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ABSTRACT

Recent research efforts have been devoted to the improvement of
image retrieval systems when datasets are represented in a com-
pressed form. In this context, new studies have shown that compres-
sion has a negative impact on the performances of the traditional re-
trieval systems. In this work, we are mainly interested in designing
an efficient retrieval approach well adapted to wavelet-based com-
pressed images. More precisely, we first propose to apply a compres-
sion scheme based on the Moment Preserving Quantization (MPQ).
Then, the feature vectors will be defined in an appropriate way by fo-
cusing on the quantized subbands where some given statistical mo-
ments have been preserved. Experimental results indicate that the
proposed approach outperforms the most recent one which involves
the conventional uniform quantizer and constrains the query and the
model images to have similar qualities during the retrievalstep.

Index Terms— Content based image retrieval, wavelet domain,
moment preserving quantization, feature extraction, retrieval perfor-
mance.

1. INTRODUCTION

The recent advances in acquisition and display technologies have
led to the constitution of huge image databases (DB) and digital
archives. In order to reduce the storage requirements, different com-
pression schemes have been developed such as those adopted in
JPEG and JPEG2000 standards based respectively on DiscreteCo-
sine Transform (DCT) and Wavelet Transform (WT) [1]. For in-
stance, much attention was paid to wavelet-based compression tech-
niques due to the sparsity of the multiscale representationand the
good space frequency localization. Furthermore, the rapidincrease
of digital archives has allowed the widespread use of multimedia
indexing systems. Indeed, Content-Based Image Retrieval (CBIR)
systems aim to provide an efficient tool for managing large image
databases based on their visual contents [2]. Therefore, with the
increased need for both image compression and retrieval, today’s
CBIR systems tend to involve images not only in their original ver-
sions, but also in their compressed forms. Consequently, efficient
CBIR systems should enable a fast and accurate image indexing
from the stored wavelet coefficients. In this respect, several wavelet-
based image retrieval methods have been developed [3, 4, 5].Their
related indexing step aims at computing the features from both the
original wavelet coefficients of the query and DB images (called
hereafter model images). While such methods are well adapted for
images which are losslessly encoded, a particular attention should be
paid to the case of lossy data compression. In this case, the intuitive
retrieval strategy will consist ofdirectly computing and comparing

the features extracted from the quantized wavelet coefficients of the
query and model images. However, the latter techniques may not be
efficient when the query and model images have different qualities
(i.e. they are quantized at very different bitrates). Indeed, it has been
shown that compression adversely affects the performance of color
and texture image retrieval algorithms [6, 7, 8]. Therefore, a key
issue is to design more efficient indexing methods that account for
the quantization step. To the best of our knowledge, few works have
addressed this problem [6, 9, 10]. For instance, in our recent work
[10], we have improved the retrieval performances of wavelet-based
compressed datasets by forcing the model and the query images to
have similar qualities through a recompression strategy. More pre-
cisely, when the query and DB images are compressed at very differ-
ent qualities, and before performing the feature extraction and com-
parison steps, we have proposed to reconstruct the high quality im-
age and then, to quantize again the recovered WT coefficientsat the
bitrate of the low quality image. It is worth pointing out that a simi-
lar requantization approach has also been investigated in the context
of DCT-based CBIR system [9, 11]. However, this recompression
strategy has some limitations. Indeed, when the images are quan-
tized at very low bitrates, the resulting quantization error becomes
higher and therefore, the recompression technique will adversely im-
pact the feature relevance. Furthermore, the reconstruction and the
requantization steps lead to a computational overhead at the retrieval
stage.
The main objective of this paper is to alleviate these shortcomings
by resorting to a compression scheme that can preserve a set of sta-
tistical features of the wavelet coefficients to be quantized. To this
end, we propose to apply the Moment Preserving Quantizer (MPQ)
which has been designed to preserve the moments of the input signal.
Furthermore, we propose to adapt the state-of-the-art moment-based
feature extraction method to the preserved statistical moments of the
different quantized subbands.
The rest of this paper is organized as follows. In Sec. 2, we first
present the generic wavelet-based coding system as well as the most
current feature extraction techniques operating in the WT domain.
Then, we recall the recent image retrieval algorithm for thecom-
pressed images. In Sec. 3, we describe a novel retrieval approach by
using a MPQ-based coding scheme. Finally, in Sec. 4, experimental
results are given and some conclusions are drawn in Sec. 5.

2. COMPRESSED-DOMAIN CBIR SYSTEM

2.1. Classical wavelet-based compression scheme

A typical wavelet-based coding system consists of three modules
namely wavelet-based transform, quantization and entropycoding.



More precisely, a discrete wavelet decomposition is firstlyapplied
to the original data to be encoded. To this end, a Lifting Scheme
(LS)-based implementation has been introduced by Sweldensin or-
der to construct bi-orthogonal wavelets by a simple, reversible and
fast process. A generic one dimensional LS consists of applying a
prediction and update steps to the input signalaj(k) in order to gen-
erate the detail sub-signalsdj+1(k) and the approximationaj+1(k)
ones:

dj+1(k) = aj(2k + 1) − p
⊤
j aj(k) (1)

aj+1(k) = aj(2k) + u
⊤
j dj+1(k) (2)

whereaj(k) (resp.dj+1(k)) is a reference vector containing some
even samples (resp. detail coefficients) used in the prediction (resp.
update) step, andpj (resp. uj) is the prediction (resp. update)
weighting vector. Such 1D structure is generally applied along the
lines then the columns (or inversely) of the image in order topro-
duce an approximation subband and three detail ones oriented hor-
izontally, vertically and diagonally. By successively applying this
procedure to the resulting approximation subband, a multiresolu-
tion representation of the input image overJ levels is generated. In
the following,xj will denote thejth subband of sizeKj × Lj with
j ∈ {1, . . . , 3J + 1}.
Once this multiscale transform is performed, the coefficients of each
subbandxj are quantized using an uniform quantizer with a central
deadzone. Thus, for each coefficient located at position(k, l), the
outputx̄j of the quantizer is given by:

x̄j (k, l) = sign(xj (k, l))

⌊

|xj (k, l)|

qj

⌋

(3)

whereqj denotes the quantization step retained in thejth subband.
It is worth noting that a small (resp. high)qj value corresponds to a
high (resp. low) bitraterj and, results in a high (resp. low) recon-
structed subband quality.
Generally, the different quantization stepsq1, q2, . . . , q3J+1 (and,
hence the related bitratesr1, . . . , r3J+1) can be found by using an
optimal bit allocation algorithm based on a rate-distortion criterion.
Indeed, the average distortion in the WT domain is minimizedsub-
ject to a constraint on the total available bitrateR:

R =

∑3J+1
j=1 KjLjrj

∑3J+1
j=1 KjLj

. (4)

This constrained minimization problem can be solved using the La-
grangian optimization approach [12]. Finally, the quantized coeffi-
cients are entropy encoded to generate the compressed bit-stream.

2.2. Feature extraction

A wavelet-based CBIR consists of computing relevant features from
the wavelet coefficients. The most popular and fast technique aims
at retaining the first moments of the subbandxj as a salient feature
[3], especially the energyEj of the subband [13, 14]:

Ej =
1

KjLj

Kj
∑

k=1

Lj
∑

l=1

xj (k, l)
2 . (5)

Note that several statistical features such as inertia, entropy and local
homogeneity, defined on the co-occurrence matrix, can also be used
[15, 14]. Moreover, other works have been developed by resorting

to a parametric modeling of the distribution of each waveletsub-
band [3, 14]. In particular, the generalized Gaussian distribution [4]
and the Gaussian mixture model [16] were found to be well-suited
for modeling the wavelet coefficients in every subband. The related
feature vector of the image is built by taking the distribution param-
eters of all the wavelet subbands. It is worth noting that theso far
proposed statistical models concern the unquantized coefficientsxj

considered as realizations of a continuous random variable. These
models are no longer valid for quantized coefficientsx̄j which are
samples of a discrete random variable.
Once the feature vectors of the query and model images are ex-
tracted, the retrieval step can be applied by searching in the DB the
candidate model images whose feature vectors are closer to that of
the query one. To this end, a similarity measure should be defined to
perform this comparison. The most widely used one is the normal-
ized Euclidean distance [14].

2.3. Image retrieval after recompression

Now, we assume that the original versions of the DB images andthe
query one are not available as they are represented in a compressed
form by using the standard uniform quantizer. Thus, the related fea-
ture vectors will be computed from these lossy versions. A straight-
forward solution to design a CBIR consists ofdirectly comparing
the query and model images as it is generally considered in the case
of unquantized data. However, recent studies [11, 10] have high-
lighted the drop of retrieval performances when these images have
different qualities. For this reason, we have recently proposed to im-
prove the CBIR system by integrating, before the feature extraction
module, a pre-processing step that constrains the query andmodel
images to have similar qualities [10]. Since the resulting quantiza-
tion error at low bitrate is more important than the one obtained at
high bitrate, our main idea consists of keeping the low quality im-
age unchanged whereas the high quality one is transformed toa low
quality version through a coarse requantization. More precisely, the
reconstructed wavelet coefficientsx̃j(k, l) are firstly computed from
the finely quantized ones̄xj(k, l) as follows:

x̃j (k, l) =











(x̄j (k, l) + γ) qj if x̄j (k, l) > 0

(x̄j (k, l)− γ) qj if x̄j (k, l) < 0

0 otherwise,

(6)

where0 ≤ γ < 1 is a reconstruction parameter chosen by the de-
coder. Note that choosingγ = 0.5 corresponds to a mid-point re-
construction as used in many encoding strategies [17]. Then, the re-
constructed wavelet coefficients̃xj(k, l) are quantizedagain at the
same bitrate of the image having a lower quality. Finally, the features
are extracted from the requantized wavelet coefficients.

3. PROPOSED IMAGE RETRIEVAL METHOD UNDER
MPQ-BASED COMPRESSION SCHEME

3.1. Motivation

Although some benefits can be drawn from the previous solution,
this requantization strategy presents also some shortcomings. Firstly,
when the images are coarsely quantized, the related quantization er-
ror increases and hence, the recompression will negativelyaffect the
feature relevance. Moreover, such technique leads to a computa-
tional overhead at the retrieval stage since the reconstruction and re-
quantization operations should be performed for each modelimage
if the query image has the lowest quality. In order to overcome the



drawbacks of this recompression approach, it would be interesting to
preserve the image features through the compression procedure. In-
deed, using a coding method where features are still preserved, even
at low bitrates, can improve the retrieval system performance and in-
crease its robustness against compression effects. Furthermore, it is
well known that popular indexing methods in the WT domain consist
in retaining the first moments of the wavelet subbands as salient fea-
tures [3, 13]. In such indexing framework, the solution is toguaran-
tee that these moments (the features) are preserved by compression.
This is the reason why we propose to replace the uniform quantizer
(currently used in most of the wavelet-based compression methods)
by an efficient one, referred to as moment preserving quantizer [18],
which keeps the moments of the output equal to those of the input.
It is important to note here that the MPQ has also been successfully
used for image coding schemes [19].

3.2. MPQ-based compression scheme

Before describing the MPQ, let us first assume that the wavelet co-
efficientsxj to be quantized are viewed as realizations of a random
variableXj with a distribution functionFj(·). A Nj -level MPQ is
completely defined by itsNj output levels{yj,1, yj,2, . . . , yj,Nj

}
and (Nj − 1) thresholds{sj,1, sj,2, . . . , sj,Nj−1}, with yj,1 ≤
sj,1 ≤ yj,2 ≤ . . . ≤ sj,Nj−1 ≤ yj,Nj

, and such that the first
(2Nj − 1) moments are preserved. Therefore, the design of the
MPQ for thejth subband, withj ∈ {1, . . . , 3J + 1}, reduces to
solve the following system of equations:

mn
j

△
=E[Xn

j ] =

∫ +∞

−∞

xn
j dFj(xj) =

Nj
∑

i=1

yn
j,iPj,i (7)

for everyn = 1, 2, . . . , 2Nj − 1, where

• sj,0
△
= −∞,

• sj,Nj

△
= +∞

• Pj,i
△
=Fj(sj,i)− Fj(sj,i−1).

It results that the MPQ depends on the underlying distributionFj of
the input signal. Very often, the Generalized Gaussian (GG)distri-
bution is considered as an appropriate model of the distribution of
the unquantized wavelet coefficients [4]. The GG law is defined by
the probability density functionfj given by:

∀ξ ∈ R, fj(ξ) =
βj

2αjΓ(1/βj)
e−(|ξ|/αj)

βj

(8)

whereΓ(·) is the Gamma function,αj andβj are respectively the
scale and the shape parameters that can be easily estimated according
to the classical maximum likelihood criterion [4]. Under the GG
model, it can be checked that thenth-order moments are expressed
as follows:

mn
j =







αn
j

Γ(n+1

βj
)

Γ(1/βj)
if n is even

0 otherwise.
(9)

Thus, Equation (7) is a form of the Gauss-Jacobi mechanical quadra-
ture [20]. The output levelsyj,i of theNj -level MP quantizer are
the zeros of theNj -th degree orthogonal polynomial associated with
Fj . Note that the polynomials can be generated using the standard
recursion relation for any three consecutive orthogonal polynomials
[21]. ThePj,i are Christoffel numbers and thesj,i andyj,i alternate
by the separation theorem of Chebyshev-Markov-Stieltjes [20]. For
more details about orthogonal polynomials, Christoffel numbers and

the separation theorem, the reader is referred to [18].
Once the principle of the design of MPQ is described, a key issue
is the adjustment of the valueNj associated to the MPQ of thej-th
subband. To this end, a bit allocation among the subbands is carried
out in order to compute the levels(N1, N2, . . . , N3J+1) according
to a rate-distortion criterion. More precisely, the average distortion
in the WT domain is minimized subject to a constraint on the total
available bitrate. The Lagrangian optimization approach [12] can
also been used to solve this constrained minimization problem.

3.3. Appropriate feature extraction procedure

Unlike the energy-based feature extraction method where the sec-
ond order moments of all the subbands are retained to define the
descriptor, the feature vector in the context of MPQ-based coding
scheme should be appropriately defined according to theNj -level
associated to the MP quantizer of each subband. More precisely, it
is necessary thatNj ≥ 2 in order to ensure that the second order
moment of thejth subband is preserved. Therefore, before taking
the second order moment of all the wavelet subbands as a feature
vector, we have to check if the valueNj of each subband exceeds
1. Generally, it is well known that the coarse-scale (resp. fine-scale)
subbands represent large (resp. small) percentage of the total bitrate.
For instance, after performing the optimal bit allocation algorithm
among the different subbands, it can be noticed that the cases where
the second order moment is not preserved (i.e.Nj = 1) occur es-
pecially at low bitrates in the higher frequency subbands, whereas at
middle and high bitrates,Nj is often greater than or equal to 2. As
a result, at low bitrate (resp. middle and high bitrates), wepropose
to define the feature vector by taking the second order momentof
only the low frequency subbands (resp. ofall the subbands). More-
over, it is worth pointing out that the feature vectors of thequery and
model images may have different sizes when we encounter one im-
age compressed at low bitrate and the other one one compressed at
high bitrate. Therefore, during the indexing step, the descriptor vec-
tor dimension of images compressed at high bitrate will be adjusted
to the size of that obtained for images compressed at low bitrate by
omitting the second order moments of the high frequency subbands.

4. EXPERIMENTAL RESULTS

Simulations are performed on the Vision Texture (VisTex) database
[22] which contains images of different natural scenes. Since we
define similar textures as sub-images from a single originalone, we
selected 40 texture images of size512×512 whose visual properties
do not change too much over the image. Each image is then divided
into 16 non-overlapping images resulting in a DB of 640 images of
size128 × 128. Each sub-image in the DB is used once as a query.
We assume that the relevant images for each query are defined as the
16 sub-images obtained from a single original image. Moreover, in
order to study the compression effect on the retrieval performance,
all the images are compressed at different levels that rangefrom low
to high bitrate. The retrieval performances are evaluated in terms of
precisionPR = Rr

R
and recallRC = Rr

Rt , whereRr is the number
of output images considered as relevant,Rt is the total number
of relevant images in the database andR denotes the number of
returned images. The retained similarity measure is the normalized
Euclidean distance.
First, Fig. 1 provides the retrieval results for the compressed
database when the query and model images are respectively quan-
tized at different bitratesRQ andRM . The values of the energy
of all the wavelet subbands (i.e. their second order momentsm2

j ,



j ∈ {1, . . . , 3J + 1}) constitute the feature vector of each image.
Thus, it can be noticed that recompressing the images atsimilar
qualities (designated in the figure by AR) leads to a significant im-
provement in the retrieval performance compared to the casewhere
the images are considered under different compression qualities
(denoted here by UC). For instance, it is clear that the gain resulting
from the recompression technique becomes much more important
when the difference of qualities increases (i.e. when|RQ −RM | is
high).
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Fig. 1. Precision versus recall of wavelet-based compressed images:
under compression (UC) and after recompression (AR).

Now, before comparing this recompression technique to the pro-
posed image retrieval strategy under the MPQ-based coding method,
let us study the impact of the feature extraction procedure.More
precisely, we illustrate in Fig. 2 the retrieval performances when
the feature vectors are defined by considering the two following
cases: (i): the second order moments ofall the quantized wavelet
subbands are retained, (ii): the second order moments ofonly the
quantized wavelet subbands whereNj ≥ 2 are selected. Thus, it can
be shown that adapting the feature extraction method as explained
in Section 3.3 (i.e. case (ii)) outperforms the first featureextraction
method (given by case (i)).
Finally, Fig. 3 depicts the retrieval results when query image is
compressed atRQ = 1 bpp and model images are compressed at
different bitratesRM that range from 0.1 to 1 bpp. At a similar
qualities (i.e.RM = RQ = 1 bpp), it can be observed that the MPQ
outperforms the standard uniform quantizer followed by therecom-
pression method in terms of retrieval performance. Moreover, when
the query and model images have different qualities, our proposed
method achieves significant improvement compared to the recently
reported retrieval method based on the recompression technique.

5. CONCLUSION

In this paper, we have presented a new approach to improve there-
trieval performance of wavelet-based compressed images. For in-
stance, we have shown that resorting to a moment preserving quan-
tizer with an adapted feature extraction method is more interesting
than using an uniform quantizer followed by the inverse quantization
and recompression steps, when the database images are compressed
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Fig. 2. Retrieval performance in terms of precision and recall when
the feature vectors are defined by retaining the second ordermo-
ments of (i): all the wavelet subbands, (ii):only the wavelet sub-
bands whereNj ≥ 2.
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Fig. 3. Retrieval performance in terms of precision and recall when
using the MPQ-based coding scheme and the Uniform Quantizerfol-
lowed by the recompression method (denoted here by UQ-AR).

and used for retrieval purpose. Experimental results, carried out on
the Vision Texture database, have indicated the benefits which can
be drawn from the proposed method. Future works aim at design-
ing other sophisticated features that can be more robust against the
compression effects.
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