is necessary thaV; > 2 in order to ensure that the second order
moment of thej" subband is preserved. Therefore, before taking

efficientsz; to be quantized are viewed as realizations of a randomhe second order moment of all the wavelet subbands as adeatu

variable X; with a distribution functionF}; (-). A N;-level MPQ is
completely defined by itsV; output levels{y; 1,2, ...,y nN; }
and (N; — 1) thresholds{s;,1,5;,2,...,8;n;-1}, With y;1 <
si1 < g2 < ..o < osiv—1 <y, and such that the first

vector, we have to check if the valug; of each subband exceeds
1. Generally, it is well known that the coarse-scale (res-ficale)
subbands represent large (resp. small) percentage oftéhéitoate.
For instance, after performing the optimal bit allocatidgoaithm

(2N; — 1) moments are preserved. Therefore, the design of themong the different subbands, it can be noticed that thesaaisere

MPQ for thej" subband, withj € {1,...,3J + 1}, reduces to
solve the following system of equations:

—+oo
n A

mj:E[X}L]:[

oo

N
zj dFj(z;) = Zy;LZPJL (7)
i=1

foreveryn =1,2,...,2N; — 1, where

A
® Sj0= — OO,
® S;N; = + oo

AN
o Pji=Fj(sji) = Fj(sji-1). o
It results that the MPQ depends on the underlying distrioufi; of
the input signal. Very often, the Generalized Gaussian (Gi&)i-
bution is considered as an appropriate model of the digtoibwof

the unquantized wavelet coefficients [4]. The GG law is defibg
the probability density functiotf; given by:

_ Bi
 205T(1/B;)

wherel'(-) is the Gamma functiony; and 3, are respectively the
scale and the shape parameters that can be easily estiroetediag

to the classical maximum likelihood criterion [4]. UnderetieG
model, it can be checked that th&-order moments are expressed
as follows:

o (1&1/a;)"s

VEER, [i() ®)

if n iseven ©9)

otherwise.

Thus, Equation (7) is a form of the Gauss-Jacobi mechanicadi@g-
ture [20]. The output levelg; ; of the V;-level MP quantizer are

the second order moment is not preserved (Vg.= 1) occur es-
pecially at low bitrates in the higher frequency subbandemas at
middle and high bitratesy; is often greater than or equal to 2. As
a result, at low bitrate (resp. middle and high bitrates) pn@ose
to define the feature vector by taking the second order mowfent
only the low frequency subbands (resp.abifthe subbands). More-
over, it is worth pointing out that the feature vectors of guery and
model images may have different sizes when we encountemene i
age compressed at low bitrate and the other one one comgrasse
high bitrate. Therefore, during the indexing step, the dptar vec-
tor dimension of images compressed at high bitrate will jesteld

to the size of that obtained for images compressed at lowtbitry
omitting the second order moments of the high frequency @i

4. EXPERIMENTAL RESULTS

Simulations are performed on the Vision Texture (VisTexpbase
[22] which contains images of different natural scenes.c&iwe
define similar textures as sub-images from a single original we
selected 40 texture images of sizk2 x 512 whose visual properties
do not change too much over the image. Each image is theredivid
into 16 non-overlapping images resulting in a DB of 640 insagk
size128 x 128. Each sub-image in the DB is used once as a query.
We assume that the relevant images for each query are deéfitkd a
16 sub-images obtained from a single original image. Mcggan
order to study the compression effect on the retrieval perdmce,

all the images are compressed at different levels that rixngelow

to high bitrate. The retrieval performances are evaluatdgdrms of
precisionPR = - and recallRC' = %7, whereR" is the number

of output images considered as relevaR, is the total number
of relevant images in the database aRddenotes the number of

the zeros of théV;-th degree orthogonal polynomial associated withreturned images. The retained similarity measure is thealized
F;. Note that the polynomials can be generated using the stndaEuclidean distance.

recursion relation for any three consecutive orthogongimmmials
[21]. The P; ; are Christoffel numbers and tke; andy; ; alternate
by the separation theorem of Chebyshev-Markov-Stiel§€3. [For
more details about orthogonal polynomials, Christoffehiers and

First, Fig. 1 provides the retrieval results for the compegs
database when the query and model images are respectivaty qu
tized at different bitratefR and Rx;. The values of the energy
of all the wavelet subbands (i.e. their second order momerjts



j € {1,...,3J + 1}) constitute the feature vector of each image.

Thus, it can be noticed that recompressing the imagesmatar
qualities (designated in the figure by AR) leads to a signifi¢an-
provement in the retrieval performance compared to the wasee
the images are considered under different compressioritigaal
(denoted here by UC). For instance, it is clear that the ganlting

from the recompression technique becomes much more inmporta

when the difference of qualities increases (i.e. wheg — Ras| is
high).

"uc RQZl‘bpp‘ RM:E 5bpp
—#— AR:R,=1bpp, R, =05 bpp
—— UC:R,=1bpp, R,=0.1bpp ]
—#— AR:Ry=1bpp, R, =0.1bpp
UG R=0.1 bpp, R, =05 bpp ||
—— AR RQ:D 1bpp, RM:OvS bpp
—— UC: R,=0.1 bpp, R, =0.2 bpp
—+— AR:R=0.1bpp, R, =02 bpp|

PR

0.2 0.25

RC

03 0.35 04 045 05

Fig. 1. Precision versus recall of wavelet-based compressedeisnag
under compression (UC) and after recompression (AR).

Now, before comparing this recompression technique to tioe p
posed image retrieval strategy under the MPQ-based cocitigam,
let us study the impact of the feature extraction procediere
precisely, we illustrate in Fig. 2 the retrieval performasavhen
the feature vectors are defined by considering the two fatigw
cases: (i): the second order momentsabfthe quantized wavelet
subbands are retained, (ii): the second order momentslgfthe
quantized wavelet subbands whé¥e > 2 are selected. Thus, it can
be shown that adapting the feature extraction method asiexpl
in Section 3.3 (i.e. case (ii)) outperforms the first feaexgaction
method (given by case (i)).

Finally, Fig. 3 depicts the retrieval results when query dgmas

compressed akRo = 1 bpp and model images are compressed a

different bitratesRy, that range from 0.1 to 1 bpp. At a similar
qualities (i.e.Ry = Rg = 1 bpp), it can be observed that the MPQ
outperforms the standard uniform quantizer followed byrdwm-
pression method in terms of retrieval performance. Moreavken
the query and model images have different qualities, oupgsed
method achieves significant improvement compared to thentlc
reported retrieval method based on the recompressionitpehn

5. CONCLUSION

In this paper, we have presented a new approach to improvethe
trieval performance of wavelet-based compressed images.inF
stance, we have shown that resorting to a moment preseruig- g
tizer with an adapted feature extraction method is moreéstang
than using an uniform quantizer followed by the inverse gj@ation
and recompression steps, when the database images areessatpr

t

T T T
—q—(): RQ:O.B bpp, RyL bpp
—o— (i} Ry=05 bpp, R, =1 bpp
—4— (i) RQ:O.l bpp, R,=0.1bpp i
—o—

ii): RQ:().l bpp, Ry=0.1 bpp

0.9

0.8

0.7F
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0.5F

0.4 . 4

0.7

Fig. 2. Retrieval performance in terms of precision and recallimwhe
the feature vectors are defined by retaining the second onder
ments of (i): all the wavelet subbands, (iipnly the wavelet sub-
bands whereV; > 2.

0.8

071

0.6

0.5

—e— MPQ: qul bpp, RM:1 bpp
— UQ-AR: RQ:I bpp, Ry1 bpp ]

—o— MPQ: RQ:1 bpp, R,=05 bpp

—+ UQ-AR: RQ=1 bpp, RM=0v5 bpp f

—s— MPQ: Rozl bpp, RM:D.l bpp

—— UQ-AR: RQ:1 bpp, RM:0.1 bpp H
T T

I I I
0 0.1 0.3

T
0.4 0.5 0.6 0.7
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Fig. 3. Retrieval performance in terms of precision and recallnvhe
using the MPQ-based coding scheme and the Uniform Quaffiizer
lowed by the recompression method (denoted here by UQ-AR).

and used for retrieval purpose. Experimental resultsjezhout on

the Vision Texture database, have indicated the benefitshwdan

be drawn from the proposed method. Future works aim at design
ing other sophisticated features that can be more robugtsighe
compression effects.
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