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Preprocessing EO-1 Hyperion Hyperspectral Data to
Support the Application of Agricultural Indexes

Bisun Datt, Tim R. McVicar, Tom G. Van Niel, David L. B. Juppssociate Member, IEER&Nnd
Jay S. PearlmarSenior Member, IEEE

Abstract—The benefits of Hyperion hyperspectral data to TABLE |
agriculture have been studied at sites in the Coleambally Irriga- COMMON SPECTRAL FEATURES FORCROPS ANDSOILS
tion Area of Australia. Hyperion can provide effective measures _ __
of agricultural performance through the use of established foe(;’f”;‘ms)l’“‘ml Region (nm) ;‘Rdl;“““?" - __
spectral indexes if systematic and random noise is managed. g Chlorfi;ﬁ;g’s o‘ﬁfgr’l‘thet‘c"‘gmems
The noise management strategy includes recognition of “bad” 700 t0 750 Red Edge (Chlorophyll)
pixels, reducing the effects of vertical striping, and compensa- 1080 to 1170 Liquid Water Inflection
tion for atmospheric effects in the data. It also aims to reduce 1700 to 1780 Various Leaf Waxes and Oils
compounding of these effects by image processing. As the noise 2100 Cellulose
structure is different for Hyperion’s two spectrometers, noise re- 2100 to 2300 Soil properties (clays)

2280 to 2290 Nitrogen / Protein

duction methods are best applied to each separately. Results show
that a local destriping algorithm reduces striping noise without

introducing unwanted effects in the image. They also show how ) ) ) )
data smoothing can clean the data and how careful selection of in @ sun-synchronous orbit at 705-km altitude and is nominally

stable Hyperion bands can minimize residual atmospheric effects 1 min behind the Landsat-7 satellite. Hyperion images 256
following atmospheric correction. Comparing hyperspectral pixels with a nominal size of 30 m on the ground over a

indexes derived from Hyperion with the same indexes derived 7.65-km swath. The platform attitude can vary as the satellite
from ground-measured spectra allowed us to assess some of these )

impacts on the preprocessing options. It has been concluded that 'S "olled to image specific targets. During the first year of

preprocessing, which includes fixing bad and outlier pixels, local Operation, Hyperion processing was developed and refined to a
destriping, atmospheric correction, and minimum noise fraction stage (Level 1B1) where well-calibrated data became routinely
smoothing, provides improved results. If these or equivalent pre- ayailable. In this paper, we examine processing and noise re-
processing steps are followed, it is feasible to develop a consistentduction methods that can be applied post-Level 1B1 to provide

and standardized time series of data that is compatible with . . . h . .
field-scale and airborne measured indexes. Red-edge and leafCONSistent time series of Hyperion data for an agricultural site

chlorophyll indexes based on the preprocessed data are shown tonear Coleambally in New South Wales (NSW), Australia. This
distinguish different levels of stress induced by water restrictions. will be referred to as the Coleambally Irrigation Area Site

Index Terms—Agricultural indexes, Hyperion, hyperspectral, (CIAS). The benefits to that study, and the implications for
image processing. more general agricultural applications, are assessed by focusing
on crop attributes that can be derived from Hyperion using a
range of hyperspectral indexes.

| INTRODUCTION ] ] Hyperion data have three potential advantages over space-

T HE HYPERION sensor [1], carried by the Nationahorne multispectral instruments, such as Landsat Enhanced
Aeronautics and Space Administration (NASA) Earthhematic Mapper (ETM). First, they can provide an enhanced
Observing 1 (EO-1) satellite [2], is the first spaceborne hyaye| of information for atmospheric correction to derive surface

perspectral instrument to acquire both visible near-infrarggfiectance. Second, they can provide access to detailed spectral

[(VNIR) 400-1000 nm] and shortwave infrared [(SWIR}ndexes based on surface reflectance. Finally, they can be used
900-2500 nm] spectra. Hyperion is a pushbroom sensor Wifllintegrate (or “bin”) the hyperspectral data consistently to

two spectrometers and a single telescope. The EO-1 satellitg);ﬁthetic bands equivalent to any of the broadband sensors

or to bands of yet to be developed instruments. This spectral
Manuscript received July 22, 2002; revised January 1, 2003. This work wdsinning” of Hyperion will be dealt with in a separate paper.

supported by the Commonwealth Scientific and Industrial Research Organizghjs paper investigates the first two advantages and how the
tion Earth Observation Centre. The work of T. McVicar and T. Van Niel Wa(% F ]P fgl . 9 y
supported by the Cooperative Research Centre for Sustainable Rice Produ ghe It from careful preprocessing.

under Project 1105. The work of J. Pearlman was supported by the National

Aeronautics and Space Administration Earth Observing 1 Program.
B. Datt and D. L. B. Jupp are with the Commonwealth Scientific and Indusll' KEY SPECTRAL INDEXES FORAGRICULTURAL ASSESSMENT

trial Research Organization Earth Observation Centre, Canberra, ACT 2601,The use of broadband space-based remote Sensing is well
Australia.

T. R. McVicar and T. G. Van Niel are with the Commonwealth Scientifi(,EStabIiShed in agriCU|ture for regional and global monitoring
and Industrial Research Organization Land and Water, Canberra, ACT 26and assessment [3], as is the use of spectrally more detailed

Australia. o , _ information at the laboratory scale [4]. Current research is
J. S. Pearlman is with the Advanced Network Centric Operations, Phantom. .

Works, Boeing Company, Seattle, WA 98124 USA. using airborne and ground-based hyperspectral data [5]-{7] to
Digital Object Identifier 10.1109/TGRS.2003.813206 scale laboratory techniques to remote platforms.
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Fig. 1. Typical spectral features occurring in the CIAS. Mean ASD spectra (convolved to 176 Hyperion bands) for the nine sampling sites are shown.

TABLE I
SITES MEASURED BY AN ASD AT CIAS

Site Name | Date Description Number of Start Finish
ASD Sites Time Time

Soil 1 12 Jan | Medium soil clumps 25 0944 1010

Stubble_1 12 Jan | Winter wheat stubble, lightly 25 1035 1058
grazed by sheep.

Stubble 2 | 12 Jan | Winter wheat stubble, heavily 25 1125 1146
grazed by sheep.

Soil 2 12 Jan | Large soil clumps 25 1403 1434

M_Soil 13 Jan | Large soil clumps, recently burnt 5 1611 1619
stubble

NN_Soil 14 Jan | Tilled field; was to be planted 18 1025 1057

with soybeans, however water
restrictions prevented this.

Rice_1 14 Jan | Flooded rice (40-90% canopy 12 1218 1418
closure).

Y_Rice 14 Jan | De-watered rice, showing 4 1618 1652
obvious signs of water stress.

G_Rice 14 Jan | De-watered rice, showing no 4 1712 1732

signs of water stress.

The work in progress at the CIAS uses field and laboratospils. A green reflectance peak near 550 nm, photosynthetic
spectral data to calibrate and investigate various derivative attdorophyll absorption (680 nm), a steep slope in the red-edge
integral indexes. The aim is to find indexes most sensitive tegion (700—-750 nm), and leaf water absorption near 970 and
plant nitrogen, water, chlorophyll, lignin, cellulose, and othet240 nm are present in the crop spectra. The soil spectra show
plant chemical substances plus soil chemical factors such as @by absorption near 2200 nm, and the stubble spectra show
composition and soil nitrogen content. The major such spectlighin/cellulose absorption near 2100 and 2300 nm and plant
regions are summarized in Table I. wax/oil absorption near 1720 nm.

A range of ground spectra with a 1-nm resolution has beenWe have selected six indexes to assess the effects of noise
taken within the CIAS as validation for Hyperion and as informanagement. The wavelengths used in the formulation of these
mation to accompany site sampling. The site means obtairiedexes are located within what we will term the “stable” bands
from data taken by an Analytical Spectral Devices (ASD) Fielaf Hyperion (see Section V-C). This provides a reasonable
spec spectroradiometer are plotted in Fig. 1 (see Table Il). Thesgectation of stable calculation of these indexes. All Hyperion
spectra have been integrated to the 10-nm Hyperion bandsv@velengths reported in this paper are based on the central
later comparison with Hyperion data and display signatures awdvelengths corresponding to pixel 128. The six indexes are
spectral features typical of green vegetation, dry vegetation, atefined as follows.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 22, 2009 at 16:04 from IEEE Xplore. Restrictions apply.
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The red-edge (RE) wavelengih the wavelength po-
sition of the maximum slope in the red-near-infrared
(700-750 nm) reflectance of vegetation. Several studies
have shown that the RE wavelength is correlated with 6)
chlorophyll content in leaves and canopies [8]-[10]. The
RE wavelength is a good candidate for monitoring vege-
tation productivity, as well as detecting the onset of stress
and senescence. The RE shifts to longer wavelengths
during plant growth (increasing chlorophyll content) and
to shorter wavelengths during stress (chlorophyll decline
in leaves).
The first-derivative value at the red edge (dRI€fines
the value of the maximum slope associated with the RE
wavelength above. This index can be sensitive to green
vegetation amount [percent cover and leaf area index
(LAD]. Filella and Pefiuelas [11] found the area of the
red-edge peak to be a strong indicator of LAI. Other
variants of dRE using the sum of first and second deriva-
tive values around the red-edge band or derivative green
vegetation indexes (DGVIs) have also shown strong
linear relationships with green vegetation cover [12],
[13]. The original Hyperion bands used here to develop
both the RE and the dRE were 33 to 40 or wavelengths
681.8—753.0 nm.
A leaf chlorophyll index (LCl)developed in [14] was
found there to be a sensitive indicator of chlorophyl
content in leaves and was less affected by scattering fr
the leaf surface and internal structure variations. LCI
a ratio of relative chlorophyll absorption depths in th
RE (710 nm) and red (680 nm) wavelengths. It work
best at moderate to high chlorophyll levels. The value &0
LCl increases as leaf chlorophyll content increases, ail’f
is calculated as t
Rgs0 — Rrio
-cl Rss0 — Reso )
where, in [14],R, = the reflectance at wavelength=
850, 710, and 680 nm. The same notation appli%E|
throughout the paper. The Hyperion band numbegs
used to develop the LCI here are 50, 36, and 33. Th
bands correspond to wavelengths of 854.7, 712.3, al
681.8 nm, respectively.
The water index (WIxompares the leaf (liquid) water
absorption band near 970 nm with a reference band
900 nm, which does not show leaf water absorption [15%

e

The value of WI increases with leaf water content. W1 i
calculated as

For Hyperion, bands 51 and 110 were used which
correspond to wavelengths of 864.8 and 1245.4 nm,
respectively.

The 2200-nm absorption feature [or clay index (CI)]
present in the Coleambally soils results from combina-
tions and overtones of hydroxyl absorption in the clay
lattice structure [17]. This feature is present in the re-
flectance spectrum of kaolinite, a common clay mineral.
Cl was calculated as the area of the continuum removed
reflectance spectrum between 2193 and 2213 nm, and
used Hyperion bands 204, 205, and 206 corresponding
to wavelengths of 2193.8, 2203.9, and 2214.0 nm. Con-
tinuum-removed absorption feature analysis is a useful
method for estimating the abundance of compounds
from reflectance spectra of samples [18]. The band depth
and/or area of the continuum removed absorption fea-
tures are calibrated against the concentration of chemical
compounds of interest or compared with contents of
spectral libraries [19], [20]. Such indexes are robust to
residual effects following atmospheric correction.

Ill. COLEAMBALLY |IRRIGATION AREA SITE:
DATA AND IMAGE BASE

The CIAS is a 95000 ha site in southern NSW, Australia
atitude 34 48 4.3" S, Longitude 1480 48.96” E, 120 m

ove sea level) that has over 500 farms with large (up to 70 ha)
at uniform fields. The climate has high variability, but the
Water usage and cropping area are well managed at regional
d farm levels. Farming practices are mechanized and inten-
e, and landholders are interested in maximizing efficiencies
rough better management.

The CIAS is a focus of remote sensing research to determine
the information content available from current broadband and
hyperspectral satellite sensors. The CIAS has an excellent base
of geographic and agricultural management information plus
rvey information from specific farms. Since December 2000,
time series of Landsat ETM and coincident EO-1 images have
eﬁgen collected over two southern hemisphere summer growing
seasons (2000/2001 and 2001/2002). There have also been a
number of field campaigns to collect spectral and ancillary data
fg calibration and applications research.
he data for the CIAS on January 12, 2002 include Landsat
T™,
spectral, canopy characteristics, and plant chemistry), airborne

EO-1 Hyperion and ALI, plus complementary ground

(spectral and geometric), and atmospheric data. An ASD

_ Rooo

Wi 2

Fieldspec spectroradiometer was used to collect ground-based

"~ Roro spectra for selected crops and fields. HyMap airborne scanner

For Hyperion, bands 55 and 83 were used which cdfata [28], covering the 400-2500-nm spectral range in 126
respond to central wavelengths of 905.5 and 973.1 nRands, were also acquired for part of the CIAS on January
respectively. 12, 2002. A CIMEL Electronique CE318-1 instrument was
The normalized difference water index (NDWoased Pprovided by NASA's AERONET Program [21] (AERONET
on a leaf (liquid) water absorption band near 1240 nfstrument Number 69) to measure atmospheric characteris-
and a nonabsorbing reference band near 860 nm [16]. T#gs. The application and accuracy of CIMEL and other sun
value of NDWI also increases with leaf water content, arfghotometers under Australian conditions is discussed in [22].
is calculated as Every January, Coleambally Irrigation Co-operative Limited
acquire a high-resolution (1:50 000 scale or 2-m pixel) digital

Rsgo — R1240
air photo mosaic over the CIAS. This provided an accurate

NDWI = .
Rggo + Ri240

®)
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geographic base for geometric registration of the various image TABLE I
and other data to a common map base. HYPERION 176-BAND SUBSET
The conjunction of these datasets and the nature of the area
. . . Array Bands Wavelengths (nm)

(road network and field layout plus little relief) makes Coleam- VNIR 81057 228 t0 926

bally an ideal location for 1) geometric and sensor alignment SWIR 7910 120 933 to 346
validation, 2) sensor performance validation, 3) sensor intercal- 128 to 166 1427 to 1810
ibration, 4) atmospheric correction validation, and 5) agricul- 179 to 223 1942 to 2385

tural applications development. In an initial study addressing
Hyperion geometric accuracy, average rms errors were as small
as 12.9 and 11.6 m, respectively, in the across and along tr@#ndexes and for the direct application of crop models. They
directions. Details can be found in [23]. Recent results also cad{s0 include its utility for directly matching image data to
firm that processing by TRW Corporation to Level 1B1 resultgPectral libraries, ground data and to plant chemistry mea-
in excellent VNIR and SWIR coregistration. surements. CIAS field spectra have been compared with pixel
The ASD data were measured over nine sites (Table I). Xglues extracted from atmospherically corrected data using
each site, five ASD spectra were averaged, each spectrum bdlagkages such as HATCH [25], FLAASH [26], and ACORN
internally averaged 15 times. Times and dates are local (GMThttp://www.aiglic.com/acorn/intro.a3pThe packages have all
1100). The Hyperion image was acquired at 10158 on Jan- been found to provide measures of the atmospheric water vapor
uary 12, 2002. The location of each ASD site was obtained froffat agree in magnitude and variance with measurements made
a real-time differential GPS unit. At four of the sites (two soiPy the CIMEL instrument and had generally good agreement
and two stubble fields), 100 m 100 m grids of spectral dataWith ASD data taken close to the time of the overpass. These
were measured to quantify (inter-) calibration and atmosphefRsults will be reported separately. Since the different packages
correction performance at the Hyperion scale. These sites rejgfave similar results, we have used the FLAASH package, with
sent the largest, stable dynamic range in reflectivity within tHéandard options, as the baseline for the work reported here due
study area. At the other five sites, less intensive, more opp&#-its close integration with the Modtran 4 code development.
tunistic spatial sampling occurred on the following two days,
but with a wider range of agricultural covers being measured® Hyperion Noise and Implications for Base Processing
evaluate the performance of indexes and their correlation withThe Hyperion VNIR sensor has 70 bands, and the SWIR has
crop and soil information. At all sites surface geometry may in-72 bands providing 242 potential bands. A number of the bands
troduce some variation into the ASD measurements; howeugere intentionally not illuminated and others (mainly in the
we have not explicitly corrected the ASD data for sun anglverlap region between the two spectrometers) correspond to
variations due to bidirectional reflectance distribution functioireas of low sensitivity of the spectrometer materials. Because

(BRDF) effects. of this, only 198 bands have been provided in Hyperion Level
1B1 products; the unused bands (1 to 7, 58 to 76, and 225 to
IV. IMAGE PROCESSING TOMANAGE DATA 242) are set to zero values by TRW software during the Level
AND PROCESSINGNOISE 1B1 processing [27].

The Level 1B1 product provided by TRW [27] includes cor-
rections that remove dark current bias effects and correction

Since Hyperion operates from a space platform with costeps for what are termed “bad” pixels remaining in the 198
sequently modest surface signal levels and full-column atmisands. The pixel- and band-dependent calibrations have been
spheric effects, its data demand careful processing to managg@sted over the life of the sensor and represent a well-bal-
sensor and processing noise. The approach taken here invobwased set of calibrations through effective use of solar, lunar,
selecting bands of greatest value (i.e., the best tradeoff betw@grrsensor, and vicarious methods. Among the 198, there are
information content and noise level for the purposes of the digur remaining bands in the overlap between the two spectrom-
plication), addressing the vertical striping noise that the VNIBters. These are VNIR bands 56 (915.7 nm) and 57 (925.9 nm)
and SWIR arrays display, and managing residual and introducati SWIR bands 77 (912.5 nm) and 78 (922.6 nm). It is usual
noise following a standardized atmospheric correction to aj@ eliminate two of these to obtain 196 unique bands. In the
parent surface reflectance. processing reported here, we have selected as the unique 196

For many forms of data processing such as classificatitire bands 8 to 57 and 79 to 224. This choice was made, since
with training sets, minimum noise faction (MNF) [24] orthe SWIR band 78 has the higher level of base noise after de-
principal component analysis (PCA) [30], and the applicaticstriping (described below). This higher base noise level can be
of various indexes, it is not necessary to atmosphericaltpnfirmed by analysis of the “dark” images provided with Hy-
correct image data for a single observation. There is alsgarion data.
significant risk in using atmospheric correction, as it tends to Atmospheric water vapor bands that absorb almost all of the
amplify noise levels, hence reducing the SNR. However, thereident and reflected solar radiation are easily identified by vi-
are also many situations, which all occur in our work in theual inspection of the image data or by atmospheric modeling.
CIAS, where it is important to transform hyperspectral datccepting this as a good criterion for band elimination for land
to apparent surface reflectance. These include its use in detigface applications yields the subset of 176 bands listed in
normalization for temporal studies, for persistent calibratiofable III.

A. Basic Image Processing Approach
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The wavelengths removed correspond to strong atmosphesilece launch and to handle specific cases where it affects the de-
water vapor absorption bands between 1356 and 1417 nm, 1826d products.
and 1932 nm, and above 2395 nm. They are commonly removed
from ASD or other spectrometer data (including Hymap) take®. Balancing Vertical Stripes in the VNIR and SWIR Arrays

under natural light conditions. They are not sampled in the spec-The statistics of the detector arrays can be studied by accumu-
tral ranges selected in the HyMap airborne scanner [28]. For {f3gng mean, variance, minimum, and maximum data for each
work presented here, the 176 bands provide the primary inj#e| in each band over the lines of an image. As discussed
band set for processing and interpretation. above, a vertical stripe is said to occur where the statistics in-
The 176 Hyperion bands still display additional effects thaficate that the image information is likely to be valid (that is,
arise from the pushbroom technology. In this paper, the spatigé pixel is not “bad”) but with significantly modified gain and
elements of one line of an image will be called “pixels” angffset. We are also assuming that such gains and offsets are rel-
are the same as “samples” in other usage. They sample the Iafigely stable over a collect—but not necessarily between col-
surface in the across-track direction. As the pushbroom movggts. A general approach to removing vertical stripes with these
forward, a given pixel creates a “column” of data or an alongharacteristics is then similar to methods used in the past to bal-
track (vertical direction) dataset. Each column in a single bag@ce horizontal stripes in mirror scanner images by histogram
corresponds to a single detector in one of the arrays. equalization [29] or to flatten images affected by limb bright-
For pushbroom instruments, a poorly calibrated detectehing or to balance detectors in airborne pushbroom sensors
in either the VNIR or SWIR arrays will leave a vertical[34]. That is, histogram moments, such as the means and vari-
“stripe” in a displayed image band. The most extreme @fnces of the columns in each band, are used to balance the sta-
these (which contain little or no valid data) are identified agstics of the arrays to those of a reference histogram.
“bad” pixels and interpolated in the Level 1B1 processing. The pixel balancing introduced here is different in that it may
In more recent NASA processing [35], these pixels are listeéé done either “globally” or “locally.” In global balancing, the
but left unmodified allowing users to select different methodsatistical moments of each column are modified to match those
to handle or replace the pixels. Sometimes additional “bagfr the whole image for each band. In the local approach, ref-
pixels occur due to infrequent pixel saturation, which makegence moments are estimated locally. However, if an affected
the correction for sensor “echo” inoperable and at other timpgel is quite extreme but not “bad” in the sense defined above,
the extra “bad” pixels seem to be associated with events in ii€presence can adversely affect the local statistics. It is, there-
space environment such as high-energy particles. Fortunatédye, best to treat such outliers separately in an initial pass. The
there are not many “bad” pixels. The current Level 1B1 “badhitial outlier pass used here is local but uses median statistics
pixel list contains about 17 individual pixels out of 24256 and thresholds rather than means to identify the pixels to adjust

pixels with two cases where a block of bands for a single pixgither than modifying all of the column data to statistics affected
needs to be fixed. There are also a number of independggtthe outliers.

detector offsets that reflect the structure and read-out process aflathematically, lein;;, be the mean of the detector at tile

the arrays. These are primarily removed in the dark-correctipixel position for band: ands;;, be the corresponding within-

although some effects remain that are significant for dagelumn standard deviation over the data sensed as the image is

targets—such as water bodies—but do not affect the indexgsjuired—or on some group of lines in the image. Moreover,

being discussed here. let m;;, ands;;, be corresponding “reference” values for these
Hyperion also displays pixel pushbroom effects of a less s@oments. The differences between local and global methods

vere but still problematic nature. These are pixels where thed the outlier or general image passes occur in the way the

data calibration is effectively spatially and possibly temporallyeference values are established.

varying at scales determined mainly by array structure ratherFormally, the approaches can all be expressed as finding a

than the earth’s surface structure. At one level, a single detedaiin (v;;,) and an offset§;;.) for each detector such that the

in one of the arrays may have an anomalous calibration. If sughlues of the image data for sampldine j, and bandk(x; ;1)

pixels have no association with other detectors they will creaige modified to

pixel-level and pixel-independent vertical stripes in the image

data. Spatial correlation can come from within-array interac- :E,’L-jk = aipTijr + Bik (4)

tions and may be related to the read-out process. Correlated _

blocks of stripes seem more prevalent in the SWIR array thifnere the gain and offset are computed by

the VNIR array.

Sik
Hyperion also has low-frequency array effects such as those Qi :;
. . . . . R
due to spectral “smile. This can arise from the optical techniques Bix =Tk — ipMik. (5)

used to spectrally disperse the input imaged “slit” over the de-

tector arrays. It creates a variation in central wavelength amtlat is, generally speaking, the gain setting controls the
bandwidth across the swath of the sensor—or in a single imagihin-column standard deviation after processing and the offset
line. The spectral “smile” effect is fully described in other paeontrols the mean. It follows that if the reference standard
pers in this special issue, and while well characterized prior tieviations are the same as the actual image values, the result
launch [27], it is the subject of on-going investigations (such &s an additive change with no alteration of the within-column

in [33]) to establish whether there have been changes to its fostandard deviation.
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The global method takes the reference mean to be the to
image mean and may also take the reference standard devia
to be the whole image within-column standard deviation

Mg =Mk
Sik =Sk- (6)

The local methods involve either outlier detection and replac
ment or the use of local smoothing filters. For outlier detectio
(assuming “bad” pixels have been previously fixed) it is pos
sible to compute

IMir — lmed (k)|

test=
Imed(Sik)

()

where 1,,..q” indicates a local median of selectable neighborrig. 2. MNF Bands 1 and 15 (a) and (b) before and (c) and (d) after global
hood. Outlier pixels are those where “test” is above a Speciﬁégstriping. The 176-band selection from Hyperion was used for the MNF.
threshold. Pixels with anomalous standard deviations are also
identified by a similar formula. The outlier destriping is applied
as an initial pass to the identified bands using median values as
the reference values.

Local destriping proceeds when the outliers have been
treated. It uses as reference values

o :lmean (m7k)
Sik :lmean(sik)- (8)

The notation f,,..,"” used here indicates a local mean with se-
lectable neighborhood.

Global equalization to remove the striping is mathematically
simple but enforces a very severe constraint of uniform column
statistics on an image. Gradients in image radiance and distinct
patches of different cover types are common in images, and it is . ¢ ‘
therefore, rare for the vertical column statistics of an image to (@) (b)
be V,Ve" balanced across a whole I“_qe in the land Surface_ mf, ié. . MNF bands 1 and 5 of the difference between global destriped and
mation. An apparent advantage claimed for global equalizatigfiyinal radiance image. The 176-band selection from Hyperion was used for
has been that it seems to remove low-frequency effects suchhasvNF.
those due to spectral “smile.” This comes at the cost of changing
the spectra as discussed more fully in Section IV-D. [Fig. 2(a)]. The subsequent MNF bands are soon dominated by

In our experience, the particular choices of method and sgfstical striping [Fig. 2(b)].
tings that work best are different for the VNIR and SWIR ar-  giobal destriping is applied to this image, the result of ap-

rays. They also tend to vary with environmental conditions aqﬂi},mg the MNF transformation [Fig. 2(c) and (d)] indicates
between images with distinctly different land covers (such @sat hoth the broad low-frequency effect and the local stripes
forests, crops, water and deserts). The CIAS was treated g$;9e peen reduced and the image is clean. Moreover, by se-
single land cover for this study but the local neighborhoods wegg:ting stable bands that reduce residual atmospheric effects
different in the VNIR and SWIR arrays as discussed in Segnq globally destriping, the MNF becomes clear of the effects
tion IV-D. Other land covers may well need to be stratified. noted above to about 20 transformed bands. This is a signifi-

) o ) cant number of features for such data as will be discussed in
D. Testing the Effects of Destriping Using the MNF Transfor@gtion v-B.

The effects of destriping and band selection on Hyperion wereHowever, examination of the differences between the original
tested using the MNF transformation [24]. The MNF techniquend destriped data indicates that not only are the pixel to pixel
responds to interactions between the spatial structure of the dsitipes and the broad low-frequency VNIR effect removed, but
and that of the noise when the noise has strong spatial struct@eo midrange frequencies related (in this case) to field sizes and
This is the case with the image striping. The MNF cannot getire balance of crop and fallow fields in vertical columns. This
erally be used to filter out such effects, since they merge withillustrated in Fig. 3 where the MNF Bands 1 and 5 of the dif-
image information but it can illustrate them clearly, as showierences between the global destriped and raw or “undestriped”
in Fig. 2(a) and (b) where the MNF images of the radiangadiance images are presented. Removing these field-scale spa-
data are shown. The first MNF band has a strong spatial gte patterns can alter the spectral and spatial characteristics of
dient that corresponds to the spectral “smile” in the VNIR arrahe data. For example, the predominance of watered rice in one
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Fig. 4. MNF bands 1 and 5 of the difference between local destriped and original image. The 176-band selection from Hyperion was used for the MNF.

vertically (north/south) extended area [see Fig. 3(b)] depressednsequently local destriping with different widths in the VNIR
the red region over the whole length of the image to the poiahd SWIR is the recommended approach in the current applica-
where the atmospherically corrected reflectance was negativéiam with “smile” being handled in a different way such as has

the rice fields! been described in [33].

The low-frequency “smile” effect is displayed clearly in the
difference image MNF 1 (see [33] for more explanation) while V. MANAGING IMAGE NOISE FOLLOWING
MNF 5 shows a variety of midfrequency effects that are due to ATMOSPHERICCORRECTION

fields and not to noise at either the low- or high-frequency end
ofthe scale. These represent informative spatial information th X , ,
ata due to its transfer of the uncorrelated noise to the resulting

has been removed by the process. . :
y P pectra and also due to the introduction of spectral effects

A local method in which the mean and variance used as refﬁ’ h diff betw th del d and th wal
ence moments were obtained by local averages over five pix gougn difierences between the model used and the actua
mosphere. The latter includes effects in Hyperion due to

removed pixel-to-pixel scale stripes and not the midfrequenc T . ;
ectral “smile” not being taken into account by currently

scale land cover effects. However, it retained the low-frequen 2 ilabl K Th t of noise in this situati
“smile” effects in the image data. The result is shown in Fig. guarable packages. The management of noise In this situation

where Fig. 4(a) and (b) shows the MNF 1 and 5 for the diffels dependent on the application, the section of the spectrum
fcmost interest, the environmental conditions during the data

ence image and Fig. 4(c) and (d) shows the MNF 1 and 15 Qgmost .
the locally destriped bands. The low-frequency “smile” effe@cquisition, and many other factors and is currently the focus

is now retained as MNF 1 in the data but the lower order MNg! continuing research. We have, therefore, used only a few

is clear of the local striping and also retains the midfrequengg t.h(; knovr\]/n_ar;d es;c.abhshed ?te?s a? examples agams_tr\r/]vmch
field-scale information. t0 judge their benefits to agricultural measurements. These

By examining the statistics of the VNIR and SWIR arraygre reference spectrum smoothing, MNF smoothing, and band

separately, it is found that the majority of the striping effects iﬁelectlon.
the VNIR are distinct, mainly independent and persistent within
and between scenes. They are easily and best removed by a I6c
destriping with a narrow window (such as five pixels). There are The residual noise after atmospheric correction includes two
also stripes that occur in blocks of pixels and seem to be relatgzbcific types. One is the sensor and processing noise that
to the read-out of the array. These blocks of stripes, which ocaantributes to the inherent (and reduced) SNR of the data.
more often in the SWIR than the VNIR, are best handled by is generally uncorrelated spectrally and spatially or has
using a much wider local filter. Local filters with widths of uponly local correlations that reflect more the geometry of the
to 41 pixels were used to reduce these effects in the SWIRdansor than the spatial correlations of the scene. The other
this paper. Block striping in the VNIR seems to be isolated totgpe includes systematic effects that relate to the differences
few specific bands and these are best treated separately. between the modeled and real atmospheres at the time the
With the local approach it is necessary to investigate amldta were collected.
understand the nature of the low-frequency pushbroom effectdn principle, the second could be estimated if you had a
separately from the vertical striping. Global destriping seemange of actual ground surface reflectance values and compared
to remove the VNIR “smile” effect as well as the stripes buhem with the output from the atmospherically corrected data.
also alters midfrequency spatial effects in the data and soSgstematic and persistent differences may be identified and
generally not a good processing step. Local destriping leavesnoved from the image data. Such cleaning actions, based
the “smile” effect but only removes pixel-to-pixel scale stripesn known spectra, have often been used to improve the results

tA\tmospheric correction generally reduces the SNR in the

Jreference Spectrum Smoothing
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Fig. 5. Mean reflectance spectrum from the Hyperion reflectance image 1000
(dashed line) fitted using a linear combination of mean ASD spectra from nine B

sites (solid line). ASD spectra were integrated to the Hyperion bandpasses.

of atmospheric correction. Since convenient ground spectra of
this type are rare in operational data processing, a humber of
alternative, related approaches have been developed. These are
typified by the EFFORT approaches available in ENVI and
other packages [31]. In that approach, typical image spectra are
obtained and fitted by smooth polynomial or spline functions 10 1
and the residuals are assumed to be the noise. After that pass,
the procedure is much the same as if reference spectra were
available.

100 -

MNF value

To provide an example of the general approach for our 1 ' ‘ l ,
study—without attempting to define the best operational 0 10 20 30 40 50
method—we fitted the overall mean spectrum of the atmo- MNF number

6. Hyperion (dashed line) and HyMap (solid line) MNF comparison. (A)

combination of the means of the field spectra measured at 2 mean spectra over a common area. (B) MNF values on a Log scale.

nine sites (Fig. 5). In this way, all of the shapes and features

that we expected to find in the ASD data were preserved in tfie., SNR MNF components. However, this provided no basis
fitted quel and a global residual noise faqtorcould be'dgfln r assessing the significance of the 20 MNF bands except
The ratio of the mean t_o _the_m_odel proy|des a multiplier 1"ﬁ‘nrough visual inspection. To provide a benchmark, MNF of
clean up the spectra. This is similar to a directed EFFORT. the 126 bands of atmospherically corrected HyMap data [28]
, acquired at the same time was used for the same area as a

B. MNF Smoothing coregistered Hyperion data based on the 176-band set. The 176

The uncorrelated, or at most locally spatially correlatedyperion bands cover a similar range to the 126 HyMap bands
noise is not reduced by a general approach like referertmg with a finer spectral resolution—10 nm compared with
spectrum smoothing. The PCA or MNF transformations aféb nm full-width half-maximum and spacing. The atmospheric
often used for this purpose, as they do not degrade the sparrection for the two datasets used the same basic parameters
tial resolution. The MNF transformation extracts informatioexcept for the flying height and other platform-dependent
dimensions relative to an assumed noise structure in the dsgdtings.
[24]. The components corresponding to low SNR and unstruc-Fig. 6(A) shows the total image means in the common area
tured spatial statistics can often be eliminated from the dataibpyaged by both Hyperion and HyMap. The greater level of
“putting the transformation back together” without them—oresidual noise visible in the Hyperion mean plot is higher
an “inverse” MNF transformation. than can simply be ascribed to the narrower bandwidth. With

It is useful to have some idea of the significance of thadvantages of broader bands, higher signal levels and higher
number of transformed bands retained in the data for th@rinsic SNR, the HyMap data seems to achieve 25 to 30
inverse MNF transformation. As noted above, global destripirgignificant MNF bands [Fig. 6(B)]. Taking 25 to 30 HyMap
using the 176-band selection seemed to provide about KIDIFs as a base potential for resolving MNFs (i.e., the limit of
MNF bands that are free of the spatially structured stripirgnvironmental SNR in this application) it is a good achievement
noise. A similarly striping-noise free set was obtained aftéo remove noise to achieve 20 MNFs from Hyperion data. The
local destriping but with the low-frequency effects retained asmilarity between the HyMap data in Fig. 6(A) and the model

spherically corrected Hyperion image by a linear (mixtureiﬂ_a
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Fig. 7. Estimated sensitivity measure of radiances to changes in location of atmospheric features or Hyperion band centers. Continuous laseliie tedme
the blocks are the 155 bands selected for “stability.”

based on fitted site spectra in Fig. 5 supports the assumption of TABLE IV
low residual noise in the HyMap data. 155 SABLE HYPERION BANDS

To apply the dimensional noise reduction in practice, it is Region | Band Number | Wavelength (nm)
best to handle the VNIR and SWIR data separately and com- VNIR [ 10to57 447910 925.9
bine them after the processing. In the following examples, for SWIR ?;1":09:19 :’fif;‘z;:;‘;:z
the inverse MNF transformation we used 12 components in the 13415164 487610 17902
VNIR and eight in the SWIR. These choices allowed rejection 182 to 221 1971.8 0 2365.2

of some low SNR residual array effects and were more conser-

vative than the 20 MNFs from the combined set that were used

in the comparison with HyMap. Handling the VNIR and SWIRT he results were averaged over the cases of varying atmospheric

data separately provides greater capacity to manage the ndgsels of water vapor and aerosol and then integrated over the

due to its different structure in the two arrays. Hyperion band passes. The result obtained is partly a function
of the conditions at the site and the time of overpass up to the

C. Band Selections That Avoid Residual Atmospheric Noisevariation introduced by the varying atmospheric data. The final

Effects value is plotted in Fig. 7.

The residual noise introduced by atmospheric correction can! Nere was a level of arbitrariness about the overall level
be reduced by methods such as those described above. How&gsen to indicate instability. Initially, a value of 0.25 was
an alternative or complementary approach is to eliminate bargféécted and then some bands at the edge of atmospheric
that are most likely to contain unstable atmospheric artifad@atures were added where there were some important known
above a certain threshold. features to pursue beneath the image noise. Based on this index,

To quantify the choice, an index of band sensitivity to atmc® Subset of 155 bands (plotted in Fig. 7) has been used as a set
spheric effects (such as variations in absorber profile as well s Stable” bands with respect to residual atmospheric feature
interactions with the sensor) was defined by using the derivatigd€cts and used to develop indexes and measurements that are
of model radiance as a function of wavelength. In effect, thfEee of the effects they create. Table IV presents the resulting
measure is most sensitive to locations where a change in b&R@ices by original band number and wavelength. .
center will create the largest differences in radiance. Specifi- These bands are clearly located in the middle of atmospheric
cally, atmospheric models were computed for the CIAS basé¢ndows and also cover the areas of response of the ETM and
on a clear day as the base and with variations in aerosol 4Nd band passes, and thus the selection retains the ability to con-
water vapor to provide the range. These were combined witfuct intersensor comparisons. Obviously there can be modifi-
an average surface reflectance computed with a wavelenyth ¢&tions for specific purposes but in most cases we are finding
step of 1 nm and converted to radianég &t the sensor. that using these 155 bands provides a simple but effective pro-

Numerical differentiation was used to compute the quantit;?essi”g step that qvoids, .rather than reduce;, residual noise. All
the indexes used in Section VI used selections from the stable

155 Hyperion bands. However, Fig. 7 also shows that the RE
indexes may need special attention.

Sensit= ‘ Olog L ‘

oA ©
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Fig. 8. Mean January 12 Hyperion spectra for the nine sampling sites of Fig. 1. The within-site variation is used to evaluate the indexes.

VI. AGRICULTURAL APPLICATIONS MEASUREMENTS is reported in [33]. Also, since the most obvious VNIR striping
FROM A SPACE PLATFORM occurs toward the western side of the image, there was little or

The benefits of noise management, including the destripi visible \_/NIR s_tri_ping near the sites. However,_the upiquitous
and smoothing operations, were evaluated by comparing f./R Vertical striping was present everywhere in the image.
values of selected spectral indexes from the geolocated ASD OF completeness, the comparisons were made on Hyperion
measurements with values from corresponding Hyperion pixdf82g€s processed in nine ways. First, atmospheric correction,
(Section VI-A). These data do not provide a complete desiyf#i"d FLAASH, was applied to the original and globally and

for the effects discussed (and other effects not fully discuss9§@!ly destriped (Section IV-C) radiance images. These are
in this paper such as the “smile” and surface BRDF) but do prd€noted as 1) Undestriped, 2) Global destriped, and 3) Local
vide important insights. The mean Hyperion reflectance specfigStriped. Using these three atmospherically corrected images
corresponding to the nine ASD site means of Fig. 1 are showrfifi NPUts to an “MNF-inverse MNF”" transformation (using
Fig. 8. These Hyperion spectra show similar reflectance ampliz MNFs for the VNIR and eight for the SWIR as described
tude and spectral features to the ASD spectra of Fig. 1 but wifhSection V-B) to smooth the data produced 4) Undestriped

more noise. The numbers of samples involved in these medfyF smoothing (MNFS), 5) Global destriped MNFS, and
varies from site to site and are provided in Table Il. 6) Local destriped MNFS. Again the outputs (1)—(3) were used

The purpose of the analysis is twofold. First, itis important S INPUts to the reference spectrum smoothing (RSS) technique
know if the information measured using field spectrometry cdfftiroduced in Section V-A) to create 7) Undestriped RSS,
be retrieved from space data, and second, which noise manage=/obal destriped RSS, and 9) Local destriped RSS.
ment strategies increase the consistency between the dataset§9!/10Wing this, the sensitivity of spectral indexes to crop
The dataset can partly answer these questions, but it is impof€SS Was usgd as a test of appllcat'|on by comparing Hyperion
tant to keep both its strengths and limitations in mind during tt1d ASD derived values for two rice bays known to have
analysis. different levels of water stress (Section VI-B) from field work

The data were obtained at a variety of sites on and duri@gd !andholder survey.
days following the EO-1 overpass on January 12, 2002 (see Sec-
tion 11). To provide a C(_)nsistent Com_parison, the ASD_ specti@ Narrowband Indexes: Performance and Stability
were convolved to equivalent Hyperion bands. The sites were
chosen to represent different covers, yet were relatively closeThe six indexes introduced in Section Il were used to investi-
together for logistical reasons. Being near the center of the Hyate the relationship between the ASD and Hyperion data. In the
perion image the variations due to spectral “smile” are smalNIR region, three were explored: 1) RE, 2) dRE, and 3) LCI.
and so effects due to the “smile” cannot be assessed using tHedbe SWIR region the clay hydroxyl absorption feature in soils
data. The “smile” is better addressed by comparing Hyperioar 2200 nm was selected. In the VNIR/SWIR region, the two
and HyMap data over the common area of the CIAS, and tHeaf water content indexes WI and NDW!I were used.
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TABLE V
SUMMARY STATISTICS R2, F-TEST PROBABILITY (P), MEAN (Mn), AND STANDARD DEVIATION (Std) FOR SIX INDEXES FORHYPERION
PREPROCESSEDJSING NINE OPTIONS Mn AND Std ARE ALSO GIVEN FOR ASD

Index Name RE (nm) dRE (um™) LCI Clay Index WI NDWI

ASD Mn 726.97 42850 0.73 0.039 1.10 0.10

(ASD Std) 2.71) (10420) (0.06) (0.012) (0.07) (0.05)
R’ Mn |R’ Mn |R? Mn |R? Mn |R? Mn |R? Mn
P) (Std) | (P) (Std) | (P) (Std) | (P) (Std) [ (P) (Std) | (P) (Std)
| Un-destrived | 0615 | 727.44 0350 | 39187 [0.681 |0.76 |0.070 |0.053 |0.009 |1.07 |0.123 0.4
n-destripe (0.008) | (1.53) | (0.000) | (3963) | (0.009) | (0.04) | (0.00) | (0.037) | (0.325) | (0.07) | (0.399) | (0.05)
2 Global 0.563 | 727.55 | 0.241 | 38495 | 0.581 | 0.76 |0.152 | 0.060 | 0.001 | 1.06 |0.098 |0.13
destriped (0.003) | (1.39) | (0.012) | (6114) | (0.003) | (0.03) | (0.00) | (0.042) | (0.137) | (0.06) | (0.019) | (0.03)
3 Local 0619 | 727420353 | 39197 | 0680 |0.76 |0.112 | 0051 |0.002 |1.07 |0.122 |o0.14
destriped 0.007) | (1.50) | (0.000) | (4012) | (0.007) | (0.04) | (0.00) | (0.038) | (0.324) | (0.07) | (0.408) | (0.05)
4 Un- 0623 | 72740 | 0.355 | 39133 | 0687 | 0.76 | 0.576 |0.028 |0.010 |1.06 |0.154 |0.14
destriped MNFS | (0.006) | (1.48) | (0.000) | (3885) | (0.009) | (0.04) | (0.014) | (0.009) | (0.457) | (0.07) | (0.190) | (0.04)
5 Global 0.563 | 727.54 | 0233 | 38563 | 0.586 | 0.76 | 0.633 | 0.039 | 0.004 | 1.05 |0.158 |0.13
destriped MNFS | (0.002) | (135) | (0.013) | (6119) | (0.003) | (0.03) | (0.240) | (0.011) | (0.228) | (0.06) | (0.054) | (0.04)
6 Local 0639 | 727.37 | 0355 | 39147 | 0683 | 0.76 | 0.622 | 0.034 | 0.008 |1.07 |0.164 |0.15
destriped MNFS | (0.004) | (1.45) | (0.000) | (3961) | (0.007) | (0.04) | (0.284) | (0.013) | (0.407) | (0.08) | (0.433) | (0.05)
7 Un- 0.574 | 728.19 | 0.349 | 40065 | 0.682 | 0.75 | 0.064 | 0.061 | 0.009 |1.14 |0.123 |0.13
destriped RSS | (0.006) | (1.49) | (0.000) | (4070) | (0.013) | (0.04) | (0.00) | (0.039) | (0.425) | (0.07) | (0.405) | (0.05)
8 Global 0.524 | 72834 | 0240 | 39348 | 0.582 | 0.75 | 0.147 | 0.069 | 0.001 | 1.13 | 0.098 |o0.11
destriped RSS | (0.001) | (1.30) | (0.016) | (6253) | (0.005) | (0.03) | (0.00) | (0.043) | (0.203) | (0.06) | (0.020) | (0.03)
9 Local 0.580 | 728.19 | 0.352 | 40081 | 0.682 | 0.75 | 0.108 | 0.060 | 0.002 | 1.13 |0.122 |0.13
destriped RSS | (0.005) | (1.47) | (0.000) | (4119) | (0.013) | (0.04) | (0.00) | (0.038) | (0.424) | (0.07) | (0.414) | (0.05)

Indexes from VNIR, SWIR, and combined VNIR/SWIRThe sampling strategy at the CIAS for the soil and stubble
spectral regions are needed to provide tests for noise reductites acquired on January 12, 2002 was designed to enable
due to the different noise statistics in data acquired by Hypsealing to Hyperion pixels. However, the rice sampling was
rion’s two spectrometers. The performance of all six indexes Isss intensive and includes more spatial variation (and hence
however, expected to be relatively stable, since the wavelengtiigher standard deviation) due to the scale difference between
used in their formulation all lie within the 155 “stable” bandsite and Hyperion data.
we defined for Hyperion. 2) SWIR Clay Index:Cl values were calculated from 55 ge-

1) VNIR Indexes:The RE and dRE values were calculatedlocated ASD spectra of soils (Soil_1, Soil 2, NN_Soil, and
from Hyperion by fitting a third-order polynomial and returningM_Soil in Table Il) and from the 55 georeferenced Hyperion
the wavelength and first-derivative value at the inflection poimtixels. Where ASD data fell into the same pixel the values were
using a generic IDL_ENVI module developed by the CSIR@veraged, there are 55 unique Hyperion pixels associated with
Division of Exploration and Mining, Mineral Mapping Tech-the 73 ASD soil measurement sites presented in Table Il. The
nologies Group. ASD and Hyperion index values were compared using linear re-

The indexes were calculated at the 20 sites for rice (Rice_dgression (Table V). The results in Table V show that both global
Y_Rice, and G_Rice in Table II) using geolocated ASD spectemd local destriping (cases 2 and 3) slightly increasedithe
and the corresponding georeferenced Hyperion pixels froralues compared to the undestriped image (case 1). Since the
the reflectance images. The ASD and Hyperion derived indeagion used is in the “stable” area of the SWIR, Hyperion bands
values were compared using linear regression. Summa@4, 205, and 206 used in the Clay Index did not show heavy
statistics are provided in Table V. striping in the radiance data; thus, the impact of destriping was

In most cases (the dRE excepted), the Hyperion values coot large and would be more significant for other SWIR bands.
relate to a good level with ground-based ASD values. This is anThe largest increase i?? was observed with MNF
encouraging result, since one objective is to use ground-baseabothing, as shown for cases 4, 5, and 6 in Table V. This result
models or calibrations with the Hyperion data. The dRE is thedicates that base noise has a major impact in the SWIR region
index most affected by the Hyperion “smile” and this is takecompared with stripes and that MNF smoothing reduces this.
up separately in [33]. In this case, as discussed in Section V-B, the MNF smoothing

The local destriping, MNFS and RSS smoothing all producea which the VNIR and SWIR are handled separately is also
similar R? values to that of the undestriped image. This is to bemoving residual array effects. The RSS smoothing (cases 7,
expected, as the VNIR SNR is high, and there was no mag@yand 9 in Table V) did not show any changes for this
VNIR vertical striping in the central region of the Hyperionndex as may be expected from Figs. 5 and 6 and from the way
image. However, it is significant that the lowdst values for the index is defined. Note that in the best results the means
each index were obtained for the global destriped images (caaed standard deviations of image and ASD data are similar as
2, 5, and 8 in Table V). This is consistent with the findings imould be expected due to the design of the sampling at the soil
Section VI-A, that global destriping alters the data. sites that aimed to bring the data to the same spatial scale.

It is important to keep in mind the number of samples 3) VNIR-SWIR IndexesThe values of WI and NDWI were
involved in these comparisons (20 in this case) as well aalculated from 20 geolocated ASD spectra of rice (Rice_1,
the relative standard deviations of the image and ASD daM.Rice, and G_Rice in Table IlI) and from the 20 georeferenced
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TABLE VI indexes in the Hyperion data. The lower bay with higher chloro-
e D e U e Seeeddy PV content shows significantly higher RE and LCI values
AND LOWER (NON-WATER STRESSED BAYS compared with the upper bay. Chlorophyll measurements were
) ) ) taken with a Minolta SPAD-502 meter (produced by the Soil-
Spectral Index | Sensor Upper Bay Lower Bay Plant Analysis Development (SPAD) Division, Minolta Camera
RE (nm) Egl]’;ri"“ ;gg-g E?f; ;232 Egg; Company, Osaka, Japan). On January 14, the lower bay had an
Hyperion 073 (0.61) 0.83 (o.dz) average of 43.89 (SE 3.68 for four sample locations), and the
LCl ASD 0.66 (0.02) 0.83 (0.01) upper bay had an average of 17.00 (S[2.49 for four sample
JRE Hyperion | 39441 (688) 44758 (2605) locations). At each of the eight locations (four in the upper bay
ASD 33420 (5713) 54506 (5814) and four in the lower bay) 30 individual “SPAD” measurements
WI ig’;”"n 1'81 Eg'g‘:; 1?2 gg'g:; were made. The SPAD data are in relative units that are known
NDWI Hyperion | 0.08 (0.01) 0.12 (0.02) to be highly correlated with leaf nitrogen concentration.
ASD 0.02 (0.01) 0.13 (0.02) For RE and LCI indexes, Hyperion and ASD show similar

values and trends between the bays. There was close agreement
Hyperion pixels. The ASD- and Hyperion-derived index valudsetween ASD and Hyperion values in the lower bay, which had
were then compared using linear regression (see Table V for stamiform green rice canopy. For the upper bay, Hyperion values
tistics from WI and NDWI indexes, respectively). were higher than the ASD values, mainly due to the heteroge-

As can be seen from Table V, ti? values were nearly zero neous mix of green rice and yellow senescing weeds and the

for most cases. The reason for the low values is almost certaighgater spatial averaging in the Hyperion signal. The dRE values
the low range of variation in the Wl and NDW!I values for the 2@vere higher for the lower bay in both ASD and Hyperion mea-
ASD rice samples. This is shown by the image and site standatdements. This relates to the higher green leaf cover and den-
deviations. The influence of atmospheric water vapor in the 978ty in the lower bay compared to the upper bay which had more
and 1245-nm Hyperion bands was expected to create variatgemescing weeds in it and therefore lower dRE values. However,
but does not seem to have done so. Relatively few conclusi@ssin the previous examples, the dRE in the space data has a
on the effects of various processing options can be drawn feduced variation in response than in the ASD values—despite
these two indexes except to note that the absolute values tite fact that the ASD data are integrated to Hyperion bands. The
tained from the ASD spectra and the image are very close. i®WI and WI values in the lower bay, for both the Hyperion
assess whether the variations are as well related as the meats ASD data, were higher than the values for the upper bay
requires a dataset with more underlying variation. indicating consistently greater leaf water content in the greener

canopy.
B. Mapping the Onset of Stress Due to Water Restrictions  On the basis of these results, it appears that one or a number

The images processed in the best of the selections discusgethese indexes taken together could provide useful maps of
above were then used in a simple but very useful mapping ébe state of water stress at the time of the EO-1 overpass. If the
plication. Due to reduced water allocations and high water dglress were to become more severe, it may be expected that the
mands in the early growing season, some growers reducedeasf water indexes would become more informative and if the
stopped irrigation much earlier than normal. Irrigation to one 6tress progressed to senescence it may be expected that indexes
the rice fields (Farm 51, field H) was stopped ten weeks earlig@t used here but based on the leaf waxes and oils and cellu-
on December 28, 2001. For this “dewatered” field, water wa@se features (see Table I) would track the progression into that
managed by directing water from three bays at the same elest&ge. These tools are, therefore, ready for analyzing hyperspec-
tion to the fourth bay at a lower elevation. The landholder &l time series as acquired for CIAS.
tempted to grow a successful crop in the lower bay by directing
water from the other bays.

Due to this management strategy, the lower bay was less

stressed than the upper bays on January 12, 2002. Geolofhe consistency and degree of relationship among the in-
cated ASD spectra were acquired in the lower (greener, labelgskes derived from the space platform and those from field data
G_Rice) bay and in one of the upper (yellower, labeled Y_Ricg}ovide the entry point to intercalibration between laboratory,
bays on January 14, 2002. Since water stress is associgjgslind-based, airborne, and spaceborne data. However, the re-
with a decline in chlorophyll, it would seem possible to useults from this research indicate that preprocessing including
hyperspectral indexes to map the variation. The question is hpand, or feature, selection, atmospheric correction, local de-
well can such mapping be undertaken at a regional scale fregmiping, and noise management such as that provided by min-
the EO-1 space platform? Mean and standard deviations of fgmium noise fraction smoothing were needed to achieve this.
representative pixels at which geolocated ASD (see G_RiceDestriping is an area of current focus and development for
and Y_Rice in Table 1) and georeferenced Hyperion derivadyperion data processing. The work reported here supports
values were extracted for the suite of indexes are presentedha use of local methods to remove the stripes with the degree
Table VI for the upper bay (water stressed) and the lower ba§locality (or window size) dependent on the array (VNIR or
(not water stressed). SWIR), the land cover, the environmental conditions and the
Despite the restricted statistics, the differences in chlorophgpplication. The consistency of the size of window used in the
content between the two bays are captured by the RE and U@ial destriping algorithm needs to be studied further. It seems

VII. CONCLUSION
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likely that the window used for data acquired by the VNIR
array will normally be much smaller than that used for data
acquired by the SWIR array. This is a function of the different
noise patterns in data resulting from the two arrays.

It seems that the current standard and advanced atmospherig]
correction methods provide useful normalizations of the data
and can certainly be recommended for consistent analysis OP]
time series such as that of the CIAS. However, itis clear from the
work reported here that there will normally be significant (and [4]
generally increased) levels of residual noise in the data after any
atmospheric correction with consequent reduction in SNR if it
is based on current Level 1B1 data. For this reason, extra data
cleaning and feature selection was performed and willneedto b
performed by all users of the data. It also appears that most of the
options for noise management are best applied after atmospheric
correction. Local destriping is an exception. v

This paper has not specifically addressed issues that are cur-
rently at the forefront of discussions surrounding atmosphericl8]
correction of Hyperion. These include issues such as spectrallg]
“smile” effects [33] and adequacy of transmittance codes. We
have rather selected a very standard baseline for correction. It
is quite likely that there will be added levels of noise reduc- 10

. . . . ]
tion from advances in this area in the near future and that theée
will include more sophisticated handling of the spectral “smile.”
However, it seems from the investigation in Section VI-A that[11]
the indexes being used in this paper (with the possible excep-
tion of the dRE) can be used successfully without such furthei2]
advances.

In summary, the best noise management strategy found he{@
was based on calibrated, locally destriped and atmospherically
corrected data. Following this, MNF smoothing was used based
on separate MNF transformations of the stable bands of th%4]
VNIR and SWIR data followed by inverse transformations re-
taining only the high MNFs with significant land surface in- [15]
formation. The steps we have described can provide an effec-
tive processing pathway to generate indexes from apparent syts)
face reflectance images for the time series of EO-1 data that has
been acquired for the CIAS. Because the data can be closely rg-,
lated to ground-based hyperspectral data, the standardization al-
lows monitoring and measurement of crop growth from a space
platform based on field-scale calibration. The aim is to asseds®
changes in plant chemistry, including changes in nitrogen levels
such as those developed for forests in [32], and to model crof9]
yields.

(1
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