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Outline |

1. Classification of hyperspectral images

2. Image processing

3. Learning regarded as an optimization problem

4. Predicting the learning performances and probabilistic framework
5. More in depth with probabilities

6. Curse of dimensionality, regularization and sparsity

7. Spatial context
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Outline 11

8. Supplementary material regarding matrices
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Intent of the lessons Out of the scope

@ Objective <+ Recognize similarities

@ Mathematical framework

@ Simple implementation

@ Graphics
State-of-the-art o
Neural Networks e

Ensemble classifiers o

Feel free to ask questions: chat, end of subsection, at any time... \
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Figures and codes

Figures
@ DOl indicates a publication from which the photo is extracted.
@ Obtained with Octave, see lecture notes.pdf on HIP2.htm

https://octave.org/
The packages being used are
e optim
e signal
e image
e statistics
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First level of understanding

Technique
Kind of data i o
@ What is the objective?
@ What is it used for? @ What is the input?
@ Number of dimensions? @ What is the output?

@ Why is it expected to work?
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Second level of understanding

Formulas

@ What is it
computing?
@ What parameters

it depends on? Pseudocode

Graphics
@ Letters on =raphics @ input/output?
nc?tatlor?s caE b_e o Axis?
misleading: y, is
actually not
depending on y,,.

@ Number of loops?

e Way out?

@ Notations are
different depending
on the context.
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Third level of understanding

Choose tools to make them yours.

@ In a real project, techniques have to be adapted and they are not
receive a new name.
@ Try modify or create examples to see how it works.

@ Test computations with numerical simulations.
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1. Classification of hyperspectral images
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Content of section 1, Classification of hyperspectral images

1.1 Hyperspectral images
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RGB-multispectral-hyperspectral

Scan Mirror and ﬂ
Other Optics A
' l
/ Dispersing U
Element Imaging
Light from Optics Detectors

a single o .
ground- Schematic diagram of the basic
resolution elements of an imaging spec-

trometer. Some sensors use
multiple detector arrays to mea-
sure hundreds of narrow
wavelength (A) bands.

cell.

microimages.com
e RGB
@ Collection of wavelengths

@ A precise padding of wavelengths
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AUG Signals’ classified image of 7 materials Ground truth image provided by the Nature

Resource of Canada
u Blue - veg/metagabbro sRed — quarzites » Green - psammites.
= Dark cyan — metatonalites = Magenta monzo - granites

Do cyon _metmonaies Valon peamiis CNES 2008
Finding water?

Assess forest damages from fire.

What is being cultivated?

Level of sea water?

Collect information through clouds.
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Hyperspectral imaging from devices

IMM-PHD-2011
e Food analysis (quality, non visible rot)

@ Recycling: finding constituents
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What is a color image

R G B
</m1m27 Im1m27 Im1m2>

What image is this showing?

R=[1;1;0]; G=[0.5;1;1]; B=[0;1;0];
im=cat(3,R,G,B),
figure(1); imshow(im);
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Answer to exercise 1

R=[1;1;0]; G=[0.5;1;1]; B=[0;1;0];
im=cat(3,R,G,B),
figure(1); imshow(im);
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Wavelengths
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Hyperspectral image

Hyperspectral Data Cube

150 Pixel Spectra
_ 5000
100 : o b @ AN
o ' 2 4000 ™
s B E ‘WA
2 50 o \ \
& 3000 \
o \
0 \
0 A 2000 \
. 0 50 100
o 0 bands
< 100 0
C?’> 100 >
s pands

IT implementation

Beware at the frame orientations! I
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Content of a hyperspectral dataset

Raw values (set of intensities)

Corrected values (after
registration)

Ground Truth

Calibration information
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Retrieving a hyperspectral image

@ Find on the web the hyperspectral image Pine and retrieve it in
Octave, using for instance
https://www.ehu.eus/ccwintco/index.php/

Hyperspectral_Remote_Sensing_Scenes
https://engineering.purdue.edu/ biehl/
MultiSpec/hyperspectral.html
@ Find the size of each bandwidth image

© Find the number of bandwidths
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Answer to exercise 2

O | followed the following steps

Retrieve Indian_pines_corrected.mat and Indian_pines_gt.mat
T=1oad to retreive the image

fieldnames(T) to get the name of the variable

size to get the answers.

ans =

[1,1] = indian_pines_corrected

}

145 145 200

Q@ 145x145
© 200

March 20, 2024 21 /469



Wavelengths and frequencies

™)
<« Wavelength —»
Distance between
successive crests,

21 Direction of
@ propagation

Frequency (v) :
Cycles per second

Cycle

‘ Electric field metres cycles _ metres
cycles -
E L Y seconds seconds
E.L.

Doi: 10.1016/B978-0-12-809254-5.00001-4
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Pixel spectrum

© Retrieve the calibration information

https://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes
https://engineering.purdue.edu/ biehl/
MultiSpec/hyperspectral.html
@ Considering a horizontal line located at the center of the image, find
the coordinate of its left most point.
© Plot the spectral intensities as a function of the bandwidths number.

@ Plot the spectral intensities in terms of radiance and as a function of
the center wavelength.

Calibration, registration.

i = = = =
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Answer 1/6 to exercise 3

@ Using the second website, | went to the following websites

https://purr.purdue.edu/publications/
1947/1
https://purr.purdue.edu/publications/
1947/supportingdocs?v=1
and got the following text file named
Calibration_Information_for_220_Channel _Data_Band Set.txt
Information on 220 Channel
AVIRIS Data Set
Location

This data is from the AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer)
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Answer 2/6 to exercise 3

These data are calibrated data. In other words the data
values in the scene are proportional to radiance. 1000
has been added to the calibrated data so that all data
values in this scene are positive. To convert the scene
data values (SDV) to radiance values (RV), one must first
subtract 1000 and then divide by the gain_factor

that JPL used which is 500.

RV = (SDV-1000) / 500.

The RV units are W * cm™—2 * nm™-1 * sr~-1.
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Answer 3/6 to exercise 3

AVIRIS Data Center Center
Band Channel Wavelength  FWHM  Uncertainty
# # (am) (nm) (nm)
1 (not used - the band was all 0’s)
2 1 400.02 9.78 0.92

FWHM
Uncertaint:
(nm)
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Answer 4/6 to exercise 3

@ The center horizontal line is at the line number 73:
(72—-1)+1=(145—74+1) =72 and 2x72+1 =145
The left most point isat m =73, n=1.

© It is shown on the left of figure 1.
figure(1); plot(im(73,1,:),’linewidth’,2);

@ It is shown on the right of figure 1. The following bands have been
removed [104 — 108], [150 — 163], 220 as indicated in the dataset
because of the water absorption. We get the horizontal scale using
the following steps.

o Open the text file

o Convert each line into arrays of numbers (a line starting with a letter is
converted into a void array).

o Check if the array is non-empty and if its second number is not
included in the list of removed bandwidths.

e Stack in a vector the third component of each non-void array.
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Answer 5/6 to exercise 3

We get the vertical scale by making the following affine transform
RV — SDV — 1000

500

Bandwidths removed
These are indicated with black crosses.
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Figure 1: Left: spectral intensities as a function of the bandwidths number.

Right: spectral intensities in terms of radiance and as a function of the center

wavelength. Exercise 3

2500
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What means W * cm”-2 * nm”-1 * sr"-1

W: Watt (radiation) is J/s,N.m.s—1 or kg.m?.s73.
cm™2: surface of 1cmx1cm

nm~1: size of bandwith in 1nm = 10~9m.

sr~1: measure of angle in 3D: € [0, 4x].

Length=r
/ 1

Area=r?

(b)

(a) Radian defined (b) Steradian defined

DOI: 10.1117/12.883572
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Water absorption

Absorption (1/m)

I N )

Wavelength

[ iravioet 0 500 1000 1500 2000 2500

© Explain the reason for removing the bandwidths indicated with
black crosses on the right.
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Answer to exercise 4

0 500 1000 1500 2000 2500

@ lowest wavelength: 400nm

o first set of wavelengths:
1362 — 1402nm

@ second set of wavelengths: | |
1819 — 1893nm e e
@ third set of wavelenghts:
2500nm

March 20, 2024 32 /469



Water absorbing frequency

5 Averaged measured
2 brightness for a portion
a‘; «of playa surface (red 25
ot square at right).
!
< i Solar energy arriving at the
z R top of the atmasphere
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microimages.com
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Figure 2.2: The three different vibrational modes of a HoO molecule. The gray
H atom in the background represent the stationary state. I M M_PH D_201 1
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Profile line

We consider again the central horizontal line. For each questions, use
appropriate notations to express the computed quantities.

@ Plot the profile line considering the spectral intensity of the
bandwidth number 50 and the bandwidth number 100.

@ Center both lines. We here consider that centering assume that pixels
at a given bandwidth should be processed in a similar manner.

© Normalize them so that their variance is equal to one.
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Answer 1/3 to ex
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Answer 2/3 to exercise 5

O Let us call
c=1713 ki =50 k=100
The two profile lines are
my = (M1, m2, ki) and  mo = [(mic, mo, ko)
@ The two average intensities are

M;—1 My—1
H1= MleZmll 0§:m22 0 I(m17m27k1)

Mi—1 —~My—1
H2 MIMZZmll 0 2oma—o 1(m1, m2, ko)
The transformed profile lines are
my +— l(mlc, my, kl) — M1 and my +— I(mlc, my, k2) — M2

M;—1 My—1 Mi—1 Mr—1
Z Z (I(m1, mo, k1) — p1)) = Z Z I(m1, my, ki) — MiMapq =0
m1=0 my=0 m1=0 my=0

O]
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Answer 3/3 to exercise 5

© The two standard deviations are
ZMl ; ZM2 ; ( (m1’ ma, kl) - :ul)2

m;=0 my=0

1
M My—1

_ 1 M;—1 Mo—1 2
o2 = \//\//1/\//2712,7111 0 2om—o (I(m1, m2, k2) — p2)
The transformed profile lines are

I(mi., mo, k1) —
my ( 1c, M2, 1) M1 and my

I(mic, mo, ki) — o
o2

01

2
1 Mi—1 ~Mo—1 [ I(m1,mo,ky)—p1
\/M1M2 Zml=0 Zmz=0 ( o1

M;—1 My—1 2
Z%\/Wsz “0 2omy—o (I(m1, m, ko) — p1)” =1
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7 is a hyperspectral image, it is a rank 3 tensor, I(my, my, k) is a
component.

my, mp, k are the row, column and bandwidth indexes.
My, M5, K are the number of columns, rows and bandwidths.

1 is the mean of a set of numbers.

o is the standard deviation of a set of numbers.
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Conclusion of section 1, Classification of hyperspectral

ERES

rank 3 tensors
radiance, wavelengths, spectrum

registration, calibration

spatial displacement and wavelength shift

What are classifiers
In the next section, we discuss how to make these images informative.
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Content of section 1, Classification of hyperspectral images

1.2 Supervised and unsupervised classification of hyperspectral images
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Raster scanning order

o Feature space x € RF
@ Input matrix
X = [an]n,f
@ Sample, instance or record x,

A
A 4 "\V

?

A

vyiv/'vy

@ Set of samples
Xo

Beware
Often the raster scanning order reads along columns.
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supervised classification

o Classes y, € {0...C —1}.

— o — — @ Binary classification problem
C=2 y,€{0,1}.
@ Label column vector.

Y = [ya],
o Proximity in the feature space
means
p— Labels are more likely to be the
Form Land same

Shrub Land
Sparsely vegetated

980000 1010000

950000 980000 1010000

950000
|

oordinate System
ddinda

920000

Legend
Land-use/ land-cover

920000

Bare Land

890000
890000

860000
860000

Populated Areas/ Settlement

(| I

830000

Forest Land
Water body

830000
7]

40 km

Classification is sometimes refered
to as labelling
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Feature space

Draw and code with Octave the scatter plot of the following dataset
[0 07 [ 1]
01 0
0 2 0
10 1
X=]11 Y=]1
1 2 0
2 0 1
2 1 1
| 2 2 | | 1 ]
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Answer to exercise 6

X=zeros(9,2)

X(:,1)=[000111222]";

X(:,2)=[01 201201 2];

Y=[1 0011011 1]"; of% ; B
ind1=find(Y==1);

ind0=find (Y==0) ; "

figure(1); plot(X(indl,1),...
X(ind1,2),7+7, ...

’LineWidth’,3, ... 0s

X(ind0,1),...
X(ind0,2),’07, ... L — : - -
’LineWidth’,3); K

legend(’y=1’,’y=0");
axis([-0.1 2.1 -0.1 2.1]);
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What is classification?

05

ofF « ° °

0 0.5 1 15 2
X1

@ Query sample: blue square

@ Given the training set, is it more likely to be green (y = 1) or red
(y=0)?
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Training and testing set

Partitioning
Data Sets

TainingSet @ Training set
@ Test set

@ Supervised
Testseq classification
problem

Training Set Test Set

Parameter estimation

Training set = Parameters

Testing set } = I
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Ground truth: a challenging issue

It is a hard work to go every where to collect the information.

Some locations can be difficult to access.

Definitions of labels may not be appropriate to what is actually going
on.

The time at which the hyperspectral image is recorded may not
match that of the ground truth.

True applications
It is acknowledged that many datasets have up 20 % mislabeled samples.
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Number of samples per class in training set and testing set

year | min max min test- | max test- | DOI
training training ing ing
2018 | 10 113 906 11158 10.1109/TCYB
.2019 .2905793
2010 | 15 50 5 2418 10.1109/LGRS 2010
.2047711
NT NT IN 1 IN 1
2008 | 35 36 36 |36 | s
N T N T 4N 1 4N 1
0000155 |55 |5 | s | miens

Challenging issue

Imbalance dataset (a.k.a variations in class abundance)
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@ Supervised classification
@ Semi-supervised classification

@ Unsupervised classification a.k.a. clustering
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Ground truth

Figure 2: Classification map indicating in white the soybean.

@ Denoting C the collection of classes that are soybean, 0...C — 1 the
total set of classes, write the pseudo-code of an algorithm yielding
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Answer to exercise 7

(4] o C is the set of requested labels.
o Iyq is groundtruth map.
e . is the yielded classification map.
Require: C, /g4
Ensure: /.
1: Set Ic to the size of Igq with null values.
- for ne 7 do
if Izq(n) € C then
le(n)=1

s wen
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lower case indicates scalars: fm,m,, except Im;m,.

Bold lower case indicates row vectors: x.

Capital letters indicate column vectors: Y.

Bold capital letters indicate matrices: X, I.

Sets are in calligraphic fonts: C, .

ne€ {0... N — 1} is the index of sample xp,.

Image intensities are here considered as a data set x,
Bandwidths are now considered as features x = [xp ... xF_1].
Land use and land covers are indicated with yn € {0...C —1}.

Ground truth map and classification map: lgq; lc.
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Conclusion of subsection 2, Supervised and unsupervised

classification of hyperspectral images

@ The classification of hyperspectral images yields a classification map
and hence an interpretation.

@ Need of ground truth data to learn information

@ Need of some belief

@ Numerical complexity is an issue, here out of the scope of this lecture

@ Choice of a technique should take into account what the technique is

meant for.
What are classifiers
In the next section, we discuss of two simple classifiers.
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Content of section 1, Classification of hyperspectral images

1.3 Simple predictors
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Predictor function

Predictor function

®
k<)
-

Iverson bracket

1if M is true
0 if not

Sample x is row-vector.

y is the label 0 or 1.
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Decision stumps: example

Exercise 8

We are considering the following predictor which is
+ 4 © an example of decision stump.

— fap(x)=(2a—-1)I(x<b)+1-a

with a and b as parameters.

® - @ Compute fl’2(0.5), f170.5(2).

@ Prove that

fuy(z) = £ z(y)1(y = 2)
+(1 = £z (¥) Iy # 2)

March 20, 2024 56 / 469



Integers representing binaries

Logic —L+1 0,1

y = POSITIVE y=+1 =

y = NEGATIVE y=- y=
1(y1 = y2)

_ =y +(1-y1)(1-y2)

Yi=1»y yiyz
= (2y1—1)y2+(1-x)
— 0.5y12 4+ 0.5

y =2y —1and y =0.5y +0.5
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Answer to exercise 8

fan(x) =(2a-1)l(x < b)+1-a

ﬂ(,y(z) = fx,z(y)l(y = Z)
+(1 = £z (¥)ly # 2)

Q £2(05)=(2x1-1)1(05<2)+1-1=1
f1,05(2) = (2><1—1)1(2<05 +1_1_0

)
Q Assuming y = z, £, ,(z) = fi (2) = £ 2(y)
Assuming y # z, f(z) = (2x - 1)1(z < y)+1—x

=2x-1D1-1Uy<2)+1-x=(1-2x)1(y <z)+x
—(2x -y <2)+1-(1-x)=1-f.(y)
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Decision stumps: definition

A decision stump makes a decision based on the value of a feature.

for 0..0,(x) = (20, = 1)1(xp, < 0x) +1 -6, (2)
with 6, € {0,1}, 0 € {0...F —1} and 0, € R
— 1(xp, < 0x) = 1(xp, > Ox)

(XeF < GX)

for 6..0(x)

=1
for 6,,1(x) =1
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Scalar product

The feature space is the set comprising all possible values of x. We

define on it a scalar product
F

xx' = Zx,rx,'c and ||x||? = x.x

f=1
This scalar product can be written with matrix operations.

A
XX = xx
Note that the transpose operation would apply on the first element if x
and x’ were column vectors.

Euclidean distance

d (x,x') =|x—X| = \/(x —x)(x — x/)T _
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Example of linear predictor

We consider a predictor f defined as
f(x) = 1(2x1 + x2 < 2) (3)

© Rewrite f using the scalar product.
@ Rewrite f using matrix operations.
@ Plot x1 — f([x1,0]).
Q Plot xp — ([0, x2]).

We are considering two sets
Xo = {x|f(x) =0} and X1 = {x|f(x) =1}

Q Plot a line separating the two sets and indicate which set is where?
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Linear predictors

fa.p(x) = 1(a.x < b) °

When b > 0, for any A > 0, f, p(x) = fra rs(x) This property shows that
the proposed model is not non-identifiable. Note that if we use only a to
define this predictor, then we need some extra information.
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Answer to exercise 9

f

08

06

f(X) = 1(2X1 +x < 2)

04

02

Q Letu=[21],
f(x) = 1(X-U S 2) 0 05 1 5 2 25 3

Q f(x)=1(xu’ <2).
Q f([x1,0]) =1(x1 <1)

Q ([0,x]) = 1(x2 < 2) s
O Let xo = g(x1) be the edge. 1
g(xl) =2 2X1.
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Predicted output: y (it depends on x).

1: Iversion bracket (1(0 =1) =0and 1(2+2=4) =1).
©: the whole set of parameters.

parameters: Of,0,,0,.

Threshold on intensity 0.

. scalar product.

|| || norm of the scalar product.
<7

is a column vector and T is the transpose.
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Conclusion of subsection 3, Simple predictors

Binary context: 2 classes
Decision stumps and linear classifiers are predictor functions
They act on the feature space

They are defined by a parameter here 0f,0,,0, or b,a

Given a query sample x, they give a prediction y

How can we compute the parameters defining the predictor functions?

In the next subsection, we discuss metrics designed for assessing predictor
functions.

March 20, 2024 65 / 469



Content of section 1, Classification of hyperspectral images

1.4 Accuracy and loss functions
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Accuracy

@ OA: Overall Accuracy

o AA: Average Accuracy
1 n — 1 n — n
AA — — Z Z (y )1 (yn = ¥n)
0 1(Yn = C)

Here, accuracies are denoted as A. \
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Accuracy vs loss functions

Accuracy (overall accuracy)

what is at stake? N

~ 1 N
A(Y,Y) = Nz; L(¥n = yn)
1=
Example of loss function

In terms of notations, Y and Y are column vectors stacking y, and y,. y,
is the true label and y, is the label predicted using x,,.

This is actually a simplification.

Note that in L(Y/, \7) ¥n could be a real number and not a boolean in
{0,1}. This is up to the choice of the technique. Now it is not depending
on X.
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max, min, argmax, argmin

@ Value of the global maximum: max f(x)

“aba maimum @ Value of the global minimum: min f(x)
u X

local maximurr

@ Input points of the global maximum:

~ ocal mininm |'\‘/ 1 arg)r;naXf(X)
- o . | . .
ot mirimum @ Input points of the global minimum:
-€ 1 1 1 1 .
02 04 06 08 1 12 argmlnf(X)
X
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We are considering the predictor f, ,(x) defined as
fap(x)=(Ra—-1)I(x<b)+1—a
with a and b as parameters. and the following database .7}
X1 = 1 1= 1
xo =15 y, =0
X3 = 6 y3 = 1
X4 = 3 Y4 = 1
X5 = 0.5 Y5 = 0

Q Plot the function defined by b — A(1, fip).

@ Plot the function defined by b — A(1, fop).

© Select values for a and b maximizing A(1, fap).

O Find the corresponding maximum value of A(1, fap).

© Use argmax and max to write the answers to the two last questions.
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Answer to exercise 10

fin(x) = (2a—1)1(x < b)+1—a

X1
X2
X3
Xa
X5

1

0.8

accuracy
° °
S [}

o
N

o

=1 1= 1

=15 y»=0

=6 y3 = 1

=3 Y4 = 1

=05 Y5 = 0
A
—AS x>t (0

‘ ] (bopt'Aep() aop\=0
0 1 2 3 4 5 6 7

value of b

I(y1 =y16)=1(b>1)
]_(_y2 = 5/\2,[,) = 1(b < 15)
1(ys = y3,p) = 1(b > 6)
1(ya = Yap) = 1(b > 3)
1(ys = y5,5) = 1(b < 0.5)

Q@ a=0

1()/n = j/\mo,b) =1- 1(Yn = yn,l,b)

© appt = 0 and bopt = 2.2

(aopt, bopt) S argn;axA(yl, f:;’b)
Aopt = ”;:1)( A(jﬂh fa,b)
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Loss-functions used for learning

@ Supervised classification: L depends on Y and Y or...

@ Unsupervised classification: L depends on X and Y.

Learning
Parameters are selected so as to minimize the loss function.

March 20, 2024 72 /469



@ Accuracies: OA, AA and A.

@ OQutput and inputs of global extrema: max, min, argmin, argmax.
@ Loss function: L.

°

Labels: Y and Y stacking y, and y,.
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Conclusion of subsection 4, Accuracy and loss functions

Accuracy and loss functions tell us whether a predictor function is
consistent with a dataset.

@ A is the accuracy. It is expected to be the more appropriate metric
(this depends on the application).

Loss functions denoted L are less appropriate. We will see examples.

Here higher values of A and lower values of L indicate better
performance.

In the binary context y € {—1,1} can be more appropriate than
y €{0,1}.

How these metrics are going to help us finding the parameters.

0F, 0,0, or b,a.

Parameters are chosen with respect to these metrics.
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Content of section 1, Classification of hyperspectral images

1.5 Training, testing and validation sets
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Training and testing set

Partitioning w
Data Sets - @ Training set
=_ @ Test set
e @ Supervised
_- ==Test5et classification
E——— e = problem

o [StraiN; STEST] = SPUT (S, [3, 7])
@ © = LEARN(S)
e A=TEST(S,0)
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Validation set

Different from Training set and Test set.

Differences caused by Randomization and/or Overfitting
Size could be of % of the labeled samples available.
Trade-off between reliability and scarcity of labeled samples.

Ground truth is costly and could be erroneous.

Numerical complexity could be an issue.
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Cross-validation set

Use of validation sets to select among parameter values {61 ...60p}.

Example with K = 5.

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Test

Train

Train

Train

Train

Train

Train

Test

Train

Train

Train

Train

Train

Train

Train

Train

Train

Train

Test

Ak p = TEST(LEARN(Skr2k, 0p), %)
'9Popt = ar;ggn:in%: Ak,p = Oopt

Cross validation can be used to make decisions based on the dataset, this
amounts to using the validation set in the red boxes. It can be used to

make a more accurate performance measurement, then the use of the test
set in the red bloxes.
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Given a certain data set .73 .4 with .73 as labeled and ., not labeled.
@ Improve the following algorithm using validation sets.
Require: .¥3,.%,: data sets
Ensure: a, b: linear classifier
1: yopt = .7.
2: (aopt, bopt) = LEARN(-Sopt)
3: Compute Aopt with (agpt, bopt) and Fopt.
4: repeat
(X, (xlv y,)) = argminxeY4,(x’,y’)65’3 d(xlv X)
Set S = Sopt U(x,y")
(a,b) = LEARN(.Y)
Compute A = TEST(S, (a, b))
if A> Agpt then
10: (aopt, bopt) = (a,b), Sopt =, Aopt = A.
11: until A <= Appt

© 2 NS 9
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Answer to exercise 11

Require: .73, .7, |
Ensure: [(a, b),A] = LEARN(.%3, .74, 1)
1: Set Zopt. (aopts bopt), Aopt-
2. fori=1:1do
3: (x, (X/7y/)) = argminxeY‘;,(x’,y’)EYg, d(X/7 x)
Set 7 = Sopt U(x, ')
(a, b) = LEARN(.%)
Compute A with (a, b) and ./
if A> Agpt then

(aopt, bopt) = (a, b), yopt =7, Aopt = A.

® N g
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Continuation of answer to exercise 11

Require: .73, %
Ensure: (a, b)

. S = SPLIT(.#3, K)
2. fori=1:/do

3 A;=0

4: for k=1:K do
5

6

jary

A; = A; + LEARN(.%3, .74, 1)/ K
: iopt = argmaxA;

[(a, b),A] = LEARN(.%3, 4, iopt)

~
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@ Machine learning tools: SPLIT,LEARN, TEST

@ optimal value of a parameter: opt.
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Conclusion of subsection 5, Training, testing and validation

sets |

@ The question of the training set, validation set and testing set, is
generally studied in the context of supervised learning (labeled
samples).

@ We have seen the definitions of training, validation and test set and
the cross validation technique.

@ When we study a technique and want to assess its performance we
need to now the true labels of the test samples.

@ In a given application, we would be using the technique on samples
for which we don’t know the true label and we would give some
confidence in the prediction yielded by the technique.

@ The use of a validation set and of the cross validation technique are
precisely tools that can tell us more specifically what confidence we
may have.
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Conclusion of subsection 5, Training, testing and validation

sets ||

@ Regarding the unsupervised learning, we could build similarly the
same sets. We can also consider that samples from the test set can
be used to increase or update the knowledge we have.

Confusion matrix?

In the next section in order to study the reliability of a given technique
based on its performance on a training set, we need a more precise
indicator to describe the obtained performances, better than accuracy.
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Content of section 1, Classification of hyperspectral images

1.6 Confusion matrix

March 20, 2024 85 /469



Confusion matrix

Predicted Labels

-
True Labels
N—1 R N—1 R
> Uyn=yn=0) > (yp=0and y,=1)
C = n=0 n=0
N—-1 . N—-1 N
Z 1(Yn:13nd }’n:O) ZO (Yn:}/nzl)
n:O n=
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Confusion matrix

Components of the confusion matrix
N—1

C =[cj]l and ¢ = Z Wyn = )1y =)
n=0

@ Here i,/ are index of classes.
@ y, true class of sample number n.
@ y, predicted class of sample n.

@ N total number of samples (here not the number of rows).

Beware
Sometimes, rows and columns are swapped in this definition.
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We consider the following confusion matrix.
Cc_ 5,1
11,5
© Give an example of Y and Y consistent with C.

Q Given YT = [0,0,0,0,0,0,1,1,1,1,1,1], how many different Y are
consistent with C?
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Answer to exercise 12

o
YT =1,0,0,0,0,0,1,1,1,1,1,0]

Q 6x6.
[1,0,0,0,0,0,0,1,1,1,1,1]

[17 07 0? 07 07 07 1’ 1’ 1’ ]" 17 O]
[0,1,0,0,0,0,1,1,1,1,1,0]

[0,0,0,0,0,1,1,1,1,1,1,0]
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confusion matrix and accuracy

We are considering the following matrix
2 1

0
0

1
C= 1 2
2 4
How many classes are there?

How many samples have been tested?

Up to some renumbering, what are the values of y,?
Using the same ordering, what are the values of y,,?
Compute the OA?

Compute the AA?

Show that OA = Mﬁlﬁcﬂ

Show thatAA:%( @ L __en o )

Coo+Co1+Co2 cio+cii+ci2 Cc20+C21+C22

© 0000000

v
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Answer to exercise 13 |

@ C = 3 because the size of C is 3x3.
@ N =13 because N =3, Cj

© Let us reading the lines of C.

e 4 samples are part of the class 0: yp =y1 = y» = y3 =0.
e 3 samples are part of the class 1: y; = y5 = y5 = 1.
e 6 samples are part of the class 2:
Yr=Y8=Yo=Yw0= Y11= Y2 = yi3 = 2.
@ Let us read the columns of C.
e 2 samples have been predicted as being part of the class O:
Yo=y1=0.
e 4 samples have been predicted as being part of the class 1:
Ve=Ya=yr =y =1
e 7 samples have been predicted as being part of the class 2:
V3=Ys=Y6=Yo=Y0=yu=y2=y3=2
© Let us consider the diagonal components of C
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Answer to exercise 13 |l

e Among the 4 samples part of class 0, there are 2 correct predictions:
Yo=Yoand y1 = 1.
e Among the 3 samples part of class 1, there is 1 correct predictions:
Y4 = Ya.
e Among the 6 samples part of class 2, there are 4 correct predictions:
Y10 = Y10, Y11 = Y11, Y12 = Y12 and y13 = yi3.
2+1+4 6

OA=—3 =3

c— N— ~
— %26:01 anol 1(yn=)1(yn=9n) = W
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Answer to exercise 13 Il|

-1 2N Nyn=c)L(yn=7n)
AA — CZ OZN ll(yn:C)

o CZC 0 CC0+CC1+CC2

_1 Cao + Cu + C
3 \ Goo+Co1+Co2 Cio+Cr1+Cr2 Coo+Co1+Co
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e Confusion matrix C = [¢;].

@ Column vector of predicted labels: Y.
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Conclusion of subsection 6, Confusion matrix

@ We have seen the definition of the confusion matrix

@ It should not be confused the transpose of this confusion matrix.
When go down, scrolling down the different rows, we get information
on samples having actually different labels. When going to the right,
we get information on samples having different predicted labels.

@ In non-binary classification problems, confusion matrix are not of size
2x2.

How are the confusion matrix going to be used in the next section?

We are considering different experiments for which techniques have
parameters yielding a performance measured by a unique confusion matrix.
So we are studying what we can see differences that are not measured by
confusion matrices.
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Table of Contents |

2. Image processing
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Table of Contents Il
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Content of section 2, Image processing |

2.1 Segmentation
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Segmentation

Segmentation is a partition of the pixels in subsets.

N=Jcst c(Co=0 (4)

C
Each set contains pixels that are homogeneous in some sense.

@ Point-based techniques using only one bandwidth.
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Thresholding

A set of pixels can be defined by thresholding w.r. to T.
C= {(ml, mg) S N|I(m1, m2) > T}

Superlevel set

T +— C is called the superlevel set. It is also related to the empirical
distribution F(T) =1 — %[C|.

We are going to consider the cardinality of this set.
How can we select T?

To investigate the choice of the threshold, we are investigating the
properties of the following curves. Given an image |, let fi be defined as

A(T) = {n € Ni(n) > T}|

© Is fi increasing, decreasing, or...7

o

= =
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Thresholding Il

@ Compute £(0), ﬂm f

Let |, be the centered and normalized image | and f|, the corresponding

function.
N—1

I(n)=1(n)—p where p= %Z 1(n)
n=0

© What is the relation between f; and f;, ?
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Answer to exercise 14 |

@ £ is decreasing: let T1 < To.
{nll(n) > T1} C {n|l(n) > T2} = A(T1) > A(T2)
{n|l(n) >0} =N = f(0)=|N|=N
VT > max, I(n), {nll(n)>T}=0= Llrono fi=0]=0

(3]
h,(T) = H{nll:(n) = TH = {nll(n) — p > T} = A(T + 1)
The curve is moved too the left.
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For unsupervised binary classification, a possible loss-function is

LX) = Y I xlPt Y e xal?

¥n=0,y,,=0 Yn=1yy=1
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Based on the definition of a decision stump in machine learning and using
the L2-loss function applied to real valued predictors, how could a
threshold be computed?
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Answer to exercise 15 |

@ We consider two families of decision stumps: f,(X) = 1(x,r < T) and
fp(X) = 1(xpr > T).
@ Accordingly, we define two loss-functions L and L’
L(F,T) = XnCo o lxn — X [*F:(xn)fo(xw)
N—1 ~N—
+2 om0 Lw—o X =X [[7(1 = fa(x))(L — falx))
L’ is defined using f}, instead of f,.

e For each f, we compute T¢ and T}
Tr € argminL(f,T) and T; € argminL'(f, T)
T T

e Finally if ming L(f, T¢) < ming L'(f, T}), the proposed decision stump
is
L(x,z < T7) with f € argmin L(f,T¢)
f

If not, then it is N
1(an > T,?) with f € argminL/(f, T%)
f
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Median and quantiles

Given a set of values,
x = [15,6,13,8,8, 10,7,3, 16,20]T
we first reorder them
Xord = [3,6,7,8,8, 10,13,15, 16,2O]T

@ Median is the average value between the fifth and the sixth value:
84+10 _ g

10/2] = [5] = 5
o First quartile is the third: 7
[10/4] = [2.5] =3
@ Third quartile is the eighth: 15
[3x10/4] = [7.5]| =8
A rough approximation of the k-th g-quantile is
Xord [[NP]] where N = |x| and p = kq
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Use of f; to find an adequate threshold

I(n)<T<neNy
IN7such that

N7l =p
3= [34) = |34] < [3.4] =4
3= |3.6] < |3.6] = [3.6] =4
—4=|-34| < |-34]=[-34]=-3
_4=|-36] = |-3.6] < [3.6] = —3

Tefip) = {T
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Simulation result

25000

20000

15000

10000

5000

0
0 2000 4000 6000 8000 10000

Figure 3: Example of fi-function as defined in exercise 14 for the Indian’s Pine
hyperspectral image using the bandwidth number 50.

© Looking at figure 3, what does it tell us on the hyperspectral image?

@ Show on figure 3, the first, second and third quartiles.

— = - = = 7 &
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Distance induced partitions

Euclidean distance in the spectral space R
F
d(a,b) = [ D> _(ar — br)? = [la - b]|
f=0
With two points a,b € RF, we get a segmentation of |
Na ={ne N|d(I,,a) < d(I,,b)}

Ny = {n € Nd(lp,a) > d(In, b)}
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This is a linear classifier

We consider two sets N, and Ny, defined as the set of pixels being closer
to a,b than of b,a.
© Show that N and Ny are segmentations of | in the sense of
equation (4).
We denote X the dataset obtained using the intensities of Z at the
different bandwidths as defined in equation (1).
@ Show that there exists U and b such that 1(XU < b) is a binary

column vector indicating the membership of each row to N. Show
that 1(XU > b) indicates that of N.

March 20, 2024 110 / 469



Answer to exercise 17 |

©Q N, and A, are a partition of N

o NaN M = 0 because we cannot have both d(/,,a) < d(/,,b) and
d(l,,a) > d(l,,b)

o N CN and My C V.

o N C NaUM,y, because either d(/,,a) < d(/,,b) is true or
d(l,,a) > d(l,,b) is true.

@ Considering the scalar product -,
d*(x,a) — d*(x,b) = [|Ix —a||* — [[x — b||?

:(x—a+x—b)-(x—a—x+b):2<x.(b_a)_w>

Therefore we set U = (b —a)" and b = w. Ny is the
complement of Nj.
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@ Image, slices and components: Z, | instead of I, /(n) instead of
I(n, k)

o fiand f!, using {...|...} to define a set.

@ Sets of pixels: N, N,, My and Ce.

e |J, N0, partition, C.

o Cardinality of a set: |S|

e Rounding notations: |...], [...], [...].
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Conclusion of subsection 1, Segmentation

@ We have seen common issues between unsupervised classification and
segmentation.

@ We have defined a loss function for binary unsupervised classification
problems.

@ We defined a function f useful to select thresholds and it happens to
be the superlevel set function.

@ Thresholding can be seen as a decision stump.

@ With two points, we define a linear classifier.

What are the tools in image processing to consider the spatial

context?
Nearby points tend to belong to similar classes.

Actually there are also links with probability through the empirical
distribution and the empirical cumulative distribution.
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Content of section 2, Image processing |

2.2 Edges as a mean for segmentation
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Edge detection

Roberts operators
Convolution is here the sum-product along a sliding window.
Fi= 0 and Fr = @ L
0 -1 -1 0
The magnitude of the edge is

This is equivalent to

101(my, mp)| = [I(m1, m2) — I(m1 + 1, my + 1)
+ [I(my,my+ 1) — I(my + 1, my)]
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Detection of the edge angle

gradient ¥

white 255

edge direction @

DOI: 10.1007/978-1-4899-3216-7
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Detection of the edge angle

Two operators are added

F3:[ —1} and F4_[}

The angle of the steepest increase (or gradient) is ¢ € {0, Z, 7, 3F}, that
of the edge angle is ®.

( —3{ 3} if [(Fax1)(m1,m2)]_ > Fmax

-5 s if [(Fax1)(m1,m2)]_ > Fmax

- —3{ if [(F1x1)(m1,m2)]_ > Fmax

. 0 -z If [(F3 * I)(ml, m2)] > Fmax

[W(my, mp), ®(my, mp)] = n _% i [(Fa % 1)(my, mo)], > Frnax
g 0 if [(F4 * I)(ml, m2)]+ > Fmax

%T’T T if [(F1x1)(mq, mz)]+ > Fmax

\ 7 3 if [(F3*1)(m1, m2)], > Fmax
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Edge detector

where
x = x4 — x_ where x; = x1(x > 0) and x_ = |[x]|1(x < 0)
and
Frax = max |(Fc = 1)(m1, mp)]

We consider the following image

16 33
_ 2624
1115
56 4 1

@ Compute the resulting edge-image obtained with the magnitude of
the gradient obtained using the Roberts operators.

@ Compute the angle of the edge detector.

v
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Answer to exercise 18 |

o
1 6 3 3
[ 0 ]* 2.6 2 4| _
0 -1 1 1 15
56 41
(Ix1 + 0x6 (Ix6 + 0x3 (Ix3 4+ 0x3

+0%x2 + —1x6) +0x6 + —1x2) +0x2 + —1x4) °

[ -5 4 -1 3 4 -3 2 —4

1 5 -3 4 5 1 3 -5

Fisl= 5 _3 0 5 and Fo x| = 4 5 1 1
| 5 6 4 1 6 4 1 0 |

[ -5 3 -1 4 -1 0 1 0

4 4 -2 1 5 1 -1

F3x1 = 0 0 -4 5 and Fy x| = 4 _5 _3 4
-1 2 -3 1 5 .6 - 1- 0-|
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Answer to exercise 18 |l

The resulting magnitude of the gradient is

15 10 5 11

11 15 9 14

13 13 8 15

17 18 12 3

@ The angles obtained are
{_%70} %Tw ™ {O 37T77r}

™ {3%’ %} {_%37‘-} 0
_% _g 0 ’W}
~ 55 G55 538
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Smoothing filter

Binomial filter approximating a 2D-Gaussian.
1 21

G=|2 4 2
1 21
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Example of two edge maps |

“1?“ s

figi3.m, figl2.m
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Example of two edge maps Il

Require: / Require: /

Ensure: /|’ Ensure: [’

1: Compute M 1: Compute M’

2: Compute T = f,,*(|0.75N]) 2: Compute T = f,,/(|0.75N])
3: Compute /" =1(M > T) 3: Compute I'=1(M" > T)

M = |Fyx [+ [Fa s 1|+ [F3 % I| + |Fq 1|
M =|FisGxl|+|Fox Gxl|+|Fzx Gxl|+|FaxGxl

Main idea

@ Smooth the image
@ Compute Gradient
@ Add absolute values

@ Compute a threshold
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Smoothing=denoising

50

—d(ly,))

— (Il

% — d(l))
@ Require | »
@ Normalize between 0 and 1 0
@ Add white Gaussian noise 10
:> I]_ 0

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 -
@ Smooth =1, This

o Compare with |

N
I,I') = 10log, —
Potfas(l, 1) = 101810 (zn”_o (I(m) - //(n)>2>

proves Iy is closer to | than to /1, thanks to smoothing.

In(x)

log10(10) =1 logyo (10%) = x  logyo(x) = In(10)




What smoothing removes contains information

S L
_ I'=|l —XGxl|
_ 1 i6
Ground truth T =f (075N) T = £, 1(0.75N)

(1 >71)

To classify texture, we can use nonlinear filters resembling to denoising
and we can use entropy-based metrics.
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@ Ol is here a contour, that is a binary image.

@ VW and & are here images whose values are angles.

@ x is here the 2D-convolution product. It is actually a sum-product of
a sliding window. It uses here — to indicate how the sliding window is
to be positioned.

@ |...| means the absolute value when applied to a numerical value or
function.

@ Four examples of filtering operators to find edges: F1,F, F3, Fy.

@ One example of a smoothing operator reducing noise: G.

@ PSNRyp is a metric used in image processing.

o logyp.
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Conclusion of subsection 2, Edges as a mean for

segmentation

Filtering operators can smooth the image and reduce noise.

We have defined a loss function for binary unsupervised classification
problems.

@ We defined a function f; useful to select thresholds and it happens to
be the superlevel set function.

Thresholding can be seen as a decision stump.

With two points, we define a linear classifier.

What are the tools in image processing to consider the spatial

context?
Nearby points tend to belong to similar classes.

Actually there are also links with probability through the empirical
distribution and the empirical cumulative distribution.
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Content of section 2, Image processing |

2.3 Detection of connected components
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Connected spaces in mathematics

@ (1,3) is connected but {x|x € (1,3) or x =4} is not connected.
@ R is connected but N is not connected.
e R? is connected but not
{(x,y) eR*|x +y # 0}
This is based on neighborhoods which contain balls.
Vx, Je > 0 such that Ny D {x|d(x,x’) < €}
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Connected sets in image processing

A set of pixels is binary image
p(my, m2) = 1((my, mz) € P)

These two first are connected sets, not the last one

=

1100 0100 1100

0110 1110 1 0 01

0 011 0101 0 001

0 01O 0111 0111
We define a neighborhood system.

Nimi,m) = {(my, ma) € N{[m} — my| + [my — mp| < 1}
We may also consider as a neighborhood system.
N' —{(mi,m'Q)eNHm’l—mﬂgland |m) — my| < 1}

m17m2
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Definition of connected spaces

P is connected if

For all (my, my),(m}, m)) € P, there exists a sequence
1 ...7vp such that

Y1 = (m1, ma)

TP = (mi? m/2)

Vpe{l...P}, 7, €P

V,DE {1P—1}, Yp+1 G./\/:yp
‘P has P connected components if

There exists Py, ... Pp sets that define a partition of P such

that
P = Up Pp
Vp#p , Po(\Py =0
Vp, P, is connected
Vp # p',Pp|UPy is not connected
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Finding the connected components

Require: |
Ensure: I
1. Set I’ = 0 with the size of |
2: Set highest = 0
3. for (my, my) € N with raster scanning along lines do

4: if I’(ml, m2) =0 then

5: continue the for-loop

6: Collect the two labels above and left

7. if no labels are collected then

8: highest+ = 1, I’(my1, my) = highest and continue

9: if one label is collected or two equal labels then

10: Set I’(my1, my) with the label nearby and continue
11: Set I’(my1, m2) with lowest collected label

12: Change the highest collected label in I to the lowest.
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Testing that a set is connected

@ What neighborhood system is the pseudocode using?
@ How can we use the pseudocode to test is a given set is connected?

© Give the intermediate values of I when | is defined as

1100
1 001
0 001
0111
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Answer to exercise 19 |

@ The cross neighborhood, that is the first one.

@ If the yielded image has at most one label, then the set is connected.
If not it is not connected.

o

ook R OOR KR OOHRHH

NOOH, WO O R HOOoH
NOOO wooo o oo
NNMNNOONMNO PP REO
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Answer to exercise 19 |l
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Experimental results

10° 10! 10? 10° 10*

Number of connected

Connected components components whose area
of 1(/(n,50) > T) with comp .

. . is greater than a given
the third quantile. area
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Experimental results

Five greatest connected compo-
nents.

Ground truth for soybean
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Edges can be transformed into segmentation

Give a pseudo transforming a binary image with edges into the
corresponding regions.
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Answer to exercise 20 |

Require: Ig
Ensure: I
1: Compute l=1—1p
2: Find the connected components of I.
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o R N
e Vand 3
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Conclusion of subsection 3, Detection of connected

components

Neighborhood,
Connected components
Algorithm giving the connected components

Edges can be used for region segmentation

Experimental results
The results are not convincing. There is a need for reliable information.
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Content of section 2, Image processing |

2.4 Use of iterated algorithms
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Setting a thresholding value

seg_thresholdingl.m

Require: |
Ensure: T
1: select an initial value for T,

2: while T is modified do
g 1(m1,m2) 1(1(my1,m2) <T)

3: Ho = > my my 1(1(my,m2)<T)
Z:ml,m2 I(ml,m2)1(/(m1,m2)2T)
Zml,m2 ]-(/(ml,mz)ZT)

4: M1 =

5: T = Nogm

An initial value of T could be the average between the corners and the
center. The algorithm would remain the same if the pixel intensities were
stacked in a column vector.

This is a crisp assignment.
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Numerical example

We consider the following image

1 6 3 3
2 6 2 4
I_1115
5 6 41

© Give the segmented image using the thresholding algorithm.
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Answer to exercise 21 |

o T=154 _ )5

1+24241+14141
jio = H2ELELELEL 1 3

o 1y = 6+3+3+6+g+5+5+6+4 ~ 46

oT:WQ2.97<3
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Minimizing the within-diversity

800 9000
750 8000 =
700 7000 ]
650 6000
600 5000
550 4000
500 3000
450 2000
200030004000 500060007000 80009000 20003000400050006000700080009000

Figure 4: Left: loss function w.r. to T. Right: new threshold T' w.r. to old
threshold T.

In - 2 —'I— n II‘I [— 2
J(po, 11, No, N1) = \/Z”ENO( o) ‘N’Z eny (I — pa)
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Minimizing the within-diversity

We are going to prove formulas in steps 3 and 4 used in
algorithm seg_thresholdingl. We assume a function to be minimized

> neNo U = 110)? + 37 e ny (In — p1)?

J=
N
© Show that given Ny and N1, J is minimal when
o= ol L Yneni
[Nol M|

@ Show that given o and py, J is minimal when

No={I, < W} and Ni = {Ip > ““;”1}

Good news

We don’t need to estimate here o.

v
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Answer to exercise 22 |

@ Because Ny and N are fixed, the minimization of J is the same than
that of 22(ING[2 + |G [2)
P(INol? + INLP) = INo| D U = po)® + N2 D (U — p12)?

neNy neN
Both quantities are second order polynomials with g and pp as

variables. Considering the left part of the J2(|Np|? + |NV1|?):
[Nl E (I = 110)* = [No| X2 17 — 240l No|3Z I + |G ?

neNoy

2 2

= INoP? (1o = )+ WOl 12 = INo? (5 0 x0)
Looking at this equation, the right part is not depending on pg, and
the left part is minimized when pg = ﬁzne/% I,. Applied on the

right part of J2(JAG|? + |AV1|?), the same technique shows
_ 1
H1 = WZ,,GM I
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Answer to exercise 22 |l

General technique

The minimization of J w.r. to uo, 1 is usually solved using
0J 0J

— =0and — =0

Opo O

aJ
or actually here Yo

@ Jcan be Written in a sample-by-sample formula.

NZ n E./\/o) (l,,—ul)zl(nej\/l)

We assume here that pg < p1. Given g, pg and N, J? is minimal

when for all n € N/
ne Noif [l — po| < |In — pu]

nGNl if“n—uoy > \I,,—,ulf
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Answer to exercise 22 |lI

which is equivalent to
ne Ny if x, < g
n € No if po < xp < (po + 11)/2
neNyif (uo+ p1)/2 < xp < 1
ne Ny if x, > 1

Finally we get

No = {nll, < W} and A7 = {nll, > “O;“l}
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Using soft assignments

seg_thresholding2.m
Require: /(n)
Ensure: pg, (11

1: select an initial value for T,
5. _ 2, I(m1((m)<T)
Ho="v 1(/(n)gT)
_ X l(m1((n)>T)
S L= S (1) > T
: while pg or p1 are modified do
Gn = [/(n)—pol
n |§)I pal+1(n)—pal
6: fo = <0 ';nq"

/ n
n = Salne)

w

AN
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Doing crisp assignments

Find a formula for g, such that the second algorithm behaves like the first
one.
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Answer to exercise 23 |

gn = 1(1(n) < HO 111

2
Sonl(m)an _ 32, 1(n)1(/(n) < Hog)
2 G >, 1(/(n) < Hogi)
>onl(n)( —qn) _ 35, 1(m)1(/(n) > Bogi)
2.n(1 = an) >, 1(/(n) > tegi)

1
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Figure 5: Left: Original bandwidth intensity image. Center: Thresholding with
crisp assignments. Right: Thresholding with soft assignment.

Is the extra information reliable?

How should /(n) — g, be chosen.
|1(n) = po
[1(n) — ol + [1(n) — p]

an =
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° ZnGNo I(n) = Zn /(n)l(n € NO)
@ The average is jp = ﬁznem I(n)
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Conclusion of subsection 4, Use of iterated algorithms

Thresholding with crisp assignments
Thresholding with soft assignments
Graph of a loss function and of a sequence up+1 = f(up)

Convexity

% to the extrema of a function.

What are the tools in image processing to consider the spatial

context?

Nearby points tend to belong to similar classes.

Actually there are also links with probability through the empirical
distribution and the empirical cumulative distribution.
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Content of section 2, Image processing |

2.5 Clustering regarded as an optimization problem
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Unsupervised classification

kmeans n=1 fig kmeans

|
Of the dataset (X, Y), only x is _
used. (X7 =[x/,...,x]]) T

x1

R

kmeans n=5 fig kmeans

* Y=0 °
Clusters ov] 5
Instead of classes, we consider
clusters. go .

x1
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kmeans n=2 fig kmeans kmeans n=3 fig kmeans

2 2
“Y=0 “v=0
° Y=t o ° o Y= ° °
° - °
1 . ° o 1 ° ®
o o
o °
Yo : o° Yo : °
- -
2
-1 ) 1 2 3 2 Bl ) 1 2 3
x1 x1
Kkmeans n=4 fig kmeans kmeans n=5 fig kmeans
2 2
+ Y=0
o Y=1 e ° o °
- ° °
1 ° & oo 1 ° Sy o
o = ° =
o .
° . ° .
Yo ) . o o .
1 -
2
4 0 1 2 3 2 1 [} 1 2 3
x1 x1

20, 2024




Algorithm of kmeans

We consider a set of points X and two clusters. Two points are first
randomly selected. Then the two following iterations are repeated.

@ Each point is assigned to the closest point.

@ Each geometric center is updated with its new and removed members.

O Give the algorithm
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Answer to exercise 24

Require: X
Ensure: Y

1: Select randomly two rows of x: pg and ;.
2. Set Y with zeros.

3: repeat

4 ?O|d = \A/

5 for n= 1:Ndo

6 Yo = 1(d(xn, o) > d(xn, p11))
7 A = [\71 ?N]T

& M= |{nm 9,0y &= Vs=0 X

9

H = |{n\v 1}|2Yn—1 "
10: until Y = Y old
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An ad hoc loss function

The number of samples assigned to each cluster is
N

N—-1
ol =D 1(yn=0) = Zl—ynand Wll—z yn—l)—Zyn

n=1
Given a set of aSS|gnments |nd|cated with Y, we deflne the geometrlc

center of the two clusters in the feature space
NO(X Y) |N | Z (1 )

pi(X,Y) = |N1|Zn 1 YnXn
We derive a norm from the scalar product
X[ = xux
We define a modified kind of within point scatter
J(X, Y) Z,'y*ol(l = ¥n)lI%n = po(X, Y)II2
+Zn 0 )/onn - /»’Jl(xv Y)”2
This is the loss function that is non-increasing when Y is modified along
kmeans.
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Conclusion of subsection 5, Clustering regarded as an

optimization problem

Description of a very popular algorithm: kmeans
It is an unsupervised algorithm
There exists a loss function for which this algorithm is non-increasing

In terms of algorithm efficiency, this property is an appealing
characteristic, but it is far from explaining the generally good
performance and its popularity.

@ Knowing the equation of this loss function can be used to adapt this
algorithm to other contexts.

We have seen algorithms that seem to have good performance in

terms of accuracy or at least with a loss function, can we say
something about the reliability of a prediction regarding a new sample.

In the next section, we are measuring the reliability of such predictions?
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Table of Contents |

3. Learning regarded as an optimization problem
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Content of section 3, Learning regarded as an optimization

problem |

3.1 Optimization problem
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Optimization problem

The loss function is a proxy indicating how to approach the goal.
@ Parameters are selected so that
©* = argmin L(Y, [f3(xn)]n)
C]
where f§(x) is a real-valued function.

@ Real-valued predictor
f'(x) eR
(the dependency w.r. to © is often omitted for the sake of clarity)

@ Linear real-valued predictor

fY(x) = b—awx
@ A new L2-loss function
1 N—1
L) = 5 S0 (F (xn) = 70
n=0
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We are considering the following 2-feature data set denoted .%5.
X11:2 X12:0.5 y1:1
x1=1 x0=2 y,=0
x31=0 x32=0 y3=1
We consider a family of predictors f, j, defined as
fap(x) = 1(a.x < b)

with a = [a1, ap].
We define J(a1, a2, b) = L(-72, fab)

@ Compute J(a1, a2, b) as the sum of three quadratic expressions. And
explain why O an obvious lower bound of J is likely to be reached.

@ Show that J(a1, az, b) = 0 if this system is solved.
2a; +0.5a, — b= -1
ai+2a—-—b=1
b=1

© Solve the system and show that a; = —%, a = g and b= 1.
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Answer to exercise 25 |

o

1 3

b.a) = L(Z ) = 5D (b—ax—7,)?

n=1
Square values are necessarily non-negative so J(b,a) > 0. This lower
bound is the actual minimum value if these square values are zeroed,
that is if three constrained equations are met by three free variables
b, a1, as.
(2]

2J(b,a) = (b—2a; — 0.5a — 1)? + (b — a1 — 2a2 + 1)? + (b — 1)?
J(b,a) = 0 iff

2a1 +05%xa—b=-1

agt+2am—-—b=1

b=1
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Answer to exercise 25 |l

J(1,[-2/7,8/7]) = (1 — 2% (—2/7) — 0.5%8/7 — 1)?
+(1—(=2/7)—2(8/7)+1)2+(1-1)2=0
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Need of a more general technique

In the example shown in exercise 25, we have three samples and three free
variables

minJ(a, b) = 0 and a, b = argmin J(a, b)
a,b a,b
In general this is not true.

o Finding a solution using an algorithm

@ Using linear algebra.
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@ L is here the L2-loss function.
e f¥(x) € R whereas f(x) € {0,1}.
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Conclusion of subsection 1, Optimization problem

@ Parameters of a predictor function are chosen so as to minimize or
maximize a loss function or the accuracy for a given dataset.

@ An L2-loss function is an example.

@ It works like a regression, as if we wanted to predict a real value for y.

Even a simple example seems to require complex computations, how

are we going to deal with more complex examples?
In the next section, we will see an example of algorithm. And after, we will
see examples of image processing without optimization.
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Content of section 3, Learning regarded as an optimization

problem |

3.2 Simulated annealing
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Simulated annealing (a more complex kind)

e

_
D

_No’
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Simplified simulated annealing

Require: Loss function
Ensure: © parameters minimizing the loss function.
1: Select randomly © and set L := +o0.
2: for k=1:10000 do
3: Select randomly r, a real in [0,6] and set o :=107".
4: Select randomly A®© along a centered Gaussian distribution with o
as standard deviation.
5: if L(© + A©) < L then
6: Set © := 0+ AO© and L :=L(0O).

7: Display ©.
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Using simulated annealing.m

cost_function=@(theta) (theta(1)-2) "2+ (theta(2)-3)"2;
dim=2;
theta=simulated_annealing(cost_function,dim);

The code displays

L=28.2762
L=25.1406
L=23.7017
L=15.3473

We have the best parameter found with
octave:24> theta

theta =

1.9994
3.0029
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Give the Octave code that uses simulated_annealing to find an
approximation of a and a of exercise 25 which tells

We are considering the following 2-feature data set denoted
.

x11=2 x2=05 yy=1

x1=1 x0p=2 y,=0

x31=0 x32=0 y3=1
We consider a family of predictors f, j, defined as

fap(x) = 1(a.x < b)

with a = [al, 32].

We define
1N—1
J(ala ar, b) - L(y27 fa,b) - EZ(fV(Xn) - }7n)2
n=0
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Costly performances obtained with simulated annealing

b al a2
6
—b-b’
® .
S 4 v
© TTara
>
3
T 2
£
[
o
o
o
§2
o
-4
0 10 20 30 40 50
number changes
L k
102 10°
10’
12}
L a4
100 £10
c
10" _5103
2 c
5102 S
@ B 42
5 10°® 5 10
. t
10°
210
10°
10° 10°
10 20 30 40 50 0 10 20 30 40 50
number changes number changes
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Answer to exercise 26 |

function J=J2(theta)
x1=[2 0.5]; y1=1;
x2=[1 2]; y2=0;
x3=[0 0]; y3=1;
tilde=Q(y)2*y-1;
b=theta(1); al=theta(2); a2=theta(3);
J=(b-al*x1(1)-a2*x1(2)-tilde(y1))"2;
J=J+(b-al*x2(1)-a2*x2(2)-tilde(y2)) "2;
J=J+(b-a1*x3(1)-a2*x3(2)-tilde (y3))~2;
end
theta=simulated_annealing(@(theta) J2(theta),3);
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@ L is different from L. It is the last best value obtained.

@ AO: modification of the parameter values.
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Conclusion of subsection 2, Simulated annealing

@ Simulated annealing is quicker than a uniform random search.
@ It refines the search after some iterations.

@ The choice of the proposed algorithm is to make it easy to use at the
expense of a high numerical complexity.

An other technique to select parameters with respect to a loss

function and a dataset?

In the next subsection, we discuss the minimization of the L2-loss function
for linear classifiers.
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Content of section 3, Learning regarded as an optimization

problem |

3.3 Method of least squares
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Product of two matrices

A - B = C

m
Cij = E a,-kbkj
s 1 1143504203 Lr143rie2el | k=1
311 xl|f2fo1 = 3*2+1%1 4 1%1 1%1+3%0+3%2 31+ 1%1 +1°1
ifs 1

272421421 1%14290+ 23 1714 2%1 4251
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biais considered as a supplementary feature

Predicting function

f'(x) =b—ax= w.X

We use the following definition
w=[-a —ay... —apb]=[-ab]

A
X=[x1x ... xpl] =[x1]
The matrix definition of X is modified into

X1 1 Ql 1
A
X=1: 1]|=]: [|=[X:
XN 1 QN 1
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Expressing the loss function with matrices |
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Expressing the loss function with matrices Il

Sum of square values as vector multiplication

N ~ ~
> Va=YTY
n=1

In the same way,
1 /a N\ /a -
L) =35 <XWT - Y> (XWT — Y)
Expanding follows classical rules

T T
2L(7, V) = ()A(WT) <)A(WT> — <)A(WT> y-—vT ()A(WT) +YTy
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Transpose of the product of two matrices

(AB)" =BTAT and if AB is a scalar AB = (AB)" =B'AT
e (AB)C = A(BC)

T T
2L(S, ) = ()A(WT) <)A(WT> — <§(WT> y—vT ()A(WT) +YTy

becomes
A TA A T

L7, F') =wX Xw' —2wX Y+ Y'Y
We are now considering J(w) = L(.%, V)
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Finding a local minimum

@ wy is local minimum iff for all w in a
neighborhood of wo, J(wg) < J(w)
S ] o If wis a local minimum then
i - . Jw)

1 ow

| @ w* is a global minimum iff

1 Yw, J(w*) < J(w)

_ @ Under some more involved conditions,

G os o1 o 1 s a unique local minimum that bounds from
below all values at the domain’s edges is a
global minimum.

ocal minimum

global minimum
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Partial derivative: definition

The derivative of a scalar function with respect to a row or a column
vector is a column or a row vector.

o) [ aJw) 7
_oJw) 0 _ Oowy
6[W17W27-"7W ] - 6-] w
el | _odw = CEI
. o w
8J(w) w2
L Owryr
WFt1
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Partial derivative: formulas

w is a row vector and V is a column vector. wV is a scalar and
wV = VTw’. Ais a square matrix.

if Ais symmetric:

AT = A
owv _ avTwT _
éuiw - wa =V
TwT
R
8""8’4“‘,"’T =Aw’ + ATwT = (A+ AT )w’ =2Aw’
owinl — wA +wAT = w(A+ AT) = 2wA
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aTa

AT o
2J(w) =wX Xw’ —2wX Y+ Y'Y

aTa ala aTla
Applying the rules and because X X is symmetric (X X)7 = X X)
dJ(w) aTa al

X Xw! —X Y

w
Cancellation of the derivative
-1
- aTa aT _
w =X X XY
Instead of an optimization algorithm, we need to inverse a matrix (or
solve a linear system).
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Solving exercise 25 |

We consider once again exercise 25 to solve without using the trick of
zeroing J which usually does not work.

x11=2 x2=05 yy=1

x1=1 x0p=2 y,=0

x31=0 x32=0 y3=1
We consider a linear family of predictors f, , defined as

fap(x) = I(a.x < b)

with a = [a1, a2]. We consider an L2-loss function
J(ala az, b) = L(y% fa,b) = %Zrlyzl(fv(xn) - yn)z

o . A g
© Define w with respect to a and b and x with respect to x; and x».

ATA

A
@ Compute X, X and X X.
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Solving exercise 25 |l

- al _
© Compute Y, Y and X Y
@ Show that when a; = —%, ar = § and b = 1, we have indeed that
BJ(w) .
5w = 0.

© Let us suppose that we have an extra sample in .. What are the
sizes of the different vectors and matrices involved here.

O Assuming that w* that cancels the J-derivative is a global minimum,
show that

w

=1
e P PRU/\ ATA AT~
minJw)=Y'Y -Y'X[X X] X Y
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Answer to exercise 27 |

Q@ w=[—a;,—ap, b] and X = [x1, x2, 1] because

fY(w)=b—ax= WX

(2}
2 05 R 2 05 1
X=|1 2 |andX=|1 2 1
0 0 0 0 1
AT 2 10 AT A 5 3 3
X =052 0| adX X=|3 i 3
1 11 3 2 3
5 =2x2+1x1+40x0
1 B 1 AT 1
Y=|0|adY=|-1]|andX Y=| -3
1 1 1
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Answer to exercise 27 |l

@ Knowing that
aTa
X X=

wW W O
I\J\U'I-b‘: w
w N W

and based on the solution found in exercise 25, we select
2
w* = [7, —%, 1]

ATA 1 AT~
X X|w'=| -3 |=Xx1Y

© We consider four samples.
o Thesizeof Y and Y is 4x1.
o The size of X is 4x2.
A
o The size of X is 4x3.

The remaining sizes are unchanged.
-1

ATA ATA
o The size of X X and <X X) is 3x3.
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Answer to exercise 27 IlI

AT~
o Thesize of X Y is 3x1.
o The size of w is 1x3.

@ We assume that w* is a global minimum.
ATA -t AT~
w)T =X X XY

-1
ala

~__A
w'=YTX|X X

We plug this in the definition of J.
~__A ATA -t ATA ATA -t AT~
JwH=YTX[X X X X[X X XYy

-1
~__A ATA AT~ ~ ~
2YTX | X X X Y+YTY
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Answer to exercise 27 |V

After simplification we get the expected result.

-1
~ ~ ~ A ATA AT~
JwH)=YTY -y'X (x x> X Y
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Comment on exercise 27

This least square technique is good for regression, not so much for
classification as we will see later on.

Techniques that can be defined with matrices are generally easier to
implement. It is easier to check the implementation.
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A
Extended vector x

o
. A
o Extended matrix X
@ Unique vector w for linear classifier instead of [—a, b].
@ Derivation w.r. to a row vector % or a column vector %.
@ w* global minimum of the loss function.
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Conclusion of subsection 3, Method of least squares

Matrix formulas: product, transposition, expanding rules.

Derivative of a scalar function with respect to a vector.

First use of XX also called covariance matrix.

A
Definition of X.

ATA
@ Parameter values are obtained by minimizing X X.

These are techniques requiring the knowledge of Y
In the next section we discuss technique not needing Y.
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Content of section 4, Predicting the learning performances

and probabilistic framework |

4.1 Inference on an example

March 20, 2024 204 / 469



A linear classifier separating gaussians

Let v be a uniform binary random variable and X when conditioned to
be a 2D-gaussian variable with mean p, € R? or pu; € R? and standard
deviation oy > 0 or o1 > 0.
© What is the probability that Y = 0 on a given experiment?
@ What is the probability density function that X = [x1, xz]| given 9 =0
and then given & =17
© We now assume that oy = 01 = o, show that a straight line separates
points that are more likely when & = 1 from the more likely points
when v = 0.

1 1 T
fx|9f=1(x) > fx|y:o(x) & (1 — .Uo)xT > (pg — Ho)(§N1 =+ 5“0)

The last question refers to an example of linear discriminant analysis that
we will discuss at the end of this section.
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Answer to exercise 28

o
P(r=0)=P(y=1)
P(> =0) =0.
{ P(r=0)+ Py =1)=1 = F7=00=05
o
5y (x— 1) (x—11g)
frjo=0(x) = ﬁ S
oy (=) (x =)
Frjo=1(x) = ﬁ s
o

Fy=1(0) _ 5ky (o) (x—1a) T = 51 (xmpg) (x—paa) T
frjoy=0(x)

T T
& (x— uoT)(x - uo)T > (x— pq)(x — M1_)|_
& 2pox " + popg ' = —2pyxT + pypy .
& (1y — po)x" > (g — 10) (3o + 3101)

>1
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a, b are randomly chosen according
to %.
x are drawn according to a distribu-
tion 2.
Training set:12 samples
Y,” =[0,0,0,0,0,0,1,1,1,1,1,1]
Y,” =[1,0,0,0,0,0,1,1,1,1,1,0]
Confusion matrix

5,1
<= 7s

Testing set: 2 samples
YqT = [07 1]
Accuracy: 3 possible values

~ 1 ~
A= 51(}/q0 = YqO) + 51()/q1 = qu)
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Algorithm of a random classifier

Require: C

Ensure: P(A)

1: Set P(A) =0,0,0].
2. fori=1:/do

3: repeat

4 Draw uo,,ul,ao,al, a and b.

5: Set Y,/ =1[0...0,1...1].

6: Draw X,

7: Compute \7, with X; and C with
8: until C = C

o Set Y] =[0,1].

10: Draw X,.

11: Compute Y

12: Compute A = 2 (yqo =0)+ (yql =1)

13: Adapt P(A) Wlth A
14: Normalize P(A)

" Conditional
bilities
A=0|C = (),
A =05|C = C),
A=1|C = C)
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Joint probabilities conditional probabilities

We assume here it is very unlikely that C=cC

e P(A=1and C = C) means o P(A=1|C = C) means the
the probability of having A =1 probability of having A =1

and that C=C given that C = C

@ The assumption implies @ The assumption does not
P(A=1and C = C) is small. imply anything on

o If each time C = C, we also P(A =1|C :AC)
have A =1 then the o If each time C = C, we also
assumption makes it invisible have A =1 then
in PLA=1and C = () P(A =1|C = C) =1 s high.
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Example on the computation of conditional probabilities

Concerning a dice, we consider an event E dice equal 1 and a side

information S dice is odd.
First definition

Second definition
dice=ceil (rand(1,1000)*6) ;

Two theoretical formulas

P(E&S
PES) = sy
] (5) odd=@(n)mod(n,2)==1;
dice E 5 dice2=dice(odd(dice));
1 11
2 00 proba_EGS_1=sum(dice2==1)/length(dice2),
3 01
4 0 0 . .
5 0 1 proba_E=sum(mod(dice,2)==1)/length(dice),
6 0 0 proba_S=sum(dice2==1)/length(dice),

proba_EGS_2=proba_E/proba_S,
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@ X is here a random vector.
e P(...&...) joint probability
e 2(...|...) conditional probability
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Conclusion of subsection 1, Inference on an example

@ By repeating a random experiment, we can measure inference.

@ Probability distributions is a interesting framework to describe
experiments.

As a side effect
From this probabilistic framework we get a new classifier.
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Content of section 4, Predicting the learning performances

and probabilistic framework |

4.2 Linear discriminant analysis
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LDA on a simplified example

We consider here a data set defined by a probability distribution

f;( =0{X) = 1 e 20' (X "I’O)(x Ho)T
P(y =0) = P(y =1) = 0.5 and y=0(X) = 572 T
f;(|y 1( ) = 273-0_ e 20' (X H’l)(x “1)

with py = [1,0], p; = [0,1] and o = 2.

@ Write an algorithm to check that these expressions are probability
distributions. Use the independence between the two components to
reduce the numerica/ complexity.

f)q sz f X1 X2 XmdX2 = f f X1 Xmf f X2 CI'X2

@ Show that with this model, y = 1 is more likely than y = 0 iff

pokg — kip] — (po — py)x” >0

© Draw in the feature space the domains for whichy =1 ory =0 is
more likely.
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Answer to exercise 29 |

@ We need to check
+oo 400 0o +00
/ / f;(|y:0(x) dX1dX2 = / / fx|y:1(X) dX]_dX2 =1

X]=—00 Xp=—00 X1 =—00 Xp=—00
Require: o,y
Ensure: s value of the integral
1: Sets =0, Q@ =1le—-2
2: forqlz—é:ﬁdo
3: Set x1 = qu
4 forqzz—&:édo
5 Set x, = q2Q
6: Add to s, f;|y(X1,X2)Q2
7

: Display s that should be close to 1
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Answer to exercise 29 |l

However this is actually quite complex. So we separate what happens
to each component.

1 2 1 2
_ 1 —550(a—po1) 1 575 0e—po)
_ = 2 X —=—0 2
f;(ly*O(x) V2o e 2 V2o 7
1 2 1 2
_ 1 L —550a—pn) 1 —5750e—p2)
fx|y:1(x) T \V2ro e X 210 e 2
—+o00 1 2 +o0 1 2
f 1 =55 (x1—po1) f 1 —550e—pn) _
e 20 —e 20 =
= — 00 2o xo——00 2o
—+o0 1 2 +o0 1 2
1 —570a—pu) f 1 —550e—pm2) _
f e 2o —F—€ 20 — ]-
X1 = — 00 2o xo—— 00 2o
Require: o,y

Ensure: s value of the integral
1: Set s =5 =0, Q=1e -2
2: forqlz—é:&do
3: Set X1 = CI1Q
4 Add to s, fX1|y(X1)Q
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Answer to exercise 29 Il|

5: forqzz—éiédo
6: Set Xp = qu

7: Add to s, £,,),(x2)Q
8

: Compute s = s15p.
9: Display s that should be close to 1

@ The goal is to find where in the feature space £, —1(x) > £, —o(X).
fiy=
o%In (%) = (x — po)(x — po) T — (x — py)(x — pq) 7T

= —2pox" + popd +2pyx7 — pyp]
This proves y = 1 is more likely when

llo.uoT - H1N1T —2(po — Hl)XT >0
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Answer to exercise 29 |V

© y =1 is more likely when xo > x3. Indeed
(o — m1)x" = x1 — x2 and propg — pypf =0

fig ex21
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LDA in a more general context

Probabilistic assumption

P(Y=1)=p=1—2(Y=0)and ?(x|Y = 1) and 2(x|Y = 0) are two
independent multivariate normal distribution with an unknown common
covariance matrix X.

g -1 )T )T
K= ()% Jder(z)|5
Fely=o(x) 1 —(xp)T  (x—mo)

" o Ede) f
> is defined as the covariance matrix
) [({()T{(]

. . ro.
where £ is the expectation and here x is a random row vector.
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Covariance matrix

It is estimated with X from the training set.
N—1
=) x/x,=XTX
n=0

A TA
Note the striking similarity of this covariance matrix with X X used in the

least square methodology.

Is it appropriate to assume a common covariance matrix?

This assumption yields a linear classifier. Besides it is generally difficult to
estimate precisely X using all the samples in the training set, sometimes
some regularization is needed to help the estimation. So it would be even
more difficult to estimate two different covariance matrices.
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Derived linear classifier

Similarly to exercise 29, we compute the logarithm of the ratio of

Inf ) —=Inf _ (x)

X|Y=1 X|Y=0
= (x — po)X~ 1(X — )T = (x— )T (x — pg) T
=20 —po)T X — (T ] — e )

We get a linear classifier f(x) = 6(b — a.x > 0) with
{ a=2(po— py)E !
b=poX tud — T tpf

Supervised feature extraction

We could use x’ = b — a.x as an extracted feature. This is basically the
idea behind some LDA-derived feature-extraction techniques. It is limited
to the number of classes.
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@ x is a random vector.
° ﬁ((x) is the probability density of P(x).
@ 115 and g are the mean of the probability distributions of classes 0

and 1. They are estimated using averaging operators on the training
set. Their estimates is fiy and 1.

@ X is the common covariance matrix of both Gaussian probability
distributions. It is estimated using the whole training set. Its
estimation is denoted X.

o det(A) is the determinant of A, it is a scalar.
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Conclusion of subsection 2, Linear discriminant analysis

When comparing with the Ly-linear classifier.
@ We also have to inverse the covariance matrix.

@ Instead of considering the cross-covariance matrix XY, we consider
here distorted means, of 1-samples and 0-samples.

© Just like Ly-linear classifier, it is prone to numerical instabilities when
the covariance matrix is badly conditioned.

When applying this probabilistic framework to inference, can we make
reliable predictions?
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Content of section 4, Predicting the learning performances

and probabilistic framework |

4.3 Predicting the true probabilities
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Making inference on hidden parameters based on some

evidence

It is common to compute the probability of having a confusion matrix
given a certain probabilistic model.
Here we do the opposite, get some probability on some parameters of a
probabilistic model given that the observed confusion matrix meets some
constraint.

@ Given a dataset drawn from a unique probability distribution

@ Given a classifier drawn from a unique probability distribution

@ What is the likely accuracy given the confusion matrix computed on a

small example of 12 samples.

Beware
This section is meant only to better understand the Bayes formula
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Modeling the statistical inference

Here we do not consider the classification problem.
C|1 =022=5: C|2=C21 =1;n=23399 fig modeling inferences

p1 =) fﬂ\
25 1@ / \‘
2 /
— Pg l—p1 s ,f/
1 /P/‘
. /cv//,/
5
1—
(p) = 1p (1-p)
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We assume here an experiment of 12 samples, 6 labeled positively and 6
negatively. We observed for each label, that 5 of them are correctly
predicted.

Q@ Write an algorithm computing an approximation of the probability
distributions that could best explain this experiment: the probability
of a negative label to be correctly labeled fo(p) and that of a positive
to be correctly labeled fi(p).

@ Given py and pi1, and a column vector
\A’T =[0,0,0,0,0,0,1,1,1,1,1,1], show that the probability to have
Y consistent with the confusion matrix is

6 6
L) Pe=po)x( | |pi(1—p1)
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Answer to exercise 30

@ Require: C,Q,/

Ensure: p, fy,f;

1. Set Y =[0,0,0,0,0,0,1,1,1,1,1,1]

2: fori=1:/do

3: Draw po, p1 as uniform variable on [0, 1].
4 Draw Y along pg and p1.

5: Compute C according to Y and Y.
6: if C = C then

7 Adapt fy and f; with pg and p;.
8: Normalize fy and f;.

@ What happens to the six first component is independent of the
remaining. There are (?) = 6 ways of selecting a component in an
array of 6 components. There is a probability of respectively pp, p1 to
predict the correct value 0, 1, and 1 — pg, 1 — p; to predict the

incorrect values 1, 0.
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P(A|5 = C) are measured with two different techniques.

Comment on the figure

The second technique is a model of
the first technique as any
probabilistic model can be regarded
as a random decision with some
probability distribution for pg and
p1. Both distributions appear
similar but they are not equal.
Could we explain the difference?

v
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@ The technique shown in

purple, draws randomly
random datasets and
classification predictors, it
measures P(A|C = C) by
selecting only the instances
where C is as expected.

The technique shown in
yellow, draws randomly some
probabilities pg and p; of
binary decisions and again only
the accuracies corresponding
to the expected C matrix are

taken into account to compute
P(A|C = ().



@ A — B: means that
P(A,B) = 2(B|A)P(A)
° (Z) means the number of different subsets of size p that can be

drawn out of a set of size n. |
n n!

p)  p'(n—p)
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Conclusion of subsection 3, Predicting the true probabilities

@ We have modeled classifying samples as a binomial trial.

@ The confusion matrix measured during training yields the parameters
of the binomial trial.

© Our model yields a prediction accuracy.

@ Unfortunately it is not accurate.

How could we be more precise

We are going to consider the Bayesian framework with which the
parameters of the binomial trial are regarded as random variables.

March 20, 2024 231 /469



Content of section 4, Predicting the learning performances

and probabilistic framework |

4.4 Prior and Bayes formula
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Modeling a prior

@ Prior is opposed to the
posterior probability

distribution. Require:

) Ensure: Probability distribution of
@ Prior refers to the assumed
po and p;

probability distr.ibu.tion before 1 fori—1:/do
some evidence is given. Often _
the chosen probability ' b
distribution is the most general
given some constraints.

Draw pq, p41,00,01, a and

3 SetY,”=[0...0,1...1].
4: Draw X;.
@ Here we know the 5
experimental setup and we can .

Compute \A’, with X,
Compute po and p; by com-

test it without applying to paring Y, and V).
data to read a probability
distribution.
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Do we need a prior to compute a conditional probability?

Computing ?(C|pg, p1) does not require any prior. A specific value pg, p1
with the statistical model tells us the whole knowledge.

To compute P(po, p1|C) we consider all possible values of py and p; and
for each compute a probability of 2(C|pg, p1) and by counting the number
of draws for which C has the appropriate value we get a probability of

po, p1. But the relative importance of pg, p1 is precisely a prior. In
exercise 30, pp and p; are drawn according to a uniform distribution.

We may not care

To what extent the choice of the prior is significant and appropriate are
difficult questions. Not using it and considering that 2?(pg, p1|C) and
P(C|po, p1) are proportionate is actually a choice of prior that might be a
not too bad choice. )
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Measured prior for this very specific problem

Prior n=148223 fig modeling prior
0.3 T T

0.2

0.1

0.05

0
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Using Bayes formula to compute a posterior probability

Bayes formula

P(B|A)P(A)
(B|A)P(A) + P(B|-A)P(-A)

P(AB) = p

Applying this formula in our context
fA|E(3a C)= /po plfA|E’p°’p1(a’ C, po, p1)fo(po)fi(p1) dpodpy

And we use for fo(po) and fi(p1) the probability distribution measured
without considering the C-constraints.

This posterior probability distribution of A is shown in green in the
following figure.
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Modeling with a prior

C, =C__=5;C_ _=C__=1;n=148223 fig modeling prior
122 12 21
0.7

A
[ A prior
06 F |T—] A model

0.5
0.4
0.3
0.2

0.1

L

-0.2 0 02 0.4 0.6 0.8 1 1.2 1.4

Because the green distribution is closer to the purple distribution, it seems
that the prior is here useful.
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Posterior probability vs maximizing the likelihood

The two viewpoints exist in the literature.
@ Unknown parameters are

estimated taking into account

@ Unknown parameters could
the data.

have any value. ) _
@ It makes computation easier

and is often a good
approximation.

@ It could be more precise.
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Experiment using the maximum likelihood

Here we consider the most likely
value of pg and p; that yield the ex- ©, 20,y =G, =1 n=148223 1 moselng
pected C-matrix.

argmaqup(p) = argmaxp>(1 — p) =
p

Slnce (1— p)=0=5—-6p=
0= p = 5
We then get the distribution of A
P(A|IC=C) =
2(AI€ = C,po = p1 = 3) '
This new distribution of A is shown
in blue.

Drawing adequate conclusions based on a certain success rate on the
training set is definitely a hard issue.
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@ —A is the alternative event to A.
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Conclusion of section 4, Predicting the learning

performances and probabilistic framework

@ In our attempt to have more precise predictions in terms of inference,
we investigated the Bayesian framework.

© Regarding an estimated parameter, rather than finding its best value,
we assume it has an unknown value that follows a probability
distribution.

© This yields more precise predictions if the probability distribution is
appropriate.

In my opinion, this framework is often relevant, it often increases accuracy
sometimes by a very little amount, at the expense of an increased
complexity.
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Table of Contents |

5. More in depth with probabilities
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Content of section 5, More in depth with probabilities |
5.1 Probabilities
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Histograms are empirical approximation of probability

distributions |

Let /(x,y) be a continuous image /(x,y) (i.e. an image defined with
real-valued coordinates)

Let X and Y be independent uniform random variables

The histogram of / is an approximation of the Z-probability
distribution

Zz=1(XY)
The probability distribution is the derivative of the cumulative
distribution (for sufficiently regular random variables)

fle) = Loz <)
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Example of a continuous image

We consider here a continuous image.

I(x,y) = x*1(x € [-1,1])I(y € [-1,1])
Let Z be the random variable yielding the value of I(x,y) when a point is
selected randomly in the image.

@ Prove that

1 1 1
P(z<z)= 4/ / 1(x* < z) dxdy
x y

= 1Jy=—1

@ Show that
P(Z <z)=+z1(z€[0,1]) + 1(z > 1)
© Show that _—
Al2) = 5=z e 0.1)

@ Write the code to check this last statement.
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Answer to exercise 31 |

@ The probability distribution of the uniform law on [-1,1]x[—1,1] is
1
fulx,y) = 1x € [-1, 1)1y € [-1,1])7
(2 < z) = By (Z(X,Y) < 2) = [ [, UZ(x,y) <z)fU(X y) dxdy
— % L fy:_l 1(x? < z) dxdy

@ Let us assume z € [0, 1].
P(z<z)= 4f 2§z)dxfO11(X2§z)dx

= Joix < Vzde= [F dx =z
Let us assume z <0, P(Z<z)=P(Z<0)=0
Let usassume z > 1, P(Z<z)>P(Z>1)=1
Therefore

?(z<z)=+z1(z€[0,1]) + 1(z > 1)
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Answer to exercise 31 |l

° 9

filz) = -p(2 < 2) = M
© The following algorithm approximates fz(z) (U(—1,1) is the uniform
law on [—1,1]).
Require: z
Ensure: fz(z)
1: Set N =107, h=0.01
2: Draw randomly a vector X of size Nx1 whose components
sample U(—1,1)
3: Count n the number of components of X that fulfill
x2 € [z,z+ h).
4: Yield ﬁ
This algorithm can be tested several times by drawing randomly z
and checking that the difference with fz(z) remains small.

1(z € [0,1])
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Mean, median, quantile

@ The mean value of an image is
I fy I(x, y)dxdy

Elz] = [ J, 1(x,y € T)dxdy

@ The k-th g-quantile is )
?[Z < unantile] =kqg = Zquantile = (Z = fP[Z < unantile]) (kq)
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Example on the continuous image

We consider again the following continuous image.
I(Xay) = X21(X € [_17 1])1(y € [_17 1])
Let Z be the random variable yielding the value of I(x,y) when a point is
selected randomly in the image.
Q@ Using Z, show that £Z = % And show that the mean value of | is
also %
@ Compute the first and third quartile using the two techniques. The
result is 1—16 and 1%.
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Answer to exercise 32

o ) 1 X
11 1 172 1
/:Ozzﬁ z 2/z:0ﬁ 73 [32 ]0 3

The mean of the image is

171 1% 1
xdxdy—/ 2dx:[x3] ==
/—_1/—_1 -1 213 ], 3
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Chebychev Inequality

For X a Gaussian random variable

P(X—EX| > ¢c)=1—erf (ﬁ) (5)

where erf(x) is defined as

2 X
erf(x) = ﬁ/o et dt

When X is not necessarily a Gaussian random variable,
VarX
P(IX—EX| > ¢) <

For sufficiently regular random variables, the probability distribution is
related to the cumulative distribution

fol)= La(z <2)

(6)
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Checking the erf function |

Software generally include the erf function, however to save time, it can be
useful to have a quick way to approximate it.

@ Using its integral formula, write a formula to approximate it.

@ Consider a Gaussian random variable on mean 0 and standard
deviation 1, and check equation (5) so as to give a high level of
confidence in this equation.
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Answer 1/2 to exercise 33

Q The integrgl is approximated with N rectangles of width % and
height e~ 2 paving the [0, |x|]. Note that the erf function is odd.

2 x4 ﬁiﬁ
y = erf(x \F/ kaZ:
Require: x, N,
Ensure: y
1. y= 0

2: fork:O:N—12d2o
3 Add to y, e_kTXZ
4: Multiply y with VﬁfN

>> ¢ = -7.7189

>> y_app = —-1.0044

>> y_th = -1

>> y_app-y_th= -4.3549e-03
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Answer 2/2 to exercise 33

@ Generate 1000 random numbers for X, denoted x; for i € {1.../}. An
approximation of the left part of (5) is

I

1

Dokl <o)
i=1

xi=randn(1,1000);
c=2xrand (1) ;
p_app=mean (abs (xi)>=c);
p_th=1-erf(c/sqrt(2));

c,p-app,p-_th,

>>c = 1.1490

>> p_app = 0.2510

>> p_th = 0.2505
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Transforming a graph into an empirical distribution

Require: (xp,y,) and K
Ensure: (x, ny)
1: Compute the ranging interval
a= m|n X, and b = maxx,,

1000

800

2fork—0 K—1do 600

3: Xk =a+ k’g 1 400
N-1

4: ng = Z ]_(Xn € [Xk,Xk+1)) 200
n=0

0

Genera”y K is Chosen 2000 3000 4000 5000 6000 7000 8000 9000

K~ VN
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Normalizing empirical distribution

Classical technique

o Nk
Me = k=1
k=0 "k
0.05
0.04
0.03
0.02
0.01

0 Y . .
2000 3000 4000 5000 6000 7000 8000 9000

Technique required to compare with

parametric distributions
’ ng

me = -
Zf:ol ”k(Xk—H - Xk)

0.0008

0.0006

0.0004

0.0002

0
20003000 4000 5000 6000 7000 8000 9000
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Empirical distributions

0.0014

0.05

0.0012
0.04
0.001

0.03 0.0008

0.02 0.0006

0.0004
0.01

0.0002

LY

2000 3000 4000 5000 6000 7000 8000 9000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 6: Empirical distributions of the bandwidth number 50 considering all
pixels in blue and only pixels showing soybean in red. The dotted curves are the
approximate Gaussian distributions.

@ Write the pseudo-code of an algorithm yielding figure 6, empirical
distributions are such that their sums equal 1.

@ Write the pseudo-code of an algorithm yielding figure 6, empirical
distributions are such that their approximate integral equal 1.
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Chebychov inequality and empirical distributions

Let us call X and Y two empirical distributions obtained using the intensity
values at bandwidth number 50 and conditionally to being actually
soybean (i.e. labels 10,11,12 of the groundtruth map).
@ Transform X and Y into centered and normalized random variables
denoted X, and Y,.
@ Plot as a function of c € [0,2] the left side of equation (6) for X, and
Y,. Plot the right side of equation (6) and that of equation (5).
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Answer 1/2 to exercise 35

@ The lower curve is for Gaussian
random variable.

@ The blue curve is obtained
using the hyperspectral image

0.8 at bandwidth number 50.
0.6 1 @ The red curve is obtained
o using the hyperspectral image
at bandwidth number 50
02 1 considering only the pixels
0 where land is covered with
0 1 2 3 soybeans.

@ The upper black curve is the
Chebychev upperbound.
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Answer 2/2 to exercise 35

© First stack in x a column vector the intensities at the bandwidth

number 50.

1 :¢A N (x _ )2
Xr = —(x—pl) where { g \ NNanl(Xn D)
g H= NZn:l Xn

@ Require: x, K
Ensure: (C,P)

1. y=0,

2: for k=0: K do

3: C, = %

4 Pe=5200 11Xl > Co)
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Proving the Chebychev inequality

A simple proof of the Chebychev arises from the following steps.
@ Prove the Markov inequality which states
o] > o] < 2
To do so, introduce a new random var/able Y = cI(|X| > ¢) and show
that it is upper bounded by X and compute its expectancy.
Q@ Apply the Markov inequality to Z = (X — EX)?.
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Answer 1/2 to exercise 36

O Let Y be a new random variable
Y =cl(]X| > ¢)
We first prove that Y < [X]
Y<c<[X| if [X|>c
{ Y<O<[X if [X[<c
This proves that £[Y] > [X|
We then compute Z[Y]
ElY] = cP(Y =¢) +02(Y =0) = cP(|X| > ¢)
@ To prove equation (6), P(|X — £X| > ¢) < % we apply the Markov
inequality
E[Z]  Var(X)

2
T(ZZC)§7 C2
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@ erf is the error function (a.k.a. Gauss error function).
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Conclusion of subsection 1, Probabilities
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Content of section 5, More in depth with probabilities |

5.2 Using Gaussians
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Thresholding using Gaussian probability distributions |

Given a set of intensities /,,, we model the membership with each cluster as
2

_(’n*ld‘o)
1 -
f1n|"€No7#0,<To(/”) = \/ﬂooe 27 = gﬂo,do(/”)
.  (n—p1)?
fInInGNl,m,al(/n) = Varo. © 21 = 811,01 (In)

seg_thresholding3.m

Require: /

Ensure: T
1: select an initial value for T,
2: while T is modified do

3: No = {n eN ‘][In|"€/\/o»uo7<fo(l") >ﬁn|”€/\f1,u1,01(/’7)}
4. Nl = N\No

5: o, 00 € argmaxu,afln\né/\/'o,uo,ao(In)

6: 1,01 € argmaxmafln‘,,ej\/hmm(I,,)
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Thresholding using Gaussian probability distributions Il

This another iterated algorithm maximizing the likelihood using crisp
assignments.

Normalizing the probability density

Note that to answer the third question, one needs a correct normalization
1 . .
Taa This can be an issue.
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© Prove that step 3 in seg_thresholding3.m is
og + 01
@ Prove that in steps 5, 6, po and py should the average of samples in
/\fo and Nl.

© Prove that in steps 5, 6, g and o1 should the standard deviation of
samples in Ny and N.
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Answer to exercise 37 |

O State 3 is
NO = {n € Nlﬁn'”ENO,HO,O’O(In) >]€In|n€N1,u1,U1(/")}

(x=p)?

where £ )= "2 «
neoo ") = Vamz
Let us assume po < pl and let us define T = % Because
T < p1, we have
Ih<T < (00+01)ln— (o110 + o0pt1)
ln_MO In_Ml
= oo + o <0

|/n—pol [In—p]
= oo < o1
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Answer to exercise 37 |l

© To make it easier, ug, 11 and og, 01 are here replaced with p and o

. N—1 1 _l%
f;|u70(l) - Hn:O 2no
MOA(D>:NM(2mﬁ+Z g 3lpl
o

We are looking for p € argmaxf; (N = argmax —1In <fl| (l)>
I o
Such values cancel the partial derlvatlve W.r. to L

i [ (5, 0)] =0 & -0 =0
& p=53N

From a mathematical viewpoint, we would need to make sure that
this maximize the probability.
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Answer to exercise 37 Il

© The only difference is that the partial derivative is with respect to o.
N ZN—l (h=p)® _ 0

AV Rt

N—-1
& o= EXN(, -y
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Likelihood

Definition
The likelihood is the probability that the observations fit with the model
with its parameters.

L(/,©)

where © is the set of parameters.

In exercise 37, we need new parameters Ny, N7 to define the crisp

assignments:
neENg= 1, <T and neNi<eIl,>T

_l“leﬁ 1 _;(’n—tzq)

2 o, 2 o

L(I7HO,M1,U,N0,N1 I | \/7 0 | | 27(3 1
neNy JO neNy V4Tl
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Maximizing the likelihood

158000 [ — 9000
-160000 8000
-162000 7000
6000
-164000
5000
-166000 + 2000
-168000 3000
-170000 2000
2000 3000 4000 5000 6000 7000 8000 9000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 7: Left: log-likelihood w.r. to T. Right: new threshold T’ w.r. to old
threshold T.

Exercise 38

© Using right of figure 7, define the catchment areas (a.k.a. basins of
attraction): the set of values of T such that the algorithm converges
to a given value.

™ mid - = =t
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® g, .(x) is the Gaussian deterministic function.

@ L is here the likelihood, it is used as the opposite of a loss function.
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Conclusion of subsection 2, Using Gaussians

@ Catchment areas in algorithms.

@ Likelihood. (discrete or dense probability distribution).
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Content of section 5, More in depth with probabilities |

5.3 Probabilities as a loss function designer
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About convexity

f'(x) > 0= flax + (1 - a)y) < af(x) + (1 - a)f(y)
when a € [0, 1]

Recursively or using...

f (Z a,-x,-) < Za,-f(x,-) when Za,- =1land Vi, a; >0
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First view-point on the Expectation-Minimization

algorithm |

@ O: set of parameters

@ x: random process modeling the observations (i.e. intensities)

@ x: observation values (i.e. pixel intensities)

@ Y: random variable modeling the hidden states (i.e. labels).

@ y: actual states (i.e. pixel labels), with Q, as the set of all possible
values

o L: likelihood

o LL: log-likelihood
L(x,©) = 2(X0) = Yq, (X, Y = y[O)

Yo, PX[Y=y,0)P(Y=Yy)
This is an iterated algorithm and at step t + 1, the parameter values ©(t)
are available.
L(x,0,00) =3 "o (x\Y —y,0, e(f>) P (Y - y|@<f))
Qy
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First view-point on the Expectation-Minimization

algorithm |l

We consider the log-likelihood:

LL(x,©,0®) =In > 2 (X|Y =vy,0, @(t)) ? (Y _ y|@(t))
Qy

Two caveats

? (Y = y|©(®)) uses actually the data X considered as part of ©(*).
When the components of X and Y are modeled as given-© independent
random variables , the summation over €2, is restricted to each
components of y and In is inside a first summation over the components.

The expectation step is
y,(,tH) = argmax,, ML(@(t), x,y(gt) U VA .y,(vtll)
The maximization step is
O+ — argmaxg ML(O(®), x, y(t+1))
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First view-point on the Expectation-Minimization

algorithm Il

Because the logarithm is concave, we get a lower bound called Q(©, 0(?)
LL(x,©,00) >3 o (Y = yye(t)) In (xyy ~y,0, e(f>)
Q.V

There are two steps:

o Expectation-step: computing Q(©,©(")). That is fill in the unknown
or hidden parameters with most likely possible values computed using
observations and previous values of parameters, and weighing these
values with their probabilities.

@ Maximizition-step: finding © by maximizing Q(©,0(").

We get here soft assignments.
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ML with equal standard deviation |

We consider a statistical model for a binary classification problem:

@ The intensity of each pixel follows a Gaussian random variable.

@ There is a unique standard deviation o.

@ The mean value depending on its class membership Lo, (11.

@ Conditionally to their classes, the random variables are independent.

We use this model to infer the parameters’ values involved in the model
and the hidden parameters by observing only the pixel values.
@ List the variables whose values are known and those whose values are
to find by maximizing the likelihood.

@ Write the likelihood of a given pixel’s intensity and that of all N pixels,
assuming we know which pixels follows which Gaussian variable.
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ML with equal standard deviation I

@ We now assume the assignment of pixels with each probability
distribution are N Gaussian probability distributions Y,,.

@ The goal is to write the relationship between two successive iterations.

@ All parameters have now an indication of the iteration using t as an

integer.
Y AT ST

We denote q = NZ ' 1(y, = 0)
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ML with equal standard deviation Il

We consider the statistical model of exercise 39
@ Write the prior probability of Y, knowing parameters of the last
iteration (i.e. t-iteration).
@ Write the posterior probability of Y, knowing parameters of the last
iteration (i.e. t-iteration) and using the pixel intensity values.

© Write the expectation step of the E-M algorithm, assuming p1 > .

@ Write the maximization step of the E-M algorithm.
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Answer to exercise 39 |

(1] e The parameters whose values are known are those of the observations:

N, X0 .. - XN—1-
e The parameters whose values are to be found: pg, p1,0

e Hidden variables: yy...yn_1.

@ For a specific pixel, we have

fi 000 ™) = Vas®

f/n_x\yn_le ()= e
The likelihood is

L(Iv Y?MOa,ulv U) = HnNz_Ol (1(.)/” = 0) 217“767 207

(x—p1)?
+1(yn — ].) 27'('0' 202
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Answer to exercise 39 |

© At the last iteration, y,(,t) have received integer values, this is a prior:
P(1, = 0/00) = AW L 1(0 = 0) = ¢ff
P(Y, =1|00) =1 - 2(Y,=0)=1— g
@ The posterior probability is obtained with the likelihood and the prior:
Srmpnfinoton) =
_ (t)
7n|Yn:}/n,@(t)(In)ip(Yniyn‘e )

2 ) P(6=01 ), (%=1
n|Yn= 1|Yp=1,...

ang () (In)
Hg 50
ang W0, ,Un)+(1=an)g W0,

= q:,“ 1(yn = 0) + (1 — ¢, 1(y, = 1)

Denoting q’( ) =

( ") we can write

r
Yn=yn|ln,0)
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Answer to exercise 39 |l

© The objective is to find the parameters maximizing the likelihood of
the data.

Inf (1

v,1,0/0()

I ( )+, )
12,Y,=0,0|0() In,Y,=1,0|00

We use the posterior probabilities and the likelihood of /, to compute

these probabilities:

_ (1) — o ()
f;n,f}’nZO,@\@m(l) qn f/n,@\Yn 0@()(I) q, g“o,o’(ln)
—_(1_ 4 ()
Frreion = A7 @ o g
= (1= a5\ 0 (1)
Combining

InP(Y, = yn, 1,0]00) =
0 T1 (4 Ogs0n) + (1~ 0o (1)

= S0 0 (06800 () + (1 = 05 0 (1))



Answer to exercise 39 IlI

Because of the concavity of In, we get a lower bound
| ](Yn—}’mlme‘e t)(l )
> Z n=0 qn(t) Inguo o'(l ) + (
:_ZN]- /(t I" /"‘0) +(
Q To approximate argmaxg Q(@]@(t ) we maximize the lower bound
denoted Q (©|0(®)):
~Q(0[09) = 1] g0 el

+(1 - g, EBE 1 (1 - g) Inv2r0

—Nln\ﬁa—i—ZN 1 /(t)(l,, Mo +(1

This maximization is obtamed by zeromg the derivatives w.r. to g

— ;) Ing,, 5(In)
/(t))(/n p1)?

202
I" ”O) + g, InV270o
/(t))(’n m)?

p1 and o.
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Answer to exercise 39 |V

e Finding po

0= 52 [-Q(00®)] = =& 355 gyl — o)
= o = %"N‘%qu’/,l

e Finding p4
0=52[-Q(0/e®)] = -Z¥ (1 — )l — p2)

S (1—qp)h
=y = ey
= T i(i—q)

e Finding o
0= [-a(eleW)] =
N SN g U — 10)? = NN = ) (I — )2

= No? = Y g — 0)? + SN2 — )l — )?
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Maximizing the likelihood

-300000 9000
-400000 8000 o
-500000 7000
6000
-600000
5000
~700000 24000
-800000 3000
-900000 2000
200030004000 500060007000 80009000 20003000400050006000700080009000

Figure 8: Left: log-likelihood w.r. to T. Right: new threshold T/ w.r. to old
threshold T.

What could explain the fact that on the left figure, the probability appears
more flat than on previous experiments?
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Second viewpoint on the Expectation-Minimization

algorithm |

When the optimization is
argmaxg P(X|©)
we consider instead
argmaxg Q(©]6®))
where
QeleW)=-Y"» (Y = yIX, e<f)) In 2 (X|Y ~y,0, e(f>)
It is the expected valué of the log likelihood function of the parameters 8,
with respect to the current conditional distribution of Y given X and the
current estimates of the parameters ©(%),
©: set of parameters
I: random process modeling the observations (i.e. intensities)
I: observation values (i.e. pixel intensities)
Y: random variable modeling the hidden states (i.e. labels).
Y: hidden state values (i.e. labels)

Or €4Cn _Nidaden
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Exemple of Gaussian Mixture Models (GMM)

We consider the following pseudo-code, what is the probability distribution
that is being sampled.
Require: N
Ensure: fy.../Iy_1
1: for n=0:N-1 do

2; Draw k a binary integer

3: Draw x a random value using N'(0, 1)
4: if k == 0 then

5: I, = x

6: l,=x+3
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Answer to exercise 41 |

0.25

0.2

0.15 |

0.1

0.05 |
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Answer to exercise 41 |l

@ We use the following notations
e K: binary random variable (K = 0) = (K = 1) = 0.5.
e X: Mixture of Gaussian random variable

P(X = x|K = 0) = gg 1(x) and P(X = x|[K = 1) = g3 1(x)

PX=x)=P(X=x]K=0)P(K=0)+P(X=x|K=1)P(K=1)
= 0.5g0,1(X) + 0.5g371(X)

March 20, 2024 294 / 469



Expected value of the log likelihood function Q

Write a pseudocode simulating P(c) and Q(o|o(?)
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Answer to exercise 42 |

© Based on exercise 41, the probability one observation x,, is

ﬁ(nZXn|0'(X”) = 0.5g0’0-(Xn) + 0.5g3’U(X,,)
The probability of all observations is

N—1
f)'(la(x) = };Io 0.5g0,5(xn) + 0.5g3 5 (xn)
In order to make compll\JItaltions within the 16 or 32 bits,
L =) " In (0.5g0,5(xn) + 0.5g3 5 (xn))
@ At iteration t, the priornis0 N
P(Y, = 0) = f 1(ys” = 0)
n=0

the posterior is
P(Yn = 0)g 50

P(Yn = 0)gg ,0(Xn) + 2(Yn = 1)83 50 (Xn)

Hy=0[x,,00) (Xn) =



Answer to exercise 42 ||

The log-likelihood given the hidden y,

2
7xt > if yp=0
nf (X)) =—In(v2mo®) - { 20
X[Yn,0(t) x=3)° -1
20(02 .yn -

The expectation of this log-likelihood using the posterior is
Q” _](Yn =0|X,,0 () (X”) |nf o) (X”)

+fYn:1\Xn7<f ) Inf)’(\Y,,:l,o

The function to be maximized is
Qoo™ y(®)) = Z Qn

The error rate w.r. to the best p055|ble predlctlon is
N—1

1(yn=0% x, < 1.5)
n=0

Xn|Yn=0,

(1 (X”)

E =

2\'—‘
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Answer to exercise 42 |l|

Require: X
Ensure: o
1: Choose randomly Y, o,
2: Store Y4 := 0
3: while 3y £ . do
4: Store YOld .=y
5 Compute ?(Y, = 0)
6: Compute P(Y,|xn, a(t)) with o(t) = &
7: Find o maximizing Q(c|c(®), Y(O)) with Y() = ¥
8:  Find y, = 1(2(Yp|xn, 0(9)) < 0.5)
9: Compute Q(o|o®, Y()) with ¢() = g and Y(©) = ¥
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Experimental results

,,,,,

| Ml U]JJL“\L,J,XILJ,UM

In blue: .
In fP(X :X|o') 1 —
In red: N "~ (ya=0&x,<15) ()

Q(a]X, o, y5)
@ Horizontal axis indicates the value of o.
@ The thick lines in red and green are those obtained with many
iterations.
@ The thin lines in magenta and cyan are obtained at the first iteration.

@ The initialization uses random values (o — 4(0.5,4.5))
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Third viewpoint on the Expectation-Minimization

algorithm |

We need not use the correct probability distribution of the parameters.
Instead of 2(Y,|X,©")), we may use any probability distribution g(y,) (or
family of distributions).

o q(yn) = Po(Yn|xn, ©1)) is an inference model, its probability law is
here denoted O.

o p(Xn,¥n) = P(Yn, Xn, ©()) is the joint distribution.
o p'(vn) = P(Yn|Xn, ©1) is the posterior distribution.
@ The evidence lower bound (ELBO) is
o <|n p(xn,yn)>
q(yn)

@ The Kullback-Leibler Divergence used here is

0 < Dk (qllp)) = %o <q(yn) In (q(yn) ))

P'(yn)
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Third viewpoint on the Expectation-Minimization

algorithm |l

Instead of maximizing
o)=Y "»r (Y =y|X, e(f)> In e (X|Y =vy,0, @(f))
Qy
We maximize ELBO — #(q)

Farmerior- 1091 -5 )

because #g does not depend on © and because
ELBO = T(Xn) — DL < ?(Xn)
This is a small proof:

InP(Xp, ©) = £Q|nT(Xn,@)ffg|n%
(xn,Yn,

_ o) q(y, )
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Using the E-M algorithm to make crisp choices |

We consider again the statistical model of exercise 39. We consider a
discrete probability distribution depending on a parameter T for a given
sample n, denoting here x, and y, as x and y.

B I(y=0) if x<T
q(y)_{ ly=1) if x>T

@ Show that q is indeed a probability distribution whose entropy is zero.

@ Given the posterior of the probability distribution computed in
exercise 40,
agO,o(X)

ply=0)= g0 (X) + 5.0 () and p'l(y =1)=1-p'(y =0)

where o denotes the estimated value (). Compute the
KL-divergence between the q and p’.
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Using the E-M algorithm to make crisp choices Il

© Show that
Ply=0)>t ex< J @ lie]
2 2 3
©Q Show that the KL-divergence is minimized when T = % +
We now consider the whole dataset.
© Compute ELBO — Hg
O Compute o(t+1) maximizing ELBO — #g as a function of/\/o(t) and
./\/'l(t) which are the set containing the samples y,gt) =0 and y,(,t) = 1.
Show that

ot = % Z x2 + Z (xn —3)?

neN{? neN{?
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Answer to exercise 43 |

@ g is a discrete probability distribution with two possible values
y € {0,1} because
q(y)=0and g(y =0)+q(y =1)=1
The Entropy is
1 1
Ho=q(y=0)In ———=+qg(y =1)In —
o=l ) q(y =0) ( ) qly =1)
with the notation that 0x In0 = 0. #Hg = 0 because first, 1xIn1 =0
and second, either g(y =0)=0and g(y =1)=1org(y=0)=1
and g(y =1) =0.
@ The KL-divergence between g and p’ is
0 =1
DL (allP) = aly = 0)In S=5 + g(y = 1) In S=L
=1(x<T)In ,( =) +1(x>T)ln

1- p(y 0)

— Oégo,ﬂ(x) _ g3,o‘(X)
= —lx < T)In g% .m0 — x> T i
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Answer to exercise 43 |l

Py =0)> 3 < agoos(x) > $80.0(x) + 383,0(x)

& 580,0(x) > %ggw(x) = g:ﬁigg é
2 _2)2
o -2+ (X202) > —In(a) & —6x+9 > —202%In(a)
2
& x <3+ %In(a)
@ We first prove that

L < ! & x < > + o In(c)
n x < =4+ —In(«
Py =0) 1-p(y=0) 2 3
The left statement is true iff
1pp=0 _ p(y=0) Ay — I,
te To=y P 0=0) S1-py=0<ply=0

& 3<p(y=0)

In
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Answer to exercise 43 Il|

Let us assume x < 3 + 5 In(a) the former property proves that
T< T
D alle) = Dl (allp)
Therefore T > 3 + e |n(a)
Let us <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>