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Preprocessing EO-1 Hyperion Hyperspectral Data to
Support the Application of Agricultural Indexes

Bisun Datt, Tim R. McVicar, Tom G. Van Niel, David L. B. Jupp, Associate Member, IEEE, and
Jay S. Pearlman, Senior Member, IEEE

Abstract—The benefits of Hyperion hyperspectral data to
agriculture have been studied at sites in the Coleambally Irriga-
tion Area of Australia. Hyperion can provide effective measures
of agricultural performance through the use of established
spectral indexes if systematic and random noise is managed.
The noise management strategy includes recognition of “bad”
pixels, reducing the effects of vertical striping, and compensa-
tion for atmospheric effects in the data. It also aims to reduce
compounding of these effects by image processing. As the noise
structure is different for Hyperion’s two spectrometers, noise re-
duction methods are best applied to each separately. Results show
that a local destriping algorithm reduces striping noise without
introducing unwanted effects in the image. They also show how
data smoothing can clean the data and how careful selection of
stable Hyperion bands can minimize residual atmospheric effects
following atmospheric correction. Comparing hyperspectral
indexes derived from Hyperion with the same indexes derived
from ground-measured spectra allowed us to assess some of these
impacts on the preprocessing options. It has been concluded that
preprocessing, which includes fixing bad and outlier pixels, local
destriping, atmospheric correction, and minimum noise fraction
smoothing, provides improved results. If these or equivalent pre-
processing steps are followed, it is feasible to develop a consistent
and standardized time series of data that is compatible with
field-scale and airborne measured indexes. Red-edge and leaf
chlorophyll indexes based on the preprocessed data are shown to
distinguish different levels of stress induced by water restrictions.

Index Terms—Agricultural indexes, Hyperion, hyperspectral,
image processing.

I. INTRODUCTION

T HE HYPERION sensor [1], carried by the National
Aeronautics and Space Administration (NASA) Earth

Observing 1 (EO-1) satellite [2], is the first spaceborne hy-
perspectral instrument to acquire both visible near-infrared
[(VNIR) 400–1000 nm] and shortwave infrared [(SWIR)
900–2500 nm] spectra. Hyperion is a pushbroom sensor with
two spectrometers and a single telescope. The EO-1 satellite is
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TABLE I
COMMON SPECTRAL FEATURES FORCROPS ANDSOILS

in a sun-synchronous orbit at 705-km altitude and is nominally
1 min behind the Landsat-7 satellite. Hyperion images 256
pixels with a nominal size of 30 m on the ground over a
7.65-km swath. The platform attitude can vary as the satellite
is rolled to image specific targets. During the first year of
operation, Hyperion processing was developed and refined to a
stage (Level 1B1) where well-calibrated data became routinely
available. In this paper, we examine processing and noise re-
duction methods that can be applied post-Level 1B1 to provide
consistent time series of Hyperion data for an agricultural site
near Coleambally in New South Wales (NSW), Australia. This
will be referred to as the Coleambally Irrigation Area Site
(CIAS). The benefits to that study, and the implications for
more general agricultural applications, are assessed by focusing
on crop attributes that can be derived from Hyperion using a
range of hyperspectral indexes.

Hyperion data have three potential advantages over space-
borne multispectral instruments, such as Landsat Enhanced
Thematic Mapper (ETM). First, they can provide an enhanced
level of information for atmospheric correction to derive surface
reflectance. Second, they can provide access to detailed spectral
indexes based on surface reflectance. Finally, they can be used
to integrate (or “bin”) the hyperspectral data consistently to
synthetic bands equivalent to any of the broadband sensors
or to bands of yet to be developed instruments. This spectral
“binning” of Hyperion will be dealt with in a separate paper.
This paper investigates the first two advantages and how they
benefit from careful preprocessing.

II. K EY SPECTRALINDEXES FORAGRICULTURAL ASSESSMENT

The use of broadband space-based remote sensing is well
established in agriculture for regional and global monitoring
and assessment [3], as is the use of spectrally more detailed
information at the laboratory scale [4]. Current research is
using airborne and ground-based hyperspectral data [5]–[7] to
scale laboratory techniques to remote platforms.

0196-2892/03$17.00 © 2003 IEEE
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Fig. 1. Typical spectral features occurring in the CIAS. Mean ASD spectra (convolved to 176 Hyperion bands) for the nine sampling sites are shown.

TABLE II
SITES MEASURED BY AN ASD AT CIAS

The work in progress at the CIAS uses field and laboratory
spectral data to calibrate and investigate various derivative and
integral indexes. The aim is to find indexes most sensitive to
plant nitrogen, water, chlorophyll, lignin, cellulose, and other
plant chemical substances plus soil chemical factors such as clay
composition and soil nitrogen content. The major such spectral
regions are summarized in Table I.

A range of ground spectra with a 1-nm resolution has been
taken within the CIAS as validation for Hyperion and as infor-
mation to accompany site sampling. The site means obtained
from data taken by an Analytical Spectral Devices (ASD) Field-
spec spectroradiometer are plotted in Fig. 1 (see Table II). These
spectra have been integrated to the 10-nm Hyperion bands for
later comparison with Hyperion data and display signatures and
spectral features typical of green vegetation, dry vegetation, and

soils. A green reflectance peak near 550 nm, photosynthetic
chlorophyll absorption (680 nm), a steep slope in the red-edge
region (700–750 nm), and leaf water absorption near 970 and
1240 nm are present in the crop spectra. The soil spectra show
clay absorption near 2200 nm, and the stubble spectra show
lignin/cellulose absorption near 2100 and 2300 nm and plant
wax/oil absorption near 1720 nm.

We have selected six indexes to assess the effects of noise
management. The wavelengths used in the formulation of these
indexes are located within what we will term the “stable” bands
of Hyperion (see Section V-C). This provides a reasonable
expectation of stable calculation of these indexes. All Hyperion
wavelengths reported in this paper are based on the central
wavelengths corresponding to pixel 128. The six indexes are
defined as follows.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 16:04 from IEEE Xplore.  Restrictions apply.
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1) The red-edge (RE) wavelengthis the wavelength po-
sition of the maximum slope in the red-near-infrared
(700–750 nm) reflectance of vegetation. Several studies
have shown that the RE wavelength is correlated with
chlorophyll content in leaves and canopies [8]–[10]. The
RE wavelength is a good candidate for monitoring vege-
tation productivity, as well as detecting the onset of stress
and senescence. The RE shifts to longer wavelengths
during plant growth (increasing chlorophyll content) and
to shorter wavelengths during stress (chlorophyll decline
in leaves).

2) The first-derivative value at the red edge (dRE)defines
the value of the maximum slope associated with the RE
wavelength above. This index can be sensitive to green
vegetation amount [percent cover and leaf area index
(LAI)]. Filella and Peñuelas [11] found the area of the
red-edge peak to be a strong indicator of LAI. Other
variants of dRE using the sum of first and second deriva-
tive values around the red-edge band or derivative green
vegetation indexes (DGVIs) have also shown strong
linear relationships with green vegetation cover [12],
[13]. The original Hyperion bands used here to develop
both the RE and the dRE were 33 to 40 or wavelengths
681.8–753.0 nm.

3) A leaf chlorophyll index (LCI)developed in [14] was
found there to be a sensitive indicator of chlorophyll
content in leaves and was less affected by scattering from
the leaf surface and internal structure variations. LCI is
a ratio of relative chlorophyll absorption depths in the
RE (710 nm) and red (680 nm) wavelengths. It works
best at moderate to high chlorophyll levels. The value of
LCI increases as leaf chlorophyll content increases, and
is calculated as

LCI (1)

where, in [14], the reflectance at wavelength
850, 710, and 680 nm. The same notation applies
throughout the paper. The Hyperion band numbers
used to develop the LCI here are 50, 36, and 33. These
bands correspond to wavelengths of 854.7, 712.3, and
681.8 nm, respectively.

4) The water index (WI)compares the leaf (liquid) water
absorption band near 970 nm with a reference band at
900 nm, which does not show leaf water absorption [15].
The value of WI increases with leaf water content. WI is
calculated as

WI (2)

For Hyperion, bands 55 and 83 were used which cor-
respond to central wavelengths of 905.5 and 973.1 nm,
respectively.

5) The normalized difference water index (NDWI)is based
on a leaf (liquid) water absorption band near 1240 nm
and a nonabsorbing reference band near 860 nm [16]. The
value of NDWI also increases with leaf water content, and
is calculated as

NDWI (3)

For Hyperion, bands 51 and 110 were used which
correspond to wavelengths of 864.8 and 1245.4 nm,
respectively.

6) The 2200-nm absorption feature [or clay index (CI)]
present in the Coleambally soils results from combina-
tions and overtones of hydroxyl absorption in the clay
lattice structure [17]. This feature is present in the re-
flectance spectrum of kaolinite, a common clay mineral.
CI was calculated as the area of the continuum removed
reflectance spectrum between 2193 and 2213 nm, and
used Hyperion bands 204, 205, and 206 corresponding
to wavelengths of 2193.8, 2203.9, and 2214.0 nm. Con-
tinuum-removed absorption feature analysis is a useful
method for estimating the abundance of compounds
from reflectance spectra of samples [18]. The band depth
and/or area of the continuum removed absorption fea-
tures are calibrated against the concentration of chemical
compounds of interest or compared with contents of
spectral libraries [19], [20]. Such indexes are robust to
residual effects following atmospheric correction.

III. COLEAMBALLY IRRIGATION AREA SITE:
DATA AND IMAGE BASE

The CIAS is a 95 000 ha site in southern NSW, Australia
(Latitude 34 48 4.3” S, Longitude 1460 48.96” E, 120 m
above sea level) that has over 500 farms with large (up to 70 ha)
flat uniform fields. The climate has high variability, but the
water usage and cropping area are well managed at regional
and farm levels. Farming practices are mechanized and inten-
sive, and landholders are interested in maximizing efficiencies
through better management.

The CIAS is a focus of remote sensing research to determine
the information content available from current broadband and
hyperspectral satellite sensors. The CIAS has an excellent base
of geographic and agricultural management information plus
survey information from specific farms. Since December 2000,
a time series of Landsat ETM and coincident EO-1 images have
been collected over two southern hemisphere summer growing
seasons (2000/2001 and 2001/2002). There have also been a
number of field campaigns to collect spectral and ancillary data
for calibration and applications research.

The data for the CIAS on January 12, 2002 include Landsat
ETM, EO-1 Hyperion and ALI, plus complementary ground
(spectral, canopy characteristics, and plant chemistry), airborne
(spectral and geometric), and atmospheric data. An ASD
Fieldspec spectroradiometer was used to collect ground-based
spectra for selected crops and fields. HyMap airborne scanner
data [28], covering the 400–2500-nm spectral range in 126
bands, were also acquired for part of the CIAS on January
12, 2002. A CIMEL Electronique CE318–1 instrument was
provided by NASA’s AERONET Program [21] (AERONET
Instrument Number 69) to measure atmospheric characteris-
tics. The application and accuracy of CIMEL and other sun
photometers under Australian conditions is discussed in [22].
Every January, Coleambally Irrigation Co-operative Limited
acquire a high-resolution (1 : 50 000 scale or 2-m pixel) digital
air photo mosaic over the CIAS. This provided an accurate
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geographic base for geometric registration of the various image
and other data to a common map base.

The conjunction of these datasets and the nature of the area
(road network and field layout plus little relief) makes Coleam-
bally an ideal location for 1) geometric and sensor alignment
validation, 2) sensor performance validation, 3) sensor intercal-
ibration, 4) atmospheric correction validation, and 5) agricul-
tural applications development. In an initial study addressing
Hyperion geometric accuracy, average rms errors were as small
as 12.9 and 11.6 m, respectively, in the across and along track
directions. Details can be found in [23]. Recent results also con-
firm that processing by TRW Corporation to Level 1B1 results
in excellent VNIR and SWIR coregistration.

The ASD data were measured over nine sites (Table II). At
each site, five ASD spectra were averaged, each spectrum being
internally averaged 15 times. Times and dates are local (GMT +
1100). The Hyperion image was acquired at 10:59A.M. on Jan-
uary 12, 2002. The location of each ASD site was obtained from
a real-time differential GPS unit. At four of the sites (two soil
and two stubble fields), 100 m 100 m grids of spectral data
were measured to quantify (inter-) calibration and atmospheric
correction performance at the Hyperion scale. These sites repre-
sent the largest, stable dynamic range in reflectivity within the
study area. At the other five sites, less intensive, more oppor-
tunistic spatial sampling occurred on the following two days,
but with a wider range of agricultural covers being measured to
evaluate the performance of indexes and their correlation with
crop and soil information. At all sites surface geometry may in-
troduce some variation into the ASD measurements; however,
we have not explicitly corrected the ASD data for sun angle
variations due to bidirectional reflectance distribution function
(BRDF) effects.

IV. I MAGE PROCESSING TOMANAGE DATA

AND PROCESSINGNOISE

A. Basic Image Processing Approach

Since Hyperion operates from a space platform with con-
sequently modest surface signal levels and full-column atmo-
spheric effects, its data demand careful processing to manage
sensor and processing noise. The approach taken here involves
selecting bands of greatest value (i.e., the best tradeoff between
information content and noise level for the purposes of the ap-
plication), addressing the vertical striping noise that the VNIR
and SWIR arrays display, and managing residual and introduced
noise following a standardized atmospheric correction to ap-
parent surface reflectance.

For many forms of data processing such as classification
with training sets, minimum noise faction (MNF) [24] or
principal component analysis (PCA) [30], and the application
of various indexes, it is not necessary to atmospherically
correct image data for a single observation. There is also a
significant risk in using atmospheric correction, as it tends to
amplify noise levels, hence reducing the SNR. However, there
are also many situations, which all occur in our work in the
CIAS, where it is important to transform hyperspectral data
to apparent surface reflectance. These include its use in data
normalization for temporal studies, for persistent calibration

TABLE III
HYPERION 176-BAND SUBSET

of indexes and for the direct application of crop models. They
also include its utility for directly matching image data to
spectral libraries, ground data and to plant chemistry mea-
surements. CIAS field spectra have been compared with pixel
values extracted from atmospherically corrected data using
packages such as HATCH [25], FLAASH [26], and ACORN
(http://www.aigllc.com/acorn/intro.asp). The packages have all
been found to provide measures of the atmospheric water vapor
that agree in magnitude and variance with measurements made
by the CIMEL instrument and had generally good agreement
with ASD data taken close to the time of the overpass. These
results will be reported separately. Since the different packages
gave similar results, we have used the FLAASH package, with
standard options, as the baseline for the work reported here due
to its close integration with the Modtran 4 code development.

B. Hyperion Noise and Implications for Base Processing

The Hyperion VNIR sensor has 70 bands, and the SWIR has
172 bands providing 242 potential bands. A number of the bands
were intentionally not illuminated and others (mainly in the
overlap region between the two spectrometers) correspond to
areas of low sensitivity of the spectrometer materials. Because
of this, only 198 bands have been provided in Hyperion Level
1B1 products; the unused bands (1 to 7, 58 to 76, and 225 to
242) are set to zero values by TRW software during the Level
1B1 processing [27].

The Level 1B1 product provided by TRW [27] includes cor-
rections that remove dark current bias effects and correction
steps for what are termed “bad” pixels remaining in the 198
bands. The pixel- and band-dependent calibrations have been
adjusted over the life of the sensor and represent a well-bal-
anced set of calibrations through effective use of solar, lunar,
intersensor, and vicarious methods. Among the 198, there are
four remaining bands in the overlap between the two spectrom-
eters. These are VNIR bands 56 (915.7 nm) and 57 (925.9 nm)
and SWIR bands 77 (912.5 nm) and 78 (922.6 nm). It is usual
to eliminate two of these to obtain 196 unique bands. In the
processing reported here, we have selected as the unique 196
the bands 8 to 57 and 79 to 224. This choice was made, since
the SWIR band 78 has the higher level of base noise after de-
striping (described below). This higher base noise level can be
confirmed by analysis of the “dark” images provided with Hy-
perion data.

Atmospheric water vapor bands that absorb almost all of the
incident and reflected solar radiation are easily identified by vi-
sual inspection of the image data or by atmospheric modeling.
Accepting this as a good criterion for band elimination for land
surface applications yields the subset of 176 bands listed in
Table III.
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The wavelengths removed correspond to strong atmospheric
water vapor absorption bands between 1356 and 1417 nm, 1820
and 1932 nm, and above 2395 nm. They are commonly removed
from ASD or other spectrometer data (including Hymap) taken
under natural light conditions. They are not sampled in the spec-
tral ranges selected in the HyMap airborne scanner [28]. For the
work presented here, the 176 bands provide the primary input
band set for processing and interpretation.

The 176 Hyperion bands still display additional effects that
arise from the pushbroom technology. In this paper, the spatial
elements of one line of an image will be called “pixels” and
are the same as “samples” in other usage. They sample the land
surface in the across-track direction. As the pushbroom moves
forward, a given pixel creates a “column” of data or an along-
track (vertical direction) dataset. Each column in a single band
corresponds to a single detector in one of the arrays.

For pushbroom instruments, a poorly calibrated detector
in either the VNIR or SWIR arrays will leave a vertical
“stripe” in a displayed image band. The most extreme of
these (which contain little or no valid data) are identified as
“bad” pixels and interpolated in the Level 1B1 processing.
In more recent NASA processing [35], these pixels are listed
but left unmodified allowing users to select different methods
to handle or replace the pixels. Sometimes additional “bad”
pixels occur due to infrequent pixel saturation, which makes
the correction for sensor “echo” inoperable and at other times
the extra “bad” pixels seem to be associated with events in the
space environment such as high-energy particles. Fortunately,
there are not many “bad” pixels. The current Level 1B1 “bad”
pixel list contains about 17 individual pixels out of 242256
pixels with two cases where a block of bands for a single pixel
needs to be fixed. There are also a number of independent
detector offsets that reflect the structure and read-out process of
the arrays. These are primarily removed in the dark-correction
although some effects remain that are significant for dark
targets—such as water bodies—but do not affect the indexes
being discussed here.

Hyperion also displays pixel pushbroom effects of a less se-
vere but still problematic nature. These are pixels where the
data calibration is effectively spatially and possibly temporally
varying at scales determined mainly by array structure rather
than the earth’s surface structure. At one level, a single detector
in one of the arrays may have an anomalous calibration. If such
pixels have no association with other detectors they will create
pixel-level and pixel-independent vertical stripes in the image
data. Spatial correlation can come from within-array interac-
tions and may be related to the read-out process. Correlated
blocks of stripes seem more prevalent in the SWIR array than
the VNIR array.

Hyperion also has low-frequency array effects such as those
due to spectral “smile. This can arise from the optical techniques
used to spectrally disperse the input imaged “slit” over the de-
tector arrays. It creates a variation in central wavelength and
bandwidth across the swath of the sensor—or in a single image
line. The spectral “smile” effect is fully described in other pa-
pers in this special issue, and while well characterized prior to
launch [27], it is the subject of on-going investigations (such as
in [33]) to establish whether there have been changes to its form

since launch and to handle specific cases where it affects the de-
rived products.

C. Balancing Vertical Stripes in the VNIR and SWIR Arrays

The statistics of the detector arrays can be studied by accumu-
lating mean, variance, minimum, and maximum data for each
pixel in each band over the lines of an image. As discussed
above, a vertical stripe is said to occur where the statistics in-
dicate that the image information is likely to be valid (that is,
the pixel is not “bad”) but with significantly modified gain and
offset. We are also assuming that such gains and offsets are rel-
atively stable over a collect—but not necessarily between col-
lects. A general approach to removing vertical stripes with these
characteristics is then similar to methods used in the past to bal-
ance horizontal stripes in mirror scanner images by histogram
equalization [29] or to flatten images affected by limb bright-
ening or to balance detectors in airborne pushbroom sensors
[34]. That is, histogram moments, such as the means and vari-
ances of the columns in each band, are used to balance the sta-
tistics of the arrays to those of a reference histogram.

The pixel balancing introduced here is different in that it may
be done either “globally” or “locally.” In global balancing, the
statistical moments of each column are modified to match those
for the whole image for each band. In the local approach, ref-
erence moments are estimated locally. However, if an affected
pixel is quite extreme but not “bad” in the sense defined above,
its presence can adversely affect the local statistics. It is, there-
fore, best to treat such outliers separately in an initial pass. The
initial outlier pass used here is local but uses median statistics
and thresholds rather than means to identify the pixels to adjust
rather than modifying all of the column data to statistics affected
by the outliers.

Mathematically, let be the mean of the detector at theth
pixel position for band and be the corresponding within-
column standard deviation over the data sensed as the image is
acquired—or on some group of lines in the image. Moreover,
let and be corresponding “reference” values for these
moments. The differences between local and global methods
and the outlier or general image passes occur in the way the
reference values are established.

Formally, the approaches can all be expressed as finding a
gain ( ) and an offset ( ) for each detector such that the
values of the image data for sample, line , and band
are modified to

(4)

where the gain and offset are computed by

(5)

That is, generally speaking, the gain setting controls the
within-column standard deviation after processing and the offset
controls the mean. It follows that if the reference standard
deviations are the same as the actual image values, the result
is an additive change with no alteration of the within-column
standard deviation.
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The global method takes the reference mean to be the total
image mean and may also take the reference standard deviation
to be the whole image within-column standard deviation

(6)

The local methods involve either outlier detection and replace-
ment or the use of local smoothing filters. For outlier detection
(assuming “bad” pixels have been previously fixed) it is pos-
sible to compute

test (7)

where “ ” indicates a local median of selectable neighbor-
hood. Outlier pixels are those where “test” is above a specified
threshold. Pixels with anomalous standard deviations are also
identified by a similar formula. The outlier destriping is applied
as an initial pass to the identified bands using median values as
the reference values.

Local destriping proceeds when the outliers have been
treated. It uses as reference values

(8)

The notation “ ” used here indicates a local mean with se-
lectable neighborhood.

Global equalization to remove the striping is mathematically
simple but enforces a very severe constraint of uniform column
statistics on an image. Gradients in image radiance and distinct
patches of different cover types are common in images, and it is
therefore, rare for the vertical column statistics of an image to
be well balanced across a whole line in the land surface infor-
mation. An apparent advantage claimed for global equalization
has been that it seems to remove low-frequency effects such as
those due to spectral “smile.” This comes at the cost of changing
the spectra as discussed more fully in Section IV-D.

In our experience, the particular choices of method and set-
tings that work best are different for the VNIR and SWIR ar-
rays. They also tend to vary with environmental conditions and
between images with distinctly different land covers (such as
forests, crops, water and deserts). The CIAS was treated as a
single land cover for this study but the local neighborhoods were
different in the VNIR and SWIR arrays as discussed in Sec-
tion IV-D. Other land covers may well need to be stratified.

D. Testing the Effects of Destriping Using the MNF Transform

The effects of destriping and band selection on Hyperion were
tested using the MNF transformation [24]. The MNF technique
responds to interactions between the spatial structure of the data
and that of the noise when the noise has strong spatial structure.
This is the case with the image striping. The MNF cannot gen-
erally be used to filter out such effects, since they merge with
image information but it can illustrate them clearly, as shown
in Fig. 2(a) and (b) where the MNF images of the radiance
data are shown. The first MNF band has a strong spatial gra-
dient that corresponds to the spectral “smile” in the VNIR array

(a) (b) (c) (d)

Fig. 2. MNF Bands 1 and 15 (a) and (b) before and (c) and (d) after global
destriping. The 176-band selection from Hyperion was used for the MNF.

(a) (b)

Fig. 3. MNF bands 1 and 5 of the difference between global destriped and
original radiance image. The 176-band selection from Hyperion was used for
the MNF.

[Fig. 2(a)]. The subsequent MNF bands are soon dominated by
vertical striping [Fig. 2(b)].

If global destriping is applied to this image, the result of ap-
plying the MNF transformation [Fig. 2(c) and (d)] indicates
that both the broad low-frequency effect and the local stripes
have been reduced and the image is clean. Moreover, by se-
lecting stable bands that reduce residual atmospheric effects
and globally destriping, the MNF becomes clear of the effects
noted above to about 20 transformed bands. This is a signifi-
cant number of features for such data as will be discussed in
Section V-B.

However, examination of the differences between the original
and destriped data indicates that not only are the pixel to pixel
stripes and the broad low-frequency VNIR effect removed, but
also midrange frequencies related (in this case) to field sizes and
the balance of crop and fallow fields in vertical columns. This
is illustrated in Fig. 3 where the MNF Bands 1 and 5 of the dif-
ferences between the global destriped and raw or “undestriped”
radiance images are presented. Removing these field-scale spa-
tial patterns can alter the spectral and spatial characteristics of
the data. For example, the predominance of watered rice in one
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(a) (b) (c) (d)

Fig. 4. MNF bands 1 and 5 of the difference between local destriped and original image. The 176-band selection from Hyperion was used for the MNF.

vertically (north/south) extended area [see Fig. 3(b)] depressed
the red region over the whole length of the image to the point
where the atmospherically corrected reflectance was negative in
the rice fields!

The low-frequency “smile” effect is displayed clearly in the
difference image MNF 1 (see [33] for more explanation) while
MNF 5 shows a variety of midfrequency effects that are due to
fields and not to noise at either the low- or high-frequency end
of the scale. These represent informative spatial information that
has been removed by the process.

A local method in which the mean and variance used as refer-
ence moments were obtained by local averages over five pixels
removed pixel-to-pixel scale stripes and not the midfrequency-
scale land cover effects. However, it retained the low-frequency
“smile” effects in the image data. The result is shown in Fig. 4
where Fig. 4(a) and (b) shows the MNF 1 and 5 for the differ-
ence image and Fig. 4(c) and (d) shows the MNF 1 and 15 of
the locally destriped bands. The low-frequency “smile” effect
is now retained as MNF 1 in the data but the lower order MNF
is clear of the local striping and also retains the midfrequency
field-scale information.

By examining the statistics of the VNIR and SWIR arrays
separately, it is found that the majority of the striping effects in
the VNIR are distinct, mainly independent and persistent within
and between scenes. They are easily and best removed by a local
destriping with a narrow window (such as five pixels). There are
also stripes that occur in blocks of pixels and seem to be related
to the read-out of the array. These blocks of stripes, which occur
more often in the SWIR than the VNIR, are best handled by
using a much wider local filter. Local filters with widths of up
to 41 pixels were used to reduce these effects in the SWIR in
this paper. Block striping in the VNIR seems to be isolated to a
few specific bands and these are best treated separately.

With the local approach it is necessary to investigate and
understand the nature of the low-frequency pushbroom effects
separately from the vertical striping. Global destriping seems
to remove the VNIR “smile” effect as well as the stripes but
also alters midfrequency spatial effects in the data and so is
generally not a good processing step. Local destriping leaves
the “smile” effect but only removes pixel-to-pixel scale stripes.

Consequently local destriping with different widths in the VNIR
and SWIR is the recommended approach in the current applica-
tion with “smile” being handled in a different way such as has
been described in [33].

V. MANAGING IMAGE NOISE FOLLOWING

ATMOSPHERICCORRECTION

Atmospheric correction generally reduces the SNR in the
data due to its transfer of the uncorrelated noise to the resulting
spectra and also due to the introduction of spectral effects
through differences between the model used and the actual
atmosphere. The latter includes effects in Hyperion due to
spectral “smile” not being taken into account by currently
available packages. The management of noise in this situation
is dependent on the application, the section of the spectrum
of most interest, the environmental conditions during the data
acquisition, and many other factors and is currently the focus
of continuing research. We have, therefore, used only a few
of the known and established steps as examples against which
to judge their benefits to agricultural measurements. These
are reference spectrum smoothing, MNF smoothing, and band
selection.

A. Reference Spectrum Smoothing

The residual noise after atmospheric correction includes two
specific types. One is the sensor and processing noise that
contributes to the inherent (and reduced) SNR of the data.
It is generally uncorrelated spectrally and spatially or has
only local correlations that reflect more the geometry of the
sensor than the spatial correlations of the scene. The other
type includes systematic effects that relate to the differences
between the modeled and real atmospheres at the time the
data were collected.

In principle, the second could be estimated if you had a
range of actual ground surface reflectance values and compared
them with the output from the atmospherically corrected data.
Systematic and persistent differences may be identified and
removed from the image data. Such cleaning actions, based
on known spectra, have often been used to improve the results
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Fig. 5. Mean reflectance spectrum from the Hyperion reflectance image
(dashed line) fitted using a linear combination of mean ASD spectra from nine
sites (solid line). ASD spectra were integrated to the Hyperion bandpasses.

of atmospheric correction. Since convenient ground spectra of
this type are rare in operational data processing, a number of
alternative, related approaches have been developed. These are
typified by the EFFORT approaches available in ENVI and
other packages [31]. In that approach, typical image spectra are
obtained and fitted by smooth polynomial or spline functions
and the residuals are assumed to be the noise. After that pass,
the procedure is much the same as if reference spectra were
available.

To provide an example of the general approach for our
study—without attempting to define the best operational
method—we fitted the overall mean spectrum of the atmo-
spherically corrected Hyperion image by a linear (mixture)
combination of the means of the field spectra measured at the
nine sites (Fig. 5). In this way, all of the shapes and features
that we expected to find in the ASD data were preserved in the
fitted model and a global residual noise factor could be defined.
The ratio of the mean to the model provides a multiplier to
clean up the spectra. This is similar to a directed EFFORT.

B. MNF Smoothing

The uncorrelated, or at most locally spatially correlated,
noise is not reduced by a general approach like reference
spectrum smoothing. The PCA or MNF transformations are
often used for this purpose, as they do not degrade the spa-
tial resolution. The MNF transformation extracts information
dimensions relative to an assumed noise structure in the data
[24]. The components corresponding to low SNR and unstruc-
tured spatial statistics can often be eliminated from the data by
“putting the transformation back together” without them—or
an “inverse” MNF transformation.

It is useful to have some idea of the significance of the
number of transformed bands retained in the data for the
inverse MNF transformation. As noted above, global destriping
using the 176-band selection seemed to provide about 20
MNF bands that are free of the spatially structured striping
noise. A similarly striping-noise free set was obtained after
local destriping but with the low-frequency effects retained as

Fig. 6. Hyperion (dashed line) and HyMap (solid line) MNF comparison. (A)
Data mean spectra over a common area. (B) MNF values on a Log scale.

high SNR MNF components. However, this provided no basis
for assessing the significance of the 20 MNF bands except
through visual inspection. To provide a benchmark, MNF of
the 126 bands of atmospherically corrected HyMap data [28]
acquired at the same time was used for the same area as a
coregistered Hyperion data based on the 176-band set. The 176
Hyperion bands cover a similar range to the 126 HyMap bands
but with a finer spectral resolution—10 nm compared with
15 nm full-width half-maximum and spacing. The atmospheric
correction for the two datasets used the same basic parameters
except for the flying height and other platform-dependent
settings.

Fig. 6(A) shows the total image means in the common area
imaged by both Hyperion and HyMap. The greater level of
residual noise visible in the Hyperion mean plot is higher
than can simply be ascribed to the narrower bandwidth. With
advantages of broader bands, higher signal levels and higher
intrinsic SNR, the HyMap data seems to achieve 25 to 30
significant MNF bands [Fig. 6(B)]. Taking 25 to 30 HyMap
MNFs as a base potential for resolving MNFs (i.e., the limit of
environmental SNR in this application) it is a good achievement
to remove noise to achieve 20 MNFs from Hyperion data. The
similarity between the HyMap data in Fig. 6(A) and the model
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Fig. 7. Estimated sensitivity measure of radiances to changes in location of atmospheric features or Hyperion band centers. Continuous line is the measure and
the blocks are the 155 bands selected for “stability.”

based on fitted site spectra in Fig. 5 supports the assumption of
low residual noise in the HyMap data.

To apply the dimensional noise reduction in practice, it is
best to handle the VNIR and SWIR data separately and com-
bine them after the processing. In the following examples, for
the inverse MNF transformation we used 12 components in the
VNIR and eight in the SWIR. These choices allowed rejection
of some low SNR residual array effects and were more conser-
vative than the 20 MNFs from the combined set that were used
in the comparison with HyMap. Handling the VNIR and SWIR
data separately provides greater capacity to manage the noise
due to its different structure in the two arrays.

C. Band Selections That Avoid Residual Atmospheric Noise
Effects

The residual noise introduced by atmospheric correction can
be reduced by methods such as those described above. However,
an alternative or complementary approach is to eliminate bands
that are most likely to contain unstable atmospheric artifacts
above a certain threshold.

To quantify the choice, an index of band sensitivity to atmo-
spheric effects (such as variations in absorber profile as well as
interactions with the sensor) was defined by using the derivative
of model radiance as a function of wavelength. In effect, this
measure is most sensitive to locations where a change in band
center will create the largest differences in radiance. Specifi-
cally, atmospheric models were computed for the CIAS based
on a clear day as the base and with variations in aerosol and
water vapor to provide the range. These were combined with
an average surface reflectance computed with a wavelength ()
step of 1 nm and converted to radiance () at the sensor.

Numerical differentiation was used to compute the quantity

Sensit (9)

TABLE IV
155 STABLE HYPERION BANDS

The results were averaged over the cases of varying atmospheric
levels of water vapor and aerosol and then integrated over the
Hyperion band passes. The result obtained is partly a function
of the conditions at the site and the time of overpass up to the
variation introduced by the varying atmospheric data. The final
value is plotted in Fig. 7.

There was a level of arbitrariness about the overall level
chosen to indicate instability. Initially, a value of 0.25 was
selected and then some bands at the edge of atmospheric
features were added where there were some important known
features to pursue beneath the image noise. Based on this index,
a subset of 155 bands (plotted in Fig. 7) has been used as a set
of “stable” bands with respect to residual atmospheric feature
effects and used to develop indexes and measurements that are
free of the effects they create. Table IV presents the resulting
choices by original band number and wavelength.

These bands are clearly located in the middle of atmospheric
windows and also cover the areas of response of the ETM and
ALI band passes, and thus the selection retains the ability to con-
struct intersensor comparisons. Obviously there can be modifi-
cations for specific purposes but in most cases we are finding
that using these 155 bands provides a simple but effective pro-
cessing step that avoids, rather than reduces, residual noise. All
the indexes used in Section VI used selections from the stable
155 Hyperion bands. However, Fig. 7 also shows that the RE
indexes may need special attention.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 16:04 from IEEE Xplore.  Restrictions apply.



DATT et al.: PREPROCESSING EO-1 HYPERSPECTRAL DATA TO SUPPORT THE APPLICATION OF AGRICULTURAL INDEXES 1255

Fig. 8. Mean January 12 Hyperion spectra for the nine sampling sites of Fig. 1. The within-site variation is used to evaluate the indexes.

VI. A GRICULTURAL APPLICATIONS: MEASUREMENTS

FROM A SPACE PLATFORM

The benefits of noise management, including the destriping
and smoothing operations, were evaluated by comparing the
values of selected spectral indexes from the geolocated ASD
measurements with values from corresponding Hyperion pixels
(Section VI-A). These data do not provide a complete design
for the effects discussed (and other effects not fully discussed
in this paper such as the “smile” and surface BRDF) but do pro-
vide important insights. The mean Hyperion reflectance spectra
corresponding to the nine ASD site means of Fig. 1 are shown in
Fig. 8. These Hyperion spectra show similar reflectance ampli-
tude and spectral features to the ASD spectra of Fig. 1 but with
more noise. The numbers of samples involved in these means
varies from site to site and are provided in Table II.

The purpose of the analysis is twofold. First, it is important to
know if the information measured using field spectrometry can
be retrieved from space data, and second, which noise manage-
ment strategies increase the consistency between the datasets?
The dataset can partly answer these questions, but it is impor-
tant to keep both its strengths and limitations in mind during the
analysis.

The data were obtained at a variety of sites on and during
days following the EO-1 overpass on January 12, 2002 (see Sec-
tion III). To provide a consistent comparison, the ASD spectra
were convolved to equivalent Hyperion bands. The sites were
chosen to represent different covers, yet were relatively close
together for logistical reasons. Being near the center of the Hy-
perion image the variations due to spectral “smile” are small
and so effects due to the “smile” cannot be assessed using these
data. The “smile” is better addressed by comparing Hyperion
and HyMap data over the common area of the CIAS, and this

is reported in [33]. Also, since the most obvious VNIR striping
occurs toward the western side of the image, there was little or
no visible VNIR striping near the sites. However, the ubiquitous
SWIR vertical striping was present everywhere in the image.

For completeness, the comparisons were made on Hyperion
images processed in nine ways. First, atmospheric correction,
using FLAASH, was applied to the original and globally and
locally destriped (Section IV-C) radiance images. These are
denoted as 1) Undestriped, 2) Global destriped, and 3) Local
destriped. Using these three atmospherically corrected images
as inputs to an “MNF-inverse MNF” transformation (using
12 MNFs for the VNIR and eight for the SWIR as described
in Section V-B) to smooth the data produced 4) Undestriped
MNF smoothing (MNFS), 5) Global destriped MNFS, and
6) Local destriped MNFS. Again the outputs (1)–(3) were used
as inputs to the reference spectrum smoothing (RSS) technique
(introduced in Section V-A) to create 7) Undestriped RSS,
8) Global destriped RSS, and 9) Local destriped RSS.

Following this, the sensitivity of spectral indexes to crop
stress was used as a test of application by comparing Hyperion
and ASD derived values for two rice bays known to have
different levels of water stress (Section VI-B) from field work
and landholder survey.

A. Narrowband Indexes: Performance and Stability

The six indexes introduced in Section II were used to investi-
gate the relationship between the ASD and Hyperion data. In the
VNIR region, three were explored: 1) RE, 2) dRE, and 3) LCI.
In the SWIR region the clay hydroxyl absorption feature in soils
near 2200 nm was selected. In the VNIR/SWIR region, the two
leaf water content indexes WI and NDWI were used.
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TABLE V
SUMMARY STATISTICS R , F-TEST PROBABILITY (P ), MEAN (Mn), AND STANDARD DEVIATION (Std) FOR SIX INDEXES FORHYPERION

PREPROCESSEDUSING NINE OPTIONS. Mn AND Std ARE ALSO GIVEN FOR ASD

Indexes from VNIR, SWIR, and combined VNIR/SWIR
spectral regions are needed to provide tests for noise reduction
due to the different noise statistics in data acquired by Hype-
rion’s two spectrometers. The performance of all six indexes is,
however, expected to be relatively stable, since the wavelengths
used in their formulation all lie within the 155 “stable” bands
we defined for Hyperion.

1) VNIR Indexes:The RE and dRE values were calculated
from Hyperion by fitting a third-order polynomial and returning
the wavelength and first-derivative value at the inflection point
using a generic IDL_ENVI module developed by the CSIRO
Division of Exploration and Mining, Mineral Mapping Tech-
nologies Group.

The indexes were calculated at the 20 sites for rice (Rice_1,
Y_Rice, and G_Rice in Table II) using geolocated ASD spectra
and the corresponding georeferenced Hyperion pixels from
the reflectance images. The ASD and Hyperion derived index
values were compared using linear regression. Summary
statistics are provided in Table V.

In most cases (the dRE excepted), the Hyperion values cor-
relate to a good level with ground-based ASD values. This is an
encouraging result, since one objective is to use ground-based
models or calibrations with the Hyperion data. The dRE is the
index most affected by the Hyperion “smile” and this is taken
up separately in [33].

The local destriping, MNFS and RSS smoothing all produced
similar values to that of the undestriped image. This is to be
expected, as the VNIR SNR is high, and there was no major
VNIR vertical striping in the central region of the Hyperion
image. However, it is significant that the lowest values for
each index were obtained for the global destriped images (cases
2, 5, and 8 in Table V). This is consistent with the findings in
Section VI-A, that global destriping alters the data.

It is important to keep in mind the number of samples
involved in these comparisons (20 in this case) as well as
the relative standard deviations of the image and ASD data.

The sampling strategy at the CIAS for the soil and stubble
sites acquired on January 12, 2002 was designed to enable
scaling to Hyperion pixels. However, the rice sampling was
less intensive and includes more spatial variation (and hence
higher standard deviation) due to the scale difference between
site and Hyperion data.

2) SWIR Clay Index:CI values were calculated from 55 ge-
olocated ASD spectra of soils (Soil_1, Soil_2, NN_Soil, and
M_Soil in Table II) and from the 55 georeferenced Hyperion
pixels. Where ASD data fell into the same pixel the values were
averaged, there are 55 unique Hyperion pixels associated with
the 73 ASD soil measurement sites presented in Table II. The
ASD and Hyperion index values were compared using linear re-
gression (Table V). The results in Table V show that both global
and local destriping (cases 2 and 3) slightly increased the
values compared to the undestriped image (case 1). Since the
region used is in the “stable” area of the SWIR, Hyperion bands
204, 205, and 206 used in the Clay Index did not show heavy
striping in the radiance data; thus, the impact of destriping was
not large and would be more significant for other SWIR bands.

The largest increase in was observed with MNF
smoothing, as shown for cases 4, 5, and 6 in Table V. This result
indicates that base noise has a major impact in the SWIR region
compared with stripes and that MNF smoothing reduces this.
In this case, as discussed in Section V-B, the MNF smoothing
in which the VNIR and SWIR are handled separately is also
removing residual array effects. The RSS smoothing (cases 7,
8, and 9 in Table V) did not show any change in for this
index as may be expected from Figs. 5 and 6 and from the way
the index is defined. Note that in the best results the means
and standard deviations of image and ASD data are similar as
would be expected due to the design of the sampling at the soil
sites that aimed to bring the data to the same spatial scale.

3) VNIR–SWIR Indexes:The values of WI and NDWI were
calculated from 20 geolocated ASD spectra of rice (Rice_1,
Y_Rice, and G_Rice in Table II) and from the 20 georeferenced
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TABLE VI
MEANS AND STANDARD DEVIATIONS OF RE, LCI, dRE, WI,AND NDWI FOR

HYPERION AND ASD MEASUREMENTS IN THEUPPER(WATER STRESSED),
AND LOWER (NON-WATER STRESSED) BAYS

Hyperion pixels. The ASD- and Hyperion-derived index values
were then compared using linear regression (see Table V for sta-
tistics from WI and NDWI indexes, respectively).

As can be seen from Table V, the values were nearly zero
for most cases. The reason for the low values is almost certainly
the low range of variation in the WI and NDWI values for the 20
ASD rice samples. This is shown by the image and site standard
deviations. The influence of atmospheric water vapor in the 973-
and 1245-nm Hyperion bands was expected to create variation
but does not seem to have done so. Relatively few conclusions
on the effects of various processing options can be drawn for
these two indexes except to note that the absolute values ob-
tained from the ASD spectra and the image are very close. To
assess whether the variations are as well related as the means
requires a dataset with more underlying variation.

B. Mapping the Onset of Stress Due to Water Restrictions

The images processed in the best of the selections discussed
above were then used in a simple but very useful mapping ap-
plication. Due to reduced water allocations and high water de-
mands in the early growing season, some growers reduced or
stopped irrigation much earlier than normal. Irrigation to one of
the rice fields (Farm 51, field H) was stopped ten weeks earlier
on December 28, 2001. For this “dewatered” field, water was
managed by directing water from three bays at the same eleva-
tion to the fourth bay at a lower elevation. The landholder at-
tempted to grow a successful crop in the lower bay by directing
water from the other bays.

Due to this management strategy, the lower bay was less
stressed than the upper bays on January 12, 2002. Geolo-
cated ASD spectra were acquired in the lower (greener, labeled
G_Rice) bay and in one of the upper (yellower, labeled Y_Rice)
bays on January 14, 2002. Since water stress is associated
with a decline in chlorophyll, it would seem possible to use
hyperspectral indexes to map the variation. The question is how
well can such mapping be undertaken at a regional scale from
the EO-1 space platform? Mean and standard deviations of four
representative pixels at which geolocated ASD (see G_Rice
and Y_Rice in Table II) and georeferenced Hyperion derived
values were extracted for the suite of indexes are presented in
Table VI for the upper bay (water stressed) and the lower bay
(not water stressed).

Despite the restricted statistics, the differences in chlorophyll
content between the two bays are captured by the RE and LCI

indexes in the Hyperion data. The lower bay with higher chloro-
phyll content shows significantly higher RE and LCI values
compared with the upper bay. Chlorophyll measurements were
taken with a Minolta SPAD-502 meter (produced by the Soil-
Plant Analysis Development (SPAD) Division, Minolta Camera
Company, Osaka, Japan). On January 14, the lower bay had an
average of 43.89 (SD for four sample locations), and the
upper bay had an average of 17.00 (SD for four sample
locations). At each of the eight locations (four in the upper bay
and four in the lower bay) 30 individual “SPAD” measurements
were made. The SPAD data are in relative units that are known
to be highly correlated with leaf nitrogen concentration.

For RE and LCI indexes, Hyperion and ASD show similar
values and trends between the bays. There was close agreement
between ASD and Hyperion values in the lower bay, which had
a uniform green rice canopy. For the upper bay, Hyperion values
were higher than the ASD values, mainly due to the heteroge-
neous mix of green rice and yellow senescing weeds and the
greater spatial averaging in the Hyperion signal. The dRE values
were higher for the lower bay in both ASD and Hyperion mea-
surements. This relates to the higher green leaf cover and den-
sity in the lower bay compared to the upper bay which had more
senescing weeds in it and therefore lower dRE values. However,
as in the previous examples, the dRE in the space data has a
reduced variation in response than in the ASD values—despite
the fact that the ASD data are integrated to Hyperion bands. The
NDWI and WI values in the lower bay, for both the Hyperion
and ASD data, were higher than the values for the upper bay
indicating consistently greater leaf water content in the greener
canopy.

On the basis of these results, it appears that one or a number
of these indexes taken together could provide useful maps of
the state of water stress at the time of the EO-1 overpass. If the
stress were to become more severe, it may be expected that the
leaf water indexes would become more informative and if the
stress progressed to senescence it may be expected that indexes
not used here but based on the leaf waxes and oils and cellu-
lose features (see Table I) would track the progression into that
stage. These tools are, therefore, ready for analyzing hyperspec-
tral time series as acquired for CIAS.

VII. CONCLUSION

The consistency and degree of relationship among the in-
dexes derived from the space platform and those from field data
provide the entry point to intercalibration between laboratory,
ground-based, airborne, and spaceborne data. However, the re-
sults from this research indicate that preprocessing including
band, or feature, selection, atmospheric correction, local de-
striping, and noise management such as that provided by min-
imum noise fraction smoothing were needed to achieve this.

Destriping is an area of current focus and development for
Hyperion data processing. The work reported here supports
the use of local methods to remove the stripes with the degree
of locality (or window size) dependent on the array (VNIR or
SWIR), the land cover, the environmental conditions and the
application. The consistency of the size of window used in the
local destriping algorithm needs to be studied further. It seems
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likely that the window used for data acquired by the VNIR
array will normally be much smaller than that used for data
acquired by the SWIR array. This is a function of the different
noise patterns in data resulting from the two arrays.

It seems that the current standard and advanced atmospheric
correction methods provide useful normalizations of the data
and can certainly be recommended for consistent analysis of
time series such as that of the CIAS. However, it is clear from the
work reported here that there will normally be significant (and
generally increased) levels of residual noise in the data after any
atmospheric correction with consequent reduction in SNR if it
is based on current Level 1B1 data. For this reason, extra data
cleaning and feature selection was performed and will need to be
performed by all users of the data. It also appears that most of the
options for noise management are best applied after atmospheric
correction. Local destriping is an exception.

This paper has not specifically addressed issues that are cur-
rently at the forefront of discussions surrounding atmospheric
correction of Hyperion. These include issues such as spectral
“smile” effects [33] and adequacy of transmittance codes. We
have rather selected a very standard baseline for correction. It
is quite likely that there will be added levels of noise reduc-
tion from advances in this area in the near future and that these
will include more sophisticated handling of the spectral “smile.”
However, it seems from the investigation in Section VI-A that
the indexes being used in this paper (with the possible excep-
tion of the dRE) can be used successfully without such further
advances.

In summary, the best noise management strategy found here
was based on calibrated, locally destriped and atmospherically
corrected data. Following this, MNF smoothing was used based
on separate MNF transformations of the stable bands of the
VNIR and SWIR data followed by inverse transformations re-
taining only the high MNFs with significant land surface in-
formation. The steps we have described can provide an effec-
tive processing pathway to generate indexes from apparent sur-
face reflectance images for the time series of EO-1 data that has
been acquired for the CIAS. Because the data can be closely re-
lated to ground-based hyperspectral data, the standardization al-
lows monitoring and measurement of crop growth from a space
platform based on field-scale calibration. The aim is to assess
changes in plant chemistry, including changes in nitrogen levels
such as those developed for forests in [32], and to model crop
yields.
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