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Content

Intent of the lessons Out of the scope

Objective ↔ Recognize similarities

Mathematical framework

Simple implementation

Graphics

State-of-the-art •
Neural Networks •

Ensemble classifiers •

Questions

Feel free to ask questions: chat, end of subsection, at any time...
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Figures and codes

Figures

DOI indicates a publication from which the photo is extracted.

Obtained with Octave, see lecture notes.pdf on HIP2.htm

https://octave.org/

The packages being used are

optim
signal
image
statistics
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First level of understanding

Kind of data

What is it used for?

Number of dimensions?

Technique

What is the objective?

What is the input?

What is the output?

Why is it expected to work?
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Second level of understanding

Formulas

What is it
computing?

What parameters
it depends on?

Letters on
notations can be
misleading: ŷn is
actually not
depending on yn.

Notations are
different depending
on the context.

Graphics

Axis?

Pseudocode

input/output?

Number of loops?

Way out?
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Third level of understanding

Choose tools to make them yours.

In a real project, techniques have to be adapted and they are not
receive a new name.

Try modify or create examples to see how it works.

Test computations with numerical simulations.
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RGB-multispectral-hyperspectral

microimages.com

RGB

Collection of wavelengths

A precise padding of wavelengths
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Hyperspectral imaging from space (airborne, drones)

CNES 2008

Finding water?

Assess forest damages from fire.

What is being cultivated?

Level of sea water?

Collect information through clouds.
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Hyperspectral imaging from devices

IMM-PHD-2011

Food analysis (quality, non visible rot)

Recycling: finding constituents
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What is a color image

(
IRm1m2

, IGm1m2
, IBm1m2

)
Exercise 1

What image is this showing?

R=[1;1;0]; G=[0.5;1;1]; B=[0;1;0];

im=cat(3,R,G,B),

figure(1); imshow(im);

March 20, 2024 15 / 469



Answer to exercise 1

R=[1;1;0]; G=[0.5;1;1]; B=[0;1;0];

im=cat(3,R,G,B),

figure(1); imshow(im);
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Wavelengths
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Hyperspectral image

IT implementation

Beware at the frame orientations!
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Content of a hyperspectral dataset

Raw values (set of intensities)

Corrected values (after
registration)

Ground Truth

Calibration information
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Retrieving a hyperspectral image

Exercise 2

1 Find on the web the hyperspectral image Pine and retrieve it in
Octave, using for instance

https://www.ehu.eus/ccwintco/index.php/

Hyperspectral_Remote_Sensing_Scenes

https://engineering.purdue.edu/~biehl/

MultiSpec/hyperspectral.html

2 Find the size of each bandwidth image

3 Find the number of bandwidths
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Answer to exercise 2

1 I followed the following steps

Retrieve Indian pines corrected.mat and Indian pines gt.mat

T=load to retreive the image
fieldnames(T) to get the name of the variable
size to get the answers.

ans =

{

[1,1] = indian_pines_corrected

}

ans =

145 145 200

2 145×145

3 200
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Wavelengths and frequencies

Doi: 10.1016/B978-0-12-809254-5.00001-4

March 20, 2024 22 / 469



Pixel spectrum

Exercise 3

1 Retrieve the calibration information

https://www.ehu.eus/ccwintco/index.php/

Hyperspectral_Remote_Sensing_Scenes

https://engineering.purdue.edu/~biehl/

MultiSpec/hyperspectral.html

2 Considering a horizontal line located at the center of the image, find
the coordinate of its left most point.

3 Plot the spectral intensities as a function of the bandwidths number.

4 Plot the spectral intensities in terms of radiance and as a function of
the center wavelength.

Keywords

Calibration, registration.
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Answer 1/6 to exercise 3

1 Using the second website, I went to the following websites

https://purr.purdue.edu/publications/

1947/1

https://purr.purdue.edu/publications/

1947/supportingdocs?v=1

and got the following text file named
Calibration Information for 220 Channel Data Band Set.txt

Information on 220 Channel

AVIRIS Data Set

Location

This data is from the AVIRIS

(Airborne Visible/Infrared Imaging Spectrometer)

...
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Answer 2/6 to exercise 3

...

These data are calibrated data. In other words the data

values in the scene are proportional to radiance. 1000

has been added to the calibrated data so that all data

values in this scene are positive. To convert the scene

data values (SDV) to radiance values (RV), one must first

subtract 1000 and then divide by the gain_factor

that JPL used which is 500.

RV = (SDV-1000) / 500.

The RV units are W * cm^-2 * nm^-1 * sr^-1.

...
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Answer 3/6 to exercise 3

...

---------------------------------------------------------------

AVIRIS Data Center Center FWHM

Band Channel Wavelength FWHM Uncertainty Uncertainty

# # (nm) (nm) (nm) (nm)

---------------------------------------------------------------

1 (not used - the band was all 0’s)

2 1 400.02 9.78 0.92 0.50
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Answer 4/6 to exercise 3

2 The center horizontal line is at the line number 73:
(72− 1) + 1 = (145− 74 + 1) = 72 and 2×72 + 1 = 145

The left most point is at m = 73, n = 1.

3 It is shown on the left of figure 1.

figure(1); plot(im(73,1,:),’linewidth’,2);

4 It is shown on the right of figure 1. The following bands have been
removed [104− 108], [150− 163], 220 as indicated in the dataset
because of the water absorption. We get the horizontal scale using
the following steps.

Open the text file
Convert each line into arrays of numbers (a line starting with a letter is
converted into a void array).
Check if the array is non-empty and if its second number is not
included in the list of removed bandwidths.
Stack in a vector the third component of each non-void array.
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Answer 5/6 to exercise 3

We get the vertical scale by making the following affine transform

RV =
SDV− 1000

500

Bandwidths removed

These are indicated with black crosses.
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Answer 6/6 to exercise 3

Figure 1: Left: spectral intensities as a function of the bandwidths number.
Right: spectral intensities in terms of radiance and as a function of the center
wavelength. Exercise 3
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What means W * cmˆ-2 * nmˆ-1 * srˆ-1

W : Watt (radiation) is J/s,N.m.s−1 or kg .m2.s−3.

cm−2: surface of 1cm×1cm

nm−1: size of bandwith in 1nm = 10−9m.

sr−1: measure of angle in 3D: ∈ [0, 4π].

DOI: 10.1117/12.883572
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Water absorption

Exercise 4

1 Explain the reason for removing the bandwidths indicated with
black crosses on the right.
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Answer to exercise 4

lowest wavelength: 400nm

first set of wavelengths:
1362− 1402nm

second set of wavelengths:
1819− 1893nm

third set of wavelenghts:
2500nm
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Water absorbing frequency

microimages.com

IMM-PHD-2011
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Profile line

Exercise 5

We consider again the central horizontal line. For each questions, use
appropriate notations to express the computed quantities.

1 Plot the profile line considering the spectral intensity of the
bandwidth number 50 and the bandwidth number 100.

2 Center both lines. We here consider that centering assume that pixels
at a given bandwidth should be processed in a similar manner.

3 Normalize them so that their variance is equal to one.
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Answer 1/3 to exercise 5
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Answer 2/3 to exercise 5

1 Let us call
m1c = 73 k1 = 50 k2 = 100

The two profile lines are
m2 7→ I (m1c ,m2, k1) and m2 7→ I (m1c ,m2, k2)

2 The two average intensities are
µ1 =

1
M1M2

∑M1−1
m1=0

∑M2−1
m2=0 I (m1,m2, k1)

µ2 =
1

M1M2

∑M1−1
m1=0

∑M2−1
m2=0 I (m1,m2, k2)

The transformed profile lines are
m2 7→ I (m1c ,m2, k1)− µ1 and m2 7→ I (m1c ,m2, k2)− µ2

Proof.

M1−1∑
m1=0

M2−1∑
m2=0

(I (m1,m2, k1)− µ1)) =

M1−1∑
m1=0

M2−1∑
m2=0

I (m1,m2, k1)−M1M2µ1 = 0
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Answer 3/3 to exercise 5

3 The two standard deviations are

σ1 =
√

1
M1M2−1

∑M1−1
m1=0

∑M2−1
m2=0 (I (m1,m2, k1)− µ1)

2

σ2 =
√

1
M1M2−1

∑M1−1
m1=0

∑M2−1
m2=0 (I (m1,m2, k2)− µ2)

2

The transformed profile lines are

m2 7→
I (m1c ,m2, k1)− µ1

σ1
and m2 7→

I (m1c ,m2, k1)− µ2
σ2

Proof.√
1

M1M2

∑M1−1
m1=0

∑M2−1
m2=0

(
I (m1,m2,k1)−µ1

σ1

)2
= 1

σ1

√
1

M1M2

∑M1−1
m1=0

∑M2−1
m2=0 (I (m1,m2, k2)− µ1)

2 = 1
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Notations

I is a hyperspectral image, it is a rank 3 tensor, I (m1,m2, k) is a
component.

m1,m2, k are the row, column and bandwidth indexes.

M1,M2,K are the number of columns, rows and bandwidths.

µ is the mean of a set of numbers.

σ is the standard deviation of a set of numbers.
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Conclusion of section 1, Classification of hyperspectral
images

rank 3 tensors

radiance, wavelengths, spectrum

registration, calibration

spatial displacement and wavelength shift

What are classifiers

In the next section, we discuss how to make these images informative.
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Raster scanning order

Feature space x ∈ RF

Input matrix
X = [xnf ]n,f

Sample, instance or record xn

Set of samples

X =

 x0
...
xN−1

 (1)

Beware

Often the raster scanning order reads along columns.
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Labels supervised classification

Classes yn ∈ {0 . . .C − 1}.
Binary classification problem
C = 2, yn ∈ {0, 1}.
Label column vector.

Y = [yn]n
Proximity in the feature space
means
Labels are more likely to be the
same

Keywords

Classification is sometimes refered
to as labelling
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Feature space

Exercise 6

Draw and code with Octave the scatter plot of the following dataset

X =



0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2


Y =



1
0
0
1
1
0
1
1
1
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Answer to exercise 6

X=zeros(9,2);

X(:,1)=[0 0 0 1 1 1 2 2 2]’;

X(:,2)=[0 1 2 0 1 2 0 1 2]’;

Y=[1 0 0 1 1 0 1 1 1]’;

ind1=find(Y==1);

ind0=find(Y==0);

figure(1); plot(X(ind1,1),...

X(ind1,2),’+’,...

’LineWidth’,3,...

X(ind0,1),...

X(ind0,2),’o’,...

’LineWidth’,3);

legend(’y=1’,’y=0’);

axis([-0.1 2.1 -0.1 2.1]);
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What is classification?

Query sample: blue square

Given the training set, is it more likely to be green (y = 1) or red
(y = 0)?

March 20, 2024 45 / 469



Training and testing set

Training set

Test set

Supervised
classification
problem

Parameter estimation

Training set ⇒ Parameters
Testing set

}
⇒ Accuracy
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Ground truth: a challenging issue

It is a hard work to go every where to collect the information.

Some locations can be difficult to access.

Definitions of labels may not be appropriate to what is actually going
on.

The time at which the hyperspectral image is recorded may not
match that of the ground truth.

True applications

It is acknowledged that many datasets have up 20 % mislabeled samples.
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Number of samples per class in training set and testing set

year min
training

max
training

min test-
ing

max test-
ing

DOI

2018 10 113 906 11158 10.1109/TCYB
.2019 .2905793

2010 15 50 5 2418 10.1109/LGRS .2010
.2047711

2008 N
3
1
6

N
3
1
6

2N
3

1
6

2N
3

1
6 10.1007/978 -3-540 -

85567-5 52

2000 N
5

1
16

N
5

1
16

4N
5

1
16

4N
5

1
16 10.1109/IGARSS

.2000 .861712

Challenging issue

Imbalance dataset (a.k.a variations in class abundance)

March 20, 2024 48 / 469



Keywords

Supervised classification

Semi-supervised classification

Unsupervised classification a.k.a. clustering
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Ground truth

Exercise 7

Figure 2: Classification map indicating in white the soybean.

1 Denoting C the collection of classes that are soybean, 0 . . .C − 1 the
total set of classes, write the pseudo-code of an algorithm yielding
figure 6. March 20, 2024 50 / 469



Answer to exercise 7

1 C is the set of requested labels.
Igd is groundtruth map.
Ic is the yielded classification map.

Require: C, Igd
Ensure: Ic
1: Set Ic to the size of Igd with null values.
2: for n ∈ I do
3: if Igd(n) ∈ C then
4: Ic(n) = 1

March 20, 2024 51 / 469



New notations

lower case indicates scalars: fm1m2 , except Im1m2 .

Bold lower case indicates row vectors: x.

Capital letters indicate column vectors: Y .

Bold capital letters indicate matrices: X, I.

Sets are in calligraphic fonts: C,N .

n ∈ {0 . . .N − 1} is the index of sample xn.

Image intensities are here considered as a data set xn

Bandwidths are now considered as features x = [x0 . . . xF−1].

Land use and land covers are indicated with yn ∈ {0 . . .C − 1}.
Ground truth map and classification map: Igd, Ic.
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Conclusion of subsection 2, Supervised and unsupervised
classification of hyperspectral images

The classification of hyperspectral images yields a classification map
and hence an interpretation.

Need of ground truth data to learn information

Need of some belief

Numerical complexity is an issue, here out of the scope of this lecture

Choice of a technique should take into account what the technique is
meant for.

What are classifiers

In the next section, we discuss of two simple classifiers.
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Predictor function

Predictor function
ŷ = f (x)

Iverson bracket

1(Π) =

{
1 if Π is true

0 if not

Sample x is row-vector.

y is the label 0 or 1.
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Decision stumps: example

Exercise 8

We are considering the following predictor which is
an example of decision stump.

fa,b(x) = (2a− 1)1(x ≤ b) + 1− a
with a and b as parameters.

1 Compute f1,2(0.5), f1,0.5(2).

2 Prove that
fx ,y (z) = fx ,z(y)1(y = z)

+(1− fx ,z(y))1(y ̸= z)
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Integers representing binaries

Logic

y = POSITIVE
y = NEGATIVE

−1,+1

y = +1
y = −1

0, 1

y = 1
y = 0

y1 = y2 y1y2

1(y1 = y2)
= y1y2+(1−y1)(1−y2)
= (2y1−1)y2+(1− y1)
= 0.5ỹ1ỹ2 + 0.5

ỹ = 2y − 1 and y = 0.5ỹ + 0.5
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Answer to exercise 8

fa,b(x) = (2a− 1)1(x ≤ b) + 1− a

fx ,y (z) = fx ,z(y)1(y = z)

+(1− fx ,z(y))1(y ̸= z)

1 f1,2(0.5) = (2×1− 1)1(0.5 ≤ 2) + 1− 1 = 1
f1,0.5(2) = (2×1− 1)1(2 ≤ 0.5) + 1− 1 = 0

2 Assuming y = z , fx ,y (z) = fx ,z(z) = fx ,z(y)

Assuming y ̸= z , fx ,y (z) = (2x − 1)1(z ≤ y) + 1− x
= (2x − 1)(1− 1(y < z)) + 1− x = (1− 2x)1(y ≤ z) + x
= −(2x − 1)1(y ≤ z) + 1− (1− x) = 1− fx ,z(y)
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Decision stumps: definition

A decision stump makes a decision based on the value of a feature.
fθF ,θx ,θy (x) = (2θy − 1)1(xθF ≤ θx) + 1− θy (2)

with θy ∈ {0, 1}, θF ∈ {0 . . .F − 1} and θx ∈ R

fθF ,θx ,0(x) = 1− 1(xθF ≤ θx) = 1(xθF > θx)

fθF ,θx ,1(x) = 1(xθF ≤ θx)
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Scalar product

The feature space is the set comprising all possible values of x. We
define on it a scalar product

x�x′ =
F∑

f=1

xf x
′
f and ∥x∥2 = x�x

This scalar product can be written with matrix operations.
x�x′ = xx′

T

Note that the transpose operation would apply on the first element if x
and x′ were column vectors.

Euclidean distance

d
(
x, x′

)
= ∥x− x′∥ =

√
(x− x′)(x− x′)T =

√√√√ F∑
f=1

(xf − x ′f )
2
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Example of linear predictor

Exercise 9

We consider a predictor f defined as
f (x) = 1(2x1 + x2 ≤ 2) (3)

1 Rewrite f using the scalar product.

2 Rewrite f using matrix operations.

3 Plot x1 7→ f ([x1, 0]).

4 Plot x2 7→ f ([0, x2]).

We are considering two sets
X0 = {x |f (x) = 0} and X1 = {x |f (x) = 1}

6 Plot a line separating the two sets and indicate which set is where?
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Linear predictors

fa,b(x) = 1(a�x ≤ b)

Remark

When b > 0, for any λ > 0, fa,b(x) = fλa,λb(x) This property shows that
the proposed model is not non-identifiable. Note that if we use only a to
define this predictor, then we need some extra information.
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Answer to exercise 9

f (x) = 1(2x1 + x2 ≤ 2)

1 Let u = [2 1],
f (x) = 1(x�u ≤ 2).

2 f (x) = 1(xuT ≤ 2).

3 f ([x1, 0]) = 1(x1 ≤ 1)

4 f ([0, x2]) = 1(x2 ≤ 2)

5 Let x2 = g(x1) be the edge.
g(x1) = 2− 2x1.
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Notations

Predicted output: ŷ (it depends on x).

1: Iversion bracket (1(0 = 1) = 0 and 1(2 + 2 = 4) = 1).

Θ: the whole set of parameters.

parameters: θF , θx , θy .

Threshold on intensity θx .

� scalar product.

∥ ∥ norm of the scalar product.

xT is a column vector and T is the transpose.
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Conclusion of subsection 3, Simple predictors

Binary context: 2 classes

Decision stumps and linear classifiers are predictor functions

They act on the feature space

They are defined by a parameter here θF , θx , θy or b, a

Given a query sample x, they give a prediction ŷ

How can we compute the parameters defining the predictor functions?

In the next subsection, we discuss metrics designed for assessing predictor
functions.
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Accuracy

OA: Overall Accuracy

OA =
1

N

N−1∑
n=0

1 (yn = ŷn)

AA: Average Accuracy

AA =
1

C

C−1∑
c=0

∑N−1
n=0 1(yn = c)1 (yn = ŷn)∑N−1

n=0 1(yn = c)

Notations

Here, accuracies are denoted as A.
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Accuracy vs loss functions

Accuracy (overall accuracy)
what is at stake?

A(Y , Ŷ ) =
1

N

N∑
i=1

1(ŷn = yn)

Example of loss function

L(Y , Ŷ ) = −A(Y , Ŷ )
In terms of notations, Y and Ŷ are column vectors stacking yn and ŷn. yn
is the true label and ŷn is the label predicted using xn.

This is actually a simplification.

Note that in L(Y , Ŷ ), ŷn could be a real number and not a boolean in
{0, 1}. This is up to the choice of the technique. Now it is not depending
on x.
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max, min, argmax, argmin

Value of the global maximum: max
x

f (x)

Value of the global minimum: min
x

f (x)

Input points of the global maximum:
argmax

x
f (x)

Input points of the global minimum:
argmin

x
f (x)
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Exercise 10

We are considering the predictor fa,b(x) defined as
fa,b(x) = (2a− 1)1(x ≤ b) + 1− a

with a and b as parameters. and the following database S1

x1 = 1 y1 = 1
x2 = 1.5 y2 = 0
x3 = 6 y3 = 1
x4 = 3 y4 = 1
x5 = 0.5 y5 = 0

1 Plot the function defined by b 7→ A(S1, f1,b).

2 Plot the function defined by b 7→ A(S1, f0,b).

3 Select values for a and b maximizing A(S1, fa,b).

4 Find the corresponding maximum value of A(S1, fa,b).

5 Use argmax and max to write the answers to the two last questions.
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Answer to exercise 10

fa,b(x) = (2a− 1)1(x ≤ b) + 1− a
x1 = 1 y1 = 1
x2 = 1.5 y2 = 0
x3 = 6 y3 = 1
x4 = 3 y4 = 1
x5 = 0.5 y5 = 0

1 a = 1
1(y1 = ŷ1,b) = 1(b ≥ 1)
1(y2 = ŷ2,b) = 1(b < 1.5)
1(y3 = ŷ3,b) = 1(b ≥ 6)
1(y4 = ŷ4,b) = 1(b ≥ 3)
1(y5 = ŷ5,b) = 1(b < 0.5)

2 a = 0
1(yn = ŷn,0,b) = 1− 1(yn = ŷn,1,b)

3 aopt = 0 and bopt = 2.2

4 Aopt = 0.8.

5

(aopt, bopt) ∈ argmax
a,b

A(S1, fa,b)

Aopt = max
a,b

A(S1, fa,b)
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Loss-functions used for learning

Supervised classification: L depends on Y and Ŷ or...

Unsupervised classification: L depends on X and Ŷ .

Learning

Parameters are selected so as to minimize the loss function.
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New notations

Accuracies: OA,AA and A.

Output and inputs of global extrema: max,min, argmin, argmax.

Loss function: L.

Labels: Y and Ŷ stacking yn and ŷn.
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Conclusion of subsection 4, Accuracy and loss functions

Accuracy and loss functions tell us whether a predictor function is
consistent with a dataset.

A is the accuracy. It is expected to be the more appropriate metric
(this depends on the application).

Loss functions denoted L are less appropriate. We will see examples.

Here higher values of A and lower values of L indicate better
performance.

In the binary context ỹ ∈ {−1, 1} can be more appropriate than
y ∈ {0, 1}.

How these metrics are going to help us finding the parameters.
θF , θx , θy or b, a.

Parameters are chosen with respect to these metrics.
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Training and testing set

Training set

Test set

Supervised
classification
problem

[STRAIN,STEST] = SPLIT
(
S,
[
3
4 ,

1
4

])
Θ = LEARN(S)
A = TEST(S,Θ)
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Validation set

Different from Training set and Test set.

Differences caused by Randomization and/or Overfitting

Size could be of 1
3 of the labeled samples available.

Trade-off between reliability and scarcity of labeled samples.

Ground truth is costly and could be erroneous.

Numerical complexity could be an issue.
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Cross-validation set

Use of validation sets to select among parameter values {θ1 . . . θP}.
Example with K = 5.

Ak,p = TEST(LEARN(Sk ′ ̸=k , θp),Sk)

θpopt = argmin
p≤P

∑
k

Ak,p ⇒ θopt

What for?

Cross validation can be used to make decisions based on the dataset, this
amounts to using the validation set in the red boxes. It can be used to
make a more accurate performance measurement, then the use of the test
set in the red bloxes.
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Exercise 11

Given a certain data set S3
⋃

S4 with S3 as labeled and S4 not labeled.

1 Improve the following algorithm using validation sets.

Require: S3,S4: data sets
Ensure: a, b: linear classifier
1: Sopt = S3.
2: (aopt, bopt) = LEARN(Sopt)
3: Compute Aopt with (aopt, bopt) and Sopt.
4: repeat
5: (x, (x′, y ′)) = argminx∈S4,(x′,y ′)∈S3

d(x′, x)
6: Set S = Sopt

⋃
(x, y ′)

7: (a, b) = LEARN(S )
8: Compute A = TEST(S, (a, b))
9: if A > Aopt then

10: (aopt, bopt) = (a, b), Sopt = S , Aopt = A.

11: until A <= Aopt
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Answer to exercise 11

Require: S3,S4, I
Ensure: [(a, b),A] = LEARN(S3,S4, I )
1: Set Sopt, (aopt, bopt), Aopt.
2: for i = 1 : I do
3: (x, (x′, y ′)) = argminx∈S4,(x′,y ′)∈S3

d(x′, x)
4: Set S = Sopt

⋃
(x, y ′)

5: (a, b) = LEARN(S )
6: Compute A with (a, b) and S
7: if A > Aopt then
8: (aopt, bopt) = (a, b), Sopt = S , Aopt = A.
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Continuation of answer to exercise 11

Require: S3,S4

Ensure: (a, b)
1: S3k = SPLIT(S3,K )
2: for i = 1 : I do
3: Ai = 0
4: for k = 1 : K do
5: Ai = Ai + LEARN(S3,S4, i)/K

6: iopt = argmax
i

Ai

7: [(a, b),A] = LEARN(S3,S4, iopt)
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New notations

Machine learning tools: SPLIT, LEARN,TEST

optimal value of a parameter: opt.
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Conclusion of subsection 5, Training, testing and validation
sets I

The question of the training set, validation set and testing set, is
generally studied in the context of supervised learning (labeled
samples).

We have seen the definitions of training, validation and test set and
the cross validation technique.

When we study a technique and want to assess its performance we
need to now the true labels of the test samples.

In a given application, we would be using the technique on samples
for which we don’t know the true label and we would give some
confidence in the prediction yielded by the technique.

The use of a validation set and of the cross validation technique are
precisely tools that can tell us more specifically what confidence we
may have.

March 20, 2024 83 / 469



Conclusion of subsection 5, Training, testing and validation
sets II

Regarding the unsupervised learning, we could build similarly the
same sets. We can also consider that samples from the test set can
be used to increase or update the knowledge we have.

Confusion matrix?

In the next section in order to study the reliability of a given technique
based on its performance on a training set, we need a more precise
indicator to describe the obtained performances, better than accuracy.
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Confusion matrix

True Labels

Predicted Labels

C =


N−1∑
n=0

1(yn = ŷn = 0)
N−1∑
n=0

1(yn = 0 and ŷn = 1)

N−1∑
n=0

1(yn = 1 and ŷn = 0)
N−1∑
n=0

1(yn = ŷn = 1)



March 20, 2024 86 / 469



Confusion matrix

Components of the confusion matrix

C = [cij ] and cij =
N−1∑
n=0

1(yn = i)1(ŷn = j)

Here i , j are index of classes.

yn true class of sample number n.

ŷn predicted class of sample n.

N total number of samples (here not the number of rows).

Beware

Sometimes, rows and columns are swapped in this definition.
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Exercise 12

We consider the following confusion matrix.

C =

[
5, 1
1, 5

]
1 Give an example of Y and Ŷ consistent with C.

2 Given YT = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], how many different Ŷ are
consistent with C?
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Answer to exercise 12

1

ŶT = [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0]

2 6×6.

[1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
...

[1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0]

[0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0]
...
...

[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0]
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confusion matrix and accuracy

Exercise 13

We are considering the following matrix

C =

 2 1 1
0 1 2
0 2 4


1 How many classes are there?

2 How many samples have been tested?

3 Up to some renumbering, what are the values of yn?

4 Using the same ordering, what are the values of ŷn?

5 Compute the OA?

6 Compute the AA?

7 Show that OA = c00+c11+c22
N .

8 Show that AA = 1
3

(
c00

c00+c01+c02
+ c11

c10+c11+c12
+ c22

c20+c21+c22

)
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Answer to exercise 13 I

1 C = 3 because the size of C is 3×3.

2 N = 13 because N =
∑

ij Cij

3 Let us reading the lines of C.

4 samples are part of the class 0: y0 = y1 = y2 = y3 = 0.
3 samples are part of the class 1: y4 = y5 = y6 = 1.
6 samples are part of the class 2:
y7 = y8 = y9 = y10 = y11 = y12 = y13 = 2.

4 Let us read the columns of C.

2 samples have been predicted as being part of the class 0:
ŷ0 = ŷ1 = 0.
4 samples have been predicted as being part of the class 1:
ŷ2 = ŷ4 = ŷ7 = ŷ8 = 1.
7 samples have been predicted as being part of the class 2:
ŷ3 = ŷ5 = ŷ6 = ŷ9 = ŷ10 = ŷ11 = ŷ12 = ŷ13 = 2.

5 Let us consider the diagonal components of C
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Answer to exercise 13 II

Among the 4 samples part of class 0, there are 2 correct predictions:
y0 = ŷ0 and y1 = ŷ1.
Among the 3 samples part of class 1, there is 1 correct predictions:
y4 = ŷ4.
Among the 6 samples part of class 2, there are 4 correct predictions:
y10 = ŷ10, y11 = ŷ11, y12 = ŷ12 and y13 = ŷ13.

OA =
2 + 1 + 4

13
=

6

13
6

AA =
1

3

(
2

4
+

1

3
+

4

6

)
=

1

2
7

OA = 1
N

∑N−1
n=0 1 (yn = ŷn)

= 1
N

∑C−1
c=0

∑N−1
n=0 1(yn = c)1 (yn = ŷn) =

C00+C11+C22
N
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Answer to exercise 13 III

8

AA = 1
C

∑C−1
c=0

∑N−1
n=0 1(yn=c)1(yn=ŷn)∑N−1

n=0 1(yn=c)

= 1
C

∑C−1
c=0

Cc
Cc0+Cc1+Cc2

= 1
3

(
C00

C00+C01+C02
+ C11

C10+C11+C12
+ C22

C20+C21+C22

)
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New notations

Confusion matrix C = [cij ].

Column vector of predicted labels: Ŷ .
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Conclusion of subsection 6, Confusion matrix

We have seen the definition of the confusion matrix

It should not be confused the transpose of this confusion matrix.
When go down, scrolling down the different rows, we get information
on samples having actually different labels. When going to the right,
we get information on samples having different predicted labels.

In non-binary classification problems, confusion matrix are not of size
2×2.

How are the confusion matrix going to be used in the next section?

We are considering different experiments for which techniques have
parameters yielding a performance measured by a unique confusion matrix.
So we are studying what we can see differences that are not measured by
confusion matrices.
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Table of Contents I

1. Classification of hyperspectral images

2. Image processing

3. Learning regarded as an optimization problem

4. Predicting the learning performances and probabilistic framework

5. More in depth with probabilities

6. Curse of dimensionality, regularization and sparsity

7. Spatial context

March 20, 2024 96 / 469



Table of Contents II

8. Supplementary material regarding matrices

March 20, 2024 97 / 469



Content of section 2, Image processing I

2.1 Segmentation
2.2 Edges as a mean for segmentation
2.3 Detection of connected components
2.4 Use of iterated algorithms
2.5 Clustering regarded as an optimization problem
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Segmentation

Segmentation is a partition of the pixels in subsets.

N =
⋃
c

Cc s.t. Cc
⋂

Cc ′ = ∅ (4)

Each set contains pixels that are homogeneous in some sense.

Point-based techniques using only one bandwidth.
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Thresholding

A set of pixels can be defined by thresholding w.r. to T.
C = {(m1,m2) ∈ N |I (m1,m2) ≥ T}

Superlevel set

T 7→ C is called the superlevel set. It is also related to the empirical
distribution F (T) = 1− 1

N |C|.

We are going to consider the cardinality of this set.
How can we select T?

Exercise 14

To investigate the choice of the threshold, we are investigating the
properties of the following curves. Given an image I, let fI be defined as

fI(T) = |{n ∈ N|I (n) ≥ T}|

1 Is fI increasing, decreasing, or...?
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Thresholding II

Exercise
2 Compute fI(0), lim

+∞
fI

Let Ir be the centered and normalized image I and fIr the corresponding
function.

Ir (n) = I (n)− µ where µ =
1

N

N−1∑
n=0

I (n)

3 What is the relation between fI and fIr ?
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Answer to exercise 14 I

1 fI is decreasing: let T1 < T2.
{n|I (n) ≥ T1} ⊂ {n|I (n) ≥ T2} ⇒ fI(T1) ≥ fI(T2)

2

{n|I (n) ≥ 0} = N ⇒ fI(0) = |N | = N

∀T > maxn I (n), {n|I (n) ≥ T} = ∅ ⇒ lim
+∞

fI = |∅| = 0

3

fIr (T) = |{n|Ir (n) ≥ T}| = |{n|I (n)− µ ≥ T}| = fI(T+ µ)
The curve is moved too the left.
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Loss function

For unsupervised binary classification, a possible loss-function is

L(X, Ŷ ) =
∑

ŷn=0,ŷn′=0

∥xn − xn′∥2 +
∑

ŷn=1,ŷn′=1

∥xn − xn′∥2
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Decision stump

Exercise 15

Based on the definition of a decision stump in machine learning and using
the L2-loss function applied to real valued predictors, how could a
threshold be computed?
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Answer to exercise 15 I

We consider two families of decision stumps: fa(X) = 1(xnf ≤ T) and
fb(X) = 1(xnf > T).

Accordingly, we define two loss-functions L and L′

L(f ,T) =
∑N−1

n=0

∑N−1
n′=0 ∥xn − xn′∥2fa(xn)fa(xn′)

+
∑N−1

n=0

∑N−1
n′=0 ∥xn − xn′∥2(1− fa(xn))(1− fa(xn′))

L′ is defined using fb instead of fa.

For each f , we compute Tf and T′
f

Tf ∈ argmin
T

L(f ,T) and T′
f ∈ argmin

T
L′(f ,T)

Finally if minf L(f ,Tf ) ≤ minf L′(f ,T′
f ), the proposed decision stump

is
1(x

nf̂
≤ T

f̂
) with f̂ ∈ argmin

f
L(f ,Tf )

If not, then it is
1(x

nf̂
> T′

f̂
) with f̂ ∈ argmin

f
L′(f ,T′

f )
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Median and quantiles

Given a set of values,
x = [15, 6, 13, 8, 8, 10, 7, 3, 16, 20]T

we first reorder them
xord = [3, 6, 7, 8, 8, 10, 13, 15, 16, 20]T

Median is the average value between the fifth and the sixth value:
8+10
2 = 9

⌈10/2⌉ = ⌈5⌉ = 5

First quartile is the third: 7
⌈10/4⌉ = ⌈2.5⌉ = 3

Third quartile is the eighth: 15
⌈3×10/4⌉ = ⌈7.5⌉ = 8

A rough approximation of the k-th q-quantile is
xord [⌈Np⌉] where N = |x| and p = kq
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Use of fI to find an adequate threshold

T ∈ f −1
I (p) =

{
T

∣∣∣∣∣ ∃NTsuch that
I (n) ≤ T ⇔ n ∈ NT

|NT| = p

}

Rounding notations

3 = ⌊3.4⌋ = ⌊3.4⌉ < ⌈3.4⌉ = 4

3 = ⌊3.6⌋ < ⌊3.6⌉ = ⌈3.6⌉ = 4

−4 = ⌊−3.4⌋ < ⌊−3.4⌉ = ⌈−3.4⌉ = −3

−4 = ⌊−3.6⌋ = ⌊−3.6⌉ < ⌈3.6⌉ = −3
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Simulation result

Figure 3: Example of fI-function as defined in exercise 14 for the Indian’s Pine
hyperspectral image using the bandwidth number 50.

Exercise 16

1 Looking at figure 3, what does it tell us on the hyperspectral image?

2 Show on figure 3, the first, second and third quartiles.
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Distance induced partitions

Euclidean distance in the spectral space RK

d(a,b) =

√√√√ F∑
f=0

(af − bf )2 = ∥a− b∥

With two points a,b ∈ RF , we get a segmentation of I
Na = {n ∈ N|d(In, a) < d(In,b)}

Nb = {n ∈ N|d(In, a) ≥ d(In,b)}
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This is a linear classifier

Exercise 17

We consider two sets Na and Nb defined as the set of pixels being closer
to a,b than of b,a.

1 Show that Na and Nb are segmentations of I in the sense of
equation (4).

We denote X the dataset obtained using the intensities of I at the
different bandwidths as defined in equation (1).

2 Show that there exists U and b such that 1(XU ≤ b) is a binary
column vector indicating the membership of each row to Na. Show
that 1(XU > b) indicates that of Nb.
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Answer to exercise 17 I

1 Na and Nb are a partition of N .

Na
⋂
Nb = ∅ because we cannot have both d(In, a) < d(In,b) and

d(In, a) ≥ d(In,b)
Na ⊂ N and Nb ⊂ N .
N ⊂ Na

⋃
Nb because either d(In, a) < d(In,b) is true or

d(In, a) ≥ d(In,b) is true.

2 Considering the scalar product ·,
d2(x, a)− d2(x,b) = ∥x− a∥2 − ∥x− b∥2

= (x− a+ x− b) · (x− a− x+ b) = 2
(
x · (b− a)− ∥b∥2−∥a∥2

2

)
Therefore we set U = (b− a)T and b = ∥b∥2−∥a∥2

2 . Nb is the
complement of Na.
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New notations

Image, slices and components: I, I instead of Ik , I (n) instead of
I (n, k)

fI and f −1
I , using {. . . | . . .} to define a set.

Sets of pixels: N ,Na,Nb and Cc .⋃
,
⋂
,∅, partition, ⊂.

Cardinality of a set: |S|
Rounding notations: ⌊. . .⌋, ⌊. . .⌉, ⌈. . .⌉.
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Conclusion of subsection 1, Segmentation

We have seen common issues between unsupervised classification and
segmentation.

We have defined a loss function for binary unsupervised classification
problems.

We defined a function f useful to select thresholds and it happens to
be the superlevel set function.

Thresholding can be seen as a decision stump.

With two points, we define a linear classifier.

What are the tools in image processing to consider the spatial
context?

Nearby points tend to belong to similar classes.

Actually there are also links with probability through the empirical
distribution and the empirical cumulative distribution.
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Content of section 2, Image processing I

2.1 Segmentation
2.2 Edges as a mean for segmentation
2.3 Detection of connected components
2.4 Use of iterated algorithms
2.5 Clustering regarded as an optimization problem
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Edge detection

Roberts operators
Convolution is here the sum-product along a sliding window.

F 1 =

[
1 0
0 −1

]
and F 2 =

[
0 1
−1 0

]
The magnitude of the edge is

|F 1 ∗ I |+ |F 2 ∗ I |
This is equivalent to

|∂I (m1,m2)| = |I (m1,m2)− I (m1 + 1,m2 + 1)|

+ |I (m1,m2 + 1)− I (m1 + 1,m2)|
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Detection of the edge angle

DOI: 10.1007/978-1-4899-3216-7
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Detection of the edge angle

Two operators are added

F 3 =
[

1 −1
]

and F 4 =

[
1
−1

]
The angle of the steepest increase (or gradient) is ψ ∈ {0, π2 , π,

3π
2 }, that

of the edge angle is Φ.

[Ψ(m1,m2),Φ(m1,m2)] =



−3π
4

3π
4 if [(F 2 ∗ I )(m1,m2)]− ≥ Fmax

−π
2 π if [(F 4 ∗ I )(m1,m2)]− ≥ Fmax

−π
4 −3π

4 if [(F 1 ∗ I )(m1,m2)]− ≥ Fmax

0 −π
2 if [(F 3 ∗ I )(m1,m2)]− ≥ Fmax

π
4 −π

4 if [(F 2 ∗ I )(m1,m2)]+ ≥ Fmax
π
2 0 if [(F 4 ∗ I )(m1,m2)]+ ≥ Fmax
3π
4

π
4 if [(F 1 ∗ I )(m1,m2)]+ ≥ Fmax

π π
2 if [(F 3 ∗ I )(m1,m2)]+ ≥ Fmax
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Edge detector

where
x = x+ − x− where x+ = x1(x ≥ 0) and x− = |x |1(x ≤ 0)

and
Fmax = max

c
|(F c ∗ I )(m1,m2)|

Exercise 18

We consider the following image

I =


1 6 3 3
2 6 2 4
1 1 1 5
5 6 4 1


1 Compute the resulting edge-image obtained with the magnitude of

the gradient obtained using the Roberts operators.

2 Compute the angle of the edge detector.
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Answer to exercise 18 I

1 [
1 0
0 −1

]
∗


1 6 3 3
2 6 2 4
1 1 1 5
5 6 4 1

 =


(1×1 + 0×6
+0×2 + −1×6)

(1×6 + 0×3
+0×6 + −1×2)

(1×3 + 0×3
+0×2 + −1×4)

. . .

. . .

. . .

. . .



F1 ∗ I =


−5 4 −1 3
1 5 −3 4
−5 −3 0 5
5 6 4 1

 and F2 ∗ I =


4 −3 2 −4
5 1 3 −5
−4 −5 1 −1
6 4 1 0



F3 ∗ I =


−5 3 −1 4
−4 4 −2 4
0 0 −4 5
−1 2 −3 1

 and F4 ∗ I =


−1 0 1 0
1 5 1 −1
−4 −5 −3 4
5 6 1 0


March 20, 2024 119 / 469



Answer to exercise 18 II

The resulting magnitude of the gradient is
15 10 5 11
11 15 9 14
13 13 8 15
17 18 12 3


2 The angles obtained are

{−π
4 , 0}

3π
4 π {0, 3π4 , π}

π {3π
4 ,

π
2 } {−π

4 , π} 0
−π

4 −π
2 0 {3π

4 , π}
π {3π

4 ,
π
2 } {3π

4 ,
π
2 } {π

2 ,
3π
4 , π}
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Smoothing filter

Binomial filter approximating a 2D-Gaussian.

G =

 1 2 1
2 4 2
1 2 1
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Example of two edge maps I

fig13.m, fig12.m
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Example of two edge maps II

Require: I
Ensure: I ′

1: Compute M
2: Compute T = f −1

M (⌊0.75N⌉)
3: Compute I ′ = 1(M ≥ T)

Require: I
Ensure: I ′

1: Compute M ′

2: Compute T = f −1
M′ (⌊0.75N⌉)

3: Compute I ′ = 1(M ′ ≥ T)
M = |F1 ∗ I |+ |F2 ∗ I |+ |F3 ∗ I |+ |F4 ∗ I |

M ′ = |F1 ∗ G ∗ I |+ |F2 ∗ G ∗ I |+ |F3 ∗ G ∗ I |+ |F4 ∗ G ∗ I |

Main idea

Smooth the image

Compute Gradient

Add absolute values

Compute a threshold
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Smoothing=denoising

Require I

Normalize between 0 and 1

Add white Gaussian noise
⇒ I1

Smooth ⇒ I2

Compare with I

PSNRdB(I, I
′) = 10 log10

(
N∑N−1

n=0 (I (n)− I ′(n))2

)
This

proves I2 is closer to I than to I1, thanks to smoothing.

log10

log10(10) = 1 log10 (10
x) = x log10(x) =

ln(x)

ln(10)
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What smoothing removes contains information

Ground truth
T = f −1

I (0.75N)
1(I ≥ T)

I ′ = |I − 1
16G ∗ I |

T = f −1
I (0.75N)

1(I ≥ T)

Texture

To classify texture, we can use nonlinear filters resembling to denoising
and we can use entropy-based metrics.
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New notations

∂I is here a contour, that is a binary image.

Ψ and Φ are here images whose values are angles.

∗ is here the 2D-convolution product. It is actually a sum-product of
a sliding window. It uses here to indicate how the sliding window is
to be positioned.

| . . . | means the absolute value when applied to a numerical value or
function.

Four examples of filtering operators to find edges: F1, F2, F3, F4.

One example of a smoothing operator reducing noise: G.

PSNRdB is a metric used in image processing.

log10.

March 20, 2024 126 / 469



Conclusion of subsection 2, Edges as a mean for
segmentation

Filtering operators can smooth the image and reduce noise.

We have defined a loss function for binary unsupervised classification
problems.

We defined a function fI useful to select thresholds and it happens to
be the superlevel set function.

Thresholding can be seen as a decision stump.

With two points, we define a linear classifier.

What are the tools in image processing to consider the spatial
context?

Nearby points tend to belong to similar classes.

Actually there are also links with probability through the empirical
distribution and the empirical cumulative distribution.
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Content of section 2, Image processing I

2.1 Segmentation
2.2 Edges as a mean for segmentation
2.3 Detection of connected components
2.4 Use of iterated algorithms
2.5 Clustering regarded as an optimization problem
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Connected spaces in mathematics

(1, 3) is connected but {x |x ∈ (1, 3) or x = 4} is not connected.

R is connected but N is not connected.

R2 is connected but not
{(x , y) ∈ R2|x + y ̸= 0}

This is based on neighborhoods which contain balls.
∀x, ∃ϵ > 0 such that Nx ⊃ {x′|d(x, x′) ≤ ϵ}
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Connected sets in image processing

A set of pixels is binary image
IP(m1,m2) = 1 ((m1,m2) ∈ P)

These two first are connected sets, not the last one
1 1 0 0
0 1 1 0
0 0 1 1
0 0 1 0




0 1 0 0
1 1 1 0
0 1 0 1
0 1 1 1




1 1 0 0
1 0 0 1
0 0 0 1
0 1 1 1


We define a neighborhood system.

N(m1,m2) = {(m′
1,m

′
2) ∈ N||m′

1 −m1|+ |m′
2 −m2| ≤ 1}

We may also consider as a neighborhood system.
N ′

(m1,m2)
= {(m′

1,m
′
2) ∈ N||m′

1 −m1| ≤ 1 and |m′
2 −m2| ≤ 1}
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Definition of connected spaces

P is connected if

For all (m1,m2), (m
′
1,m

′
2) ∈ P, there exists a sequence

γ1 . . . γP such that
γ1 = (m1,m2)
γP = (m′

1,m
′
2)

∀p ∈ {1 . . .P}, γp ∈ P
∀p ∈ {1 . . .P − 1}, γp+1 ∈ Nγp

P has P connected components if

There exists P1, . . .PP sets that define a partition of P such
that 

P =
⋃

p Pp

∀p ̸= p′,Pp
⋂

Pp′ = ∅
∀p,Pp is connected
∀p ̸= p′,Pp

⋃
Pp′ is not connected
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Finding the connected components

Require: I
Ensure: I′

1: Set I′ = 0 with the size of I
2: Set highest = 0
3: for (m1,m2) ∈ N with raster scanning along lines do
4: if I ′(m1,m2) = 0 then
5: continue the for-loop

6: Collect the two labels above and left
7: if no labels are collected then
8: highest+ = 1, I ′(m1,m2) = highest and continue

9: if one label is collected or two equal labels then
10: Set I ′(m1,m2) with the label nearby and continue

11: Set I ′(m1,m2) with lowest collected label
12: Change the highest collected label in I′ to the lowest.
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Testing that a set is connected

Exercise 19

1 What neighborhood system is the pseudocode using?

2 How can we use the pseudocode to test is a given set is connected?

3 Give the intermediate values of I′ when I is defined as
1 1 0 0
1 0 0 1
0 0 0 1
0 1 1 1
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Answer to exercise 19 I

1 The cross neighborhood, that is the first one.

2 If the yielded image has at most one label, then the set is connected.
If not it is not connected.

3

I =


1 1 0 0
1 0 0 1
0 0 0 1
0 1 1 1



I′1 =


1 1 0 0
1 0 0 2
0 0 0 2
0 3 3 0



I′2 =


1 1 0 0
1 0 0 2
0 0 0 2
0 2 2 2
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Answer to exercise 19 II
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Experimental results

Connected components
of 1(I (n, 50) ≥ T) with
the third quantile.

Number of connected
components whose area
is greater than a given
area.
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Experimental results

Ground truth for soybean
Five greatest connected compo-
nents.
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Edges can be transformed into segmentation

Exercise 20

Give a pseudo transforming a binary image with edges into the
corresponding regions.
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Answer to exercise 20 I

Require: IB
Ensure: I′

1: Compute I = 1− IB
2: Find the connected components of I.
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New notations

R, N
∀ and ∃
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Conclusion of subsection 3, Detection of connected
components

Neighborhood,

Connected components

Algorithm giving the connected components

Edges can be used for region segmentation

Experimental results

The results are not convincing. There is a need for reliable information.
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Content of section 2, Image processing I

2.1 Segmentation
2.2 Edges as a mean for segmentation
2.3 Detection of connected components
2.4 Use of iterated algorithms
2.5 Clustering regarded as an optimization problem

March 20, 2024 142 / 469



Setting a thresholding value

seg thresholding1.m

Require: I
Ensure: T
1: select an initial value for T,
2: while T is modified do

3: µ0 =
∑

m1,m2
I (m1,m2)1(I (m1,m2)≤T)∑

m1,m2
1(I (m1,m2)≤T)

4: µ1 =
∑

m1,m2
I (m1,m2)1(I (m1,m2)≥T)∑

m1,m2
1(I (m1,m2)≥T)

5: T = µ0+µ1
2

An initial value of T could be the average between the corners and the
center. The algorithm would remain the same if the pixel intensities were
stacked in a column vector.

Note

This is a crisp assignment.
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Numerical example

Exercise 21

We consider the following image

I =


1 6 3 3
2 6 2 4
1 1 1 5
5 6 4 1


1 Give the segmented image using the thresholding algorithm.
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Answer to exercise 21 I

T = 1+3+5+1
4 = 2.5

µ0 =
1+2+2+1+1+1+1

7 ≈ 1.3

µ1 =
6+3+3+6+4+5+5+6+4

9 ≈ 4.6

T = µ1+µ2
2 ≈ 2.97 < 3
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Minimizing the within-diversity

Figure 4: Left: loss function w.r. to T. Right: new threshold T′ w.r. to old
threshold T.

J(µ0, µ1,N0,N1) =

√∑
n∈N0

(In − µ0)2 +
∑

n∈N1
(In − µ1)2

|N |
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Minimizing the within-diversity

Exercise 22

We are going to prove formulas in steps 3 and 4 used in
algorithm seg thresholding1. We assume a function to be minimized

J =

√∑
n∈N0

(In − µ0)2 +
∑

n∈N1
(In − µ1)2

N

1 Show that given N0 and N1, J is minimal when

µ0 =

∑
n∈N0

In

|N0|
and µ1 =

∑
n∈N1

In

|N1|
2 Show that given µ0 and µ1, J is minimal when

N0 = {In ≤ µ0 + µ1
2

} and N1 = {In >
µ0 + µ1

2
}

Good news

We don’t need to estimate here σ.
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Answer to exercise 22 I

1 Because N0 and N1 are fixed, the minimization of J is the same than
that of J2(|N0|2 + |N1|2)

J2(|N0|2 + |N1|2) = |N0|
∑
n∈N0

(In − µ0)
2 + |N1|

∑
n∈N1

(In − µ1)
2

Both quantities are second order polynomials with µ0 and µ1 as
variables. Considering the left part of the J2(|N0|2 + |N1|2):
|N0|

∑
n∈N0

(In − µ0)
2 = |N0|

∑
I 2n − 2µ0|N0|

∑
In + µ20|N0|2

= |N0|2
(
µ0 − 1

|N0|
∑

In
)2

+ |N0|
∑

I 2n − |N0|2
(

1
|N0|
∑

n xn
)2

Looking at this equation, the right part is not depending on µ0, and
the left part is minimized when µ0 =

1
|N0|
∑

n∈N0
In. Applied on the

right part of J2(|N0|2 + |N1|2), the same technique shows
µ1 =

1
|N1|
∑

n∈N1
In.
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Answer to exercise 22 II

General technique

The minimization of J w.r. to µ0, µ1 is usually solved using
∂J

∂µ0
= 0 and

∂J

∂µ1
= 0

or actually here ∂J
∂µ0

2 J can be written in a sample-by-sample formula.

J2 =
1

N

N−1∑
n=0

(In − µ0)
21(n ∈ N0) + (In − µ1)

21(n ∈ N1)

We assume here that µ0 < µ1. Given µ0, µ1 and N, J2 is minimal
when for all n ∈ N n ∈ N0 if |In − µ0| < |In − µ1|

n ∈ N1 if |In − µ0| ≥ |In − µ1|
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Answer to exercise 22 III

which is equivalent to
n ∈ N0 if xn ≤ µ0
n ∈ N0 if µ0 < xn ≤ (µ0 + µ1)/2
n ∈ N1 if (µ0 + µ1)/2 < xn ≤ µ1
n ∈ N1 if xn > µ1

Finally we get

N0 = {n|In ≤ µ0 + µ1
2

} and N1 = {n|In >
µ0 + µ1

2
}
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Using soft assignments

seg thresholding2.m

Require: I (n)
Ensure: µ0, µ1
1: select an initial value for T,

2: µ0 =
∑

n I (n)1(I (n)≤T)∑
n 1(I (n)≤T)

3: µ1 =
∑

n I (n)1(I (n)>T)∑
n 1(I (n)>T)

4: while µ0 or µ1 are modified do
5: qn = |I (n)−µ0|

|I (n)−µ1|+|I (n)−µ1|

6: µ0 =
∑

n I (n)qn∑
n qn

7: µ1 =
∑

n I (n)(1−qn)∑
n 1−qn
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Doing crisp assignments

Exercise 23

Find a formula for qn such that the second algorithm behaves like the first
one.
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Answer to exercise 23 I

qn = 1(I (n) ≤ µ0 + µ1
2

)∑
n I (n)qn∑

n qn
=

∑
n I (n)1(I (n) ≤

µ0+µ1
2 )∑

n 1(I (n) ≤
µ0+µ1

2 )∑
n I (n)(1− qn)∑

n(1− qn)
=

∑
n I (n)1(I (n) >

µ0+µ1
2 )∑

n 1(I (n) >
µ0+µ1

2 )
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Figure 5: Left: Original bandwidth intensity image. Center: Thresholding with
crisp assignments. Right: Thresholding with soft assignment.

Is the extra information reliable?

How should I (n) 7→ qn be chosen.

qn =
|I (n)− µ0|

|I (n)− µ0|+ |I (n)− µ1|
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New notations

∑
n∈N0

I (n) =
∑

n I (n)1(n ∈ N0)

The average is µ0 =
1

|N0|
∑

n∈N0
I (n)
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Conclusion of subsection 4, Use of iterated algorithms

Thresholding with crisp assignments

Thresholding with soft assignments

Graph of a loss function and of a sequence un+1 = f (un)

Convexity
∂
∂θ to the extrema of a function.

What are the tools in image processing to consider the spatial
context?

Nearby points tend to belong to similar classes.

Actually there are also links with probability through the empirical
distribution and the empirical cumulative distribution.
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Content of section 2, Image processing I

2.1 Segmentation
2.2 Edges as a mean for segmentation
2.3 Detection of connected components
2.4 Use of iterated algorithms
2.5 Clustering regarded as an optimization problem
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Unsupervised classification

Definition

Of the dataset (X,Y ), only x is
used. (XT = [xT1 , . . . , x

T
N ])

Clusters

Instead of classes, we consider
clusters.
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kmeans
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Algorithm of kmeans

Exercise 24

We consider a set of points X and two clusters. Two points are first
randomly selected. Then the two following iterations are repeated.

Each point is assigned to the closest point.

Each geometric center is updated with its new and removed members.

1 Give the algorithm
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Answer to exercise 24

Require: X
Ensure: Ŷ
1: Select randomly two rows of x: µ0 and µ1.
2: Set Ŷ with zeros.
3: repeat
4: Ŷold = Ŷ
5: for n = 1 : N do
6: Ŷn = 1(d(xn,µ0) > d(xn,µ1))

7: Ŷ = [Ŷ1 . . . ŶN ]
T

8: µ0 =
1

|{n|Ŷn=0}|

∑
Ŷn=0

xn

9: µ1 =
1

|{n|Ŷn=1}|

∑
Ŷn=1

xn

10: until Ŷ = Ŷold
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An ad hoc loss function

The number of samples assigned to each cluster is

|N0| =
N∑

n=1

1(yn = 0) =
N−1∑
n=0

1− yn and |N1| =
N∑

n=1

1(yn = 1) =
N−1∑
n=0

yn

Given a set of assignments indicated with Y , we define the geometric
center of the two clusters in the feature space

µ0(X,Y ) = 1
|N0|
∑N−1

n=0 (1− yn)xn

µ1(X,Y ) = 1
|N1|
∑N−1

n=1 ynxn
We derive a norm from the scalar product

∥x∥2 = x�x
We define a modified kind of within point scatter

J(X,Y ) =
∑N−1

n=0 (1− yn)∥xn − µ0(X,Y )∥2
+
∑N−1

n=0 yn∥xn − µ1(X,Y )∥2
This is the loss function that is non-increasing when Y is modified along
kmeans.
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Conclusion of subsection 5, Clustering regarded as an
optimization problem

Description of a very popular algorithm: kmeans

It is an unsupervised algorithm

There exists a loss function for which this algorithm is non-increasing

In terms of algorithm efficiency, this property is an appealing
characteristic, but it is far from explaining the generally good
performance and its popularity.

Knowing the equation of this loss function can be used to adapt this
algorithm to other contexts.

We have seen algorithms that seem to have good performance in
terms of accuracy or at least with a loss function, can we say
something about the reliability of a prediction regarding a new sample.

In the next section, we are measuring the reliability of such predictions?
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Content of section 3, Learning regarded as an optimization
problem I

3.1 Optimization problem
3.2 Simulated annealing
3.3 Method of least squares
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Optimization problem

The loss function is a proxy indicating how to approach the goal.

Parameters are selected so that
Θ∗ = argmin

Θ
L(Y , [f vΘ(xn)]n)

where f vΘ(x) is a real-valued function.

Real-valued predictor
f v (x) ∈ R

(the dependency w.r. to Θ is often omitted for the sake of clarity)

Linear real-valued predictor
f v (x) = b − a�x

A new L2-loss function

L(S , f v ) =
1

2

N−1∑
n=0

(f v (xn)− ỹn)
2
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Exercise 25

We are considering the following 2-feature data set denoted S2.
x11 = 2 x12 = 0.5 y1 = 1
x21 = 1 x22 = 2 y2 = 0
x31 = 0 x32 = 0 y3 = 1

We consider a family of predictors fa,b defined as
fa,b(x) = 1(a�x ≤ b)

with a = [a1, a2].
We define J(a1, a2, b) = L(S2, fa,b)

1 Compute J(a1, a2, b) as the sum of three quadratic expressions. And
explain why 0 an obvious lower bound of J is likely to be reached.

2 Show that J(a1, a2, b) = 0 if this system is solved.
2a1 + 0.5a2 − b = −1
a1 + 2a2 − b = 1
b = 1

3 Solve the system and show that a1 = −2
7 , a2 =

8
7 and b = 1.
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Answer to exercise 25 I

1

J(b, a) = L(S , f v ) =
1

2

3∑
n=1

(b − a�x− ỹn)
2

Square values are necessarily non-negative so J(b, a) ≥ 0. This lower
bound is the actual minimum value if these square values are zeroed,
that is if three constrained equations are met by three free variables
b, a1, a2.

2

2J(b, a) = (b − 2a1 − 0.5a2 − 1)2 + (b − a1 − 2a2 + 1)2 + (b − 1)2

J(b, a) = 0 iff 
2a1 + 0.5 ∗ a2 − b = −1
a1 + 2a2 − b = 1
b = 1

March 20, 2024 169 / 469



Answer to exercise 25 II

3

J(1, [−2/7, 8/7]) = (1− 2 ∗ (−2/7)− 0.5 ∗ 8/7− 1)2

+(1− (−2/7)− 2(8/7) + 1)2 + (1− 1)2 = 0

March 20, 2024 170 / 469



Need of a more general technique

In the example shown in exercise 25, we have three samples and three free
variables

min
a,b

J(a, b) = 0 and a, b = argmin
a,b

J(a, b)

In general this is not true.

Finding a solution using an algorithm

Using linear algebra.
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New notations

L is here the L2-loss function.

f v (x) ∈ R whereas f (x) ∈ {0, 1}.
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Conclusion of subsection 1, Optimization problem

Parameters of a predictor function are chosen so as to minimize or
maximize a loss function or the accuracy for a given dataset.

An L2-loss function is an example.

It works like a regression, as if we wanted to predict a real value for ỹ .

Even a simple example seems to require complex computations, how
are we going to deal with more complex examples?

In the next section, we will see an example of algorithm. And after, we will
see examples of image processing without optimization.
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Content of section 3, Learning regarded as an optimization
problem I

3.1 Optimization problem
3.2 Simulated annealing
3.3 Method of least squares
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Simulated annealing (a more complex kind)
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Simplified simulated annealing

Require: Loss function
Ensure: Θ parameters minimizing the loss function.
1: Select randomly Θ and set L := +∞.
2: for k=1:10000 do
3: Select randomly r , a real in [0, 6] and set σ := 10−r .
4: Select randomly ∆Θ along a centered Gaussian distribution with σ

as standard deviation.
5: if L(Θ +∆Θ) < L then
6: Set Θ := Θ +∆Θ and L := L(Θ).

7: Display Θ.
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Using simulated annealing.m

cost_function=@(theta)(theta(1)-2)^2+(theta(2)-3)^2;

dim=2;

theta=simulated_annealing(cost_function,dim);

The code displays

L=28.2762

L=25.1406

L=23.7017

L=15.3473

We have the best parameter found with

octave:24> theta

theta =

1.9994

3.0029
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Exercise 26

Give the Octave code that uses simulated annealing to find an
approximation of a and a of exercise 25 which tells

We are considering the following 2-feature data set denoted
S2.

x11 = 2 x12 = 0.5 y1 = 1
x21 = 1 x22 = 2 y2 = 0
x31 = 0 x32 = 0 y3 = 1

We consider a family of predictors fa,b defined as
fa,b(x) = 1(a�x ≤ b)

with a = [a1, a2].
We define

J(a1, a2, b) = L(S2, fa,b) =
1

2

N−1∑
n=0

(f v (xn)− ỹn)
2
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Costly performances obtained with simulated annealing

March 20, 2024 179 / 469



Answer to exercise 26 I

function J=J2(theta)

x1=[2 0.5]; y1=1;

x2=[1 2]; y2=0;

x3=[0 0]; y3=1;

tilde=@(y)2*y-1;

b=theta(1); a1=theta(2); a2=theta(3);

J=(b-a1*x1(1)-a2*x1(2)-tilde(y1))^2;

J=J+(b-a1*x2(1)-a2*x2(2)-tilde(y2))^2;

J=J+(b-a1*x3(1)-a2*x3(2)-tilde(y3))^2;

end

theta=simulated_annealing(@(theta)J2(theta),3);
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L is different from L. It is the last best value obtained.

∆Θ: modification of the parameter values.
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Conclusion of subsection 2, Simulated annealing

Simulated annealing is quicker than a uniform random search.

It refines the search after some iterations.

The choice of the proposed algorithm is to make it easy to use at the
expense of a high numerical complexity.

An other technique to select parameters with respect to a loss
function and a dataset?

In the next subsection, we discuss the minimization of the L2-loss function
for linear classifiers.

March 20, 2024 182 / 469



Content of section 3, Learning regarded as an optimization
problem I

3.1 Optimization problem
3.2 Simulated annealing
3.3 Method of least squares
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Product of two matrices

C = AB

cij =
m∑

k=1

aikbkj
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biais considered as a supplementary feature

Predicting function

f v (x) = b − a�x = w�
∆
x

We use the following definition
w = [−a1 − a2 . . . − aF b] = [−a b]
∆
x = [x1 x2 . . . xF 1] = [x 1]

The matrix definition of X is modified into

∆

X =

 x1 1
... 1
xN 1

 =


∆
x1
...
∆
xN

 =

X 1
...
1
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Expressing the loss function with matrices I

[. . . . . . . . .]


...
...
...


Scalar product as vector multiplication

w�
∆
x = w

∆
x
T

L(S , f v ) =
1

2

N∑
n=1

(w
∆
x
T

n − ỹn)
2
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Expressing the loss function with matrices II

Sum of square values as vector multiplication

N∑
n=1

ỹn = Ỹ T Ỹ

In the same way,

L(S , f v ) =
1

2

(
∆

XwT − Ỹ

)T (∆

XwT − Ỹ

)
Expanding follows classical rules

2L(S , f v ) =

(
∆

XwT

)T (∆

XwT

)
−
(

∆

XwT

)T

Ỹ − Ỹ T

(
∆

XwT

)
+ Ỹ T Ỹ
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Transpose of the product of two matrices

Rules

(AB)T = BTAT and if AB is a scalar AB = (AB)T = BTAT

(AB)C = A(BC)

2L(S , f v ) =

(
∆

XwT

)T (∆

XwT

)
−
(

∆

XwT

)T

Ỹ − Ỹ T

(
∆

XwT

)
+ Ỹ T Ỹ

becomes

2L(S , f v ) = w
∆

X
T ∆

XwT − 2w
∆

X
T

Ỹ + Ỹ T Ỹ
We are now considering J(w) = L(S , f v )
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Finding a local minimum

w0 is local minimum iff for all w in a
neighborhood of w0, J(w0) ≤ J(w)

If w is a local minimum then
∂J(w)

∂w
= 0

w∗ is a global minimum iff
∀w, J(w∗) ≤ J(w)

Under some more involved conditions,
a unique local minimum that bounds from
below all values at the domain’s edges is a
global minimum.
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Partial derivative: definition

Rule

The derivative of a scalar function with respect to a row or a column
vector is a column or a row vector.

∂J(w)
∂[w1,w2,...,wF+1]

=


∂J(w)
∂w1

∂J(w)
∂w2
...

∂J(w)
∂wF+1

 ∂J(w)

∂


w1

w2
...

wF+1



=
[
∂J(w)
∂w1

, . . . ∂J(w)
∂wF+1

]
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Partial derivative: formulas

Notations

w is a row vector and V is a column vector. wV is a scalar and
wV = V TwT . A is a square matrix.

if A is symmetric:
AT = A

∂wV
∂w = ∂VTwT

∂w = V

∂wV
∂wT = ∂VTwT

∂wT = V T

∂wAwT

∂w = AwT + ATwT = (A+ AT )wT = 2AwT

∂wAwT

∂wT = wA+wAT = w(A+ AT ) = 2wA
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Derivative of J

Cost function

2J(w) = w
∆

X
T ∆

XwT − 2w
∆

X
T

Ỹ + Ỹ T Ỹ

Applying the rules and because
∆

X
T ∆

X is symmetric ((
∆

X
T ∆

X)T =
∆

X
T ∆

X)
∂J(w)

∂w
=

∆

X
T ∆

XwT −
∆

X
T

Ỹ

Cancellation of the derivative

wT =

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ

Instead of an optimization algorithm, we need to inverse a matrix (or
solve a linear system).
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Solving exercise 25 I

Exercise 27

We consider once again exercise 25 to solve without using the trick of
zeroing J which usually does not work.

x11 = 2 x12 = 0.5 y1 = 1
x21 = 1 x22 = 2 y2 = 0
x31 = 0 x32 = 0 y3 = 1

We consider a linear family of predictors fa,b defined as
fa,b(x) = 1(a�x ≤ b)

with a = [a1, a2]. We consider an L2-loss function
J(a1, a2, b) = L(S2, fa,b) =

1
2

∑N
n=1(f

v (xn)− ỹn)
2

1 Define w with respect to a and b and
∆
x with respect to x1 and x2.

2 Compute X,
∆

X and
∆

X
T ∆

X.
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Solving exercise 25 II

Exercise

3 Compute Y , Ỹ and
∆

X
T

Ỹ

4 Show that when a1 = −2
7 , a2 =

8
7 and b = 1, we have indeed that

∂J(w)
∂w = 0.

5 Let us suppose that we have an extra sample in S2. What are the
sizes of the different vectors and matrices involved here.

6 Assuming that w∗ that cancels the J-derivative is a global minimum,
show that

min
w

J(w) = Ỹ T Ỹ − Ỹ T
∆

X

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ
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Answer to exercise 27 I

1 w = [−a1,−a2, b] and
∆
x = [x1, x2, 1] because

f v (w) = b − a�x = w�
∆
x

2

X =

 2 0.5
1 2
0 0

 and
∆

X =

 2 0.5 1
1 2 1
0 0 1


∆

X
T

=

 2 1 0
0.5 2 0
1 1 1

 and
∆

X
T ∆

X =

 5 3 3
3 17

4
5
2

3 5
2 3


5 = 2×2 + 1×1 + 0×0

3

Y =

 1
0
1

 and Ỹ =

 1
−1
1

 and
∆

X
T

Ỹ =

 1
−3

2
1
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Answer to exercise 27 II

4 Knowing that

∆

X
T ∆

X =

 5 3 3
3 17

4
5
2

3 5
2 3


and based on the solution found in exercise 25, we select
w∗ = [27 ,−

8
7 , 1].(

∆

X
T ∆

X

)
w∗T =

 1
−3

2
1

 =
∆

X
T

Ỹ

5 We consider four samples.

The size of Y and Ỹ is 4×1.
The size of X is 4×2.

The size of
∆

X is 4×3.

The remaining sizes are unchanged.

The size of
∆

X
T ∆

X and

(
∆

X
T ∆

X

)−1

is 3×3.
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Answer to exercise 27 III

The size of
∆

X
T

Ỹ is 3×1.
The size of w is 1×3.

6 We assume that w∗ is a global minimum.

(w∗)T =

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ

w∗ = Ỹ T
∆

X

(
∆

X
T ∆

X

)−1

We plug this in the definition of J.

J(w∗) = Ỹ T
∆

X

(
∆

X
T ∆

X

)−1
∆

X
T ∆

X

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ

−2Ỹ T
∆

X

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ + Ỹ T Ỹ
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Answer to exercise 27 IV

After simplification we get the expected result.

J(w∗) = Ỹ T Ỹ − Ỹ T
∆

X

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ
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Comment on exercise 27

Remark 1

This least square technique is good for regression, not so much for
classification as we will see later on.

Remark 2

Techniques that can be defined with matrices are generally easier to
implement. It is easier to check the implementation.
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New notations

Extended vector
∆
x

Extended matrix
∆

X

Unique vector w for linear classifier instead of [−a, b].

Derivation w.r. to a row vector ∂
w or a column vector ∂

wT .

w∗ global minimum of the loss function.
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Conclusion of subsection 3, Method of least squares

Matrix formulas: product, transposition, expanding rules.

Derivative of a scalar function with respect to a vector.

First use of XTX also called covariance matrix.

Definition of
∆

X.

Parameter values are obtained by minimizing
∆

X
T ∆

X.

These are techniques requiring the knowledge of Y

In the next section we discuss technique not needing Y .
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A linear classifier separating gaussians

Exercise 28

Let Y be a uniform binary random variable and X when conditioned to Y
be a 2D-gaussian variable with mean µ0 ∈ R2 or µ1 ∈ R2 and standard
deviation σ0 > 0 or σ1 > 0.

1 What is the probability that Y = 0 on a given experiment?

2 What is the probability density function that X = [x1, x2] given Y = 0
and then given Y = 1?

3 We now assume that σ0 = σ1 = σ, show that a straight line separates
points that are more likely when Y = 1 from the more likely points
when Y = 0.

fX |Y =1(x) ≥ fX |Y =0(x) ⇔ (µ1 − µ0)x
T ≥ (µ1 − µ0)(

1

2
µ1 +

1

2
µ0)

T

The last question refers to an example of linear discriminant analysis that
we will discuss at the end of this section.
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Answer to exercise 28

1 {
P(Y = 0) = P(Y = 1)
P(Y = 0) + P(Y = 1) = 1

⇒ P(Y = 0) = 0.5

2

fX |Y =0(x) =
1

2πσ2
0
e
− 1

2σ2
0
(x−µ0)(x−µ0)

T

fX |Y =1(x) =
1

2πσ2
1
e
− 1

2σ2
1
(x−µ1)(x−µ1)

T

3

fX |Y =1(x)

fX |Y =0(x)
= e

1
2πσ2 (x−µ0)(x−µ0)

T− 1
2πσ2 (x−µ1)(x−µ1)

T
≥ 1

⇔ (x− µ0)(x− µ0)
T ≥ (x− µ1)(x− µ1)

T

⇔ −2µ0x
T + µ0µ0

T ≥ −2µ1x
T + µ1µ1

T

⇔ (µ1 − µ0)x
T ≥ (µ1 − µ0)(

1
2µ0 +

1
2µ1)

T
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An experiment

A

Xq,Yq Ŷq

D a, b R

Xl ,Yl C

a, b are randomly chosen according
to R.
x are drawn according to a distribu-
tion D .
Training set:12 samples
Y T
l = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]

Ŷ T
l = [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0]

Confusion matrix

C =

[
5, 1
1, 5

]
Testing set: 2 samples

Y T
q = [0, 1]

Accuracy: 3 possible values

A =
1

2
1(yq0 = ŷq0) +

1

2
1(yq1 = ŷq1)
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Algorithm of a random classifier

Require: C
Ensure: P(A)
1: Set P(A) = [0, 0, 0].
2: for i = 1 : I do
3: repeat
4: Draw µ0,µ1, σ0, σ1, a and b.
5: Set Y T

l = [0 . . . 0, 1 . . . 1].
6: Draw Xl .
7: Compute Ŷl with Xl and Ĉ with Yl , Ŷl .
8: until Ĉ = C
9: Set Y T

q = [0, 1].
10: Draw Xq.

11: Compute Ŷ
12: Compute A = 1

21(ŷq0 = 0) + 1
21(ŷq1 = 1)

13: Adapt P(A) with A

14: Normalize P(A)

Conditional proba-
bilities
P(A = 0|Ĉ = C ),

P(A = 0.5|Ĉ = C ),

P(A = 1|Ĉ = C )
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Joint probabilities conditional probabilities

We assume here it is very unlikely that Ĉ = C

P(A = 1 and Ĉ = C ) means
the probability of having A = 1
and that Ĉ = C

The assumption implies
P(A = 1 and Ĉ = C ) is small.

If each time Ĉ = C , we also
have A = 1 then the
assumption makes it invisible
in P(A = 1 and Ĉ = C )

P(A = 1|Ĉ = C ) means the
probability of having A = 1
given that Ĉ = C

The assumption does not
imply anything on
P(A = 1|Ĉ = C )

If each time Ĉ = C , we also
have A = 1 then
P(A = 1|Ĉ = C ) = 1 is high.

March 20, 2024 209 / 469



Example on the computation of conditional probabilities

Concerning a dice, we consider an event E dice equal 1 and a side
information S dice is odd.

Two theoretical formulas
First definition
Second definition

P(E |S) = P(E&S)

P(S)
dice E S

1 1 1
2 0 0
3 0 1
4 0 0
5 0 1
6 0 0

dice=ceil(rand(1,1000)*6);

odd=@(n)mod(n,2)==1;

dice2=dice(odd(dice));

proba_EGS_1=sum(dice2==1)/length(dice2),

proba_E=sum(mod(dice,2)==1)/length(dice),

proba_S=sum(dice2==1)/length(dice),

proba_EGS_2=proba_E/proba_S,
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New notations

X is here a random vector.

P (. . .& . . .) joint probability

P (. . . | . . .) conditional probability
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Conclusion of subsection 1, Inference on an example

By repeating a random experiment, we can measure inference.

Probability distributions is a interesting framework to describe
experiments.

As a side effect

From this probabilistic framework we get a new classifier.
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Content of section 4, Predicting the learning performances
and probabilistic framework I

4.1 Inference on an example
4.2 Linear discriminant analysis
4.3 Predicting the true probabilities
4.4 Prior and Bayes formula
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LDA on a simplified example

Exercise 29

We consider here a data set defined by a probability distribution.

P(y = 0) = P(y = 1) = 0.5 and

 fx|y=0(x) =
1

2πσ2 e
− 1

2σ2 (x−µ0)(x−µ0)
T

fx|y=1(x) =
1

2πσ2 e
− 1

2σ2 (x−µ1)(x−µ1)
T

with µ0 = [1, 0],µ1 = [0, 1] and σ = 2.

1 Write an algorithm to check that these expressions are probability
distributions. Use the independence between the two components to
reduce the numerical complexity.∫
x1

∫
x2
f (x1)f (x2)dx1dx2 =

∫
x1
f (x1)dx1

∫
x2
f (x2)dx2

2 Show that with this model, y = 1 is more likely than y = 0 iff
µ0µ

T
0 − µ1µ

T
1 − (µ0 − µ1)x

T ≥ 0

3 Draw in the feature space the domains for which y = 1 or y = 0 is
more likely.
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Answer to exercise 29 I

1 We need to check
+∞∫

x1=−∞

+∞∫
x2=−∞

fx|y=0(x) dx1dx2 =

+∞∫
x1=−∞

+∞∫
x2=−∞

fx|y=1(x) dx1dx2 = 1

Require: σ, y
Ensure: s value of the integral
1: Set s = 0, Q = 1e − 2
2: for q1 = − 1

Q2 : 1
Q2 do

3: Set x1 = q1Q
4: for q2 = − 1

Q2 : 1
Q2 do

5: Set x2 = q2Q
6: Add to s, fx|y (x1, x2)Q

2

7: Display s that should be close to 1
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Answer to exercise 29 II

However this is actually quite complex. So we separate what happens
to each component.

fx|y=0(x) =
1√
2πσ

e−
1

2σ2 (x1−µ01)2× 1√
2πσ

e−
1

2σ2 (x2−µ02)2

fx|y=1(x) =
1√
2πσ

e−
1

2σ2 (x1−µ11)2× 1√
2πσ

e−
1

2σ2 (x2−µ12)2

+∞∫
x1=−∞

1√
2πσ

e−
1

2σ2 (x1−µ01)2
+∞∫

x2=−∞

1√
2πσ

e−
1

2σ2 (x2−µ02)2 =

+∞∫
x1=−∞

1√
2πσ

e−
1

2σ2 (x1−µ11)2
+∞∫

x2=−∞

1√
2πσ

e−
1

2σ2 (x2−µ12)2 = 1

Require: σ, y
Ensure: s value of the integral
1: Set s1 = s2 = 0, Q = 1e − 2
2: for q1 = − 1

Q2 : 1
Q2 do

3: Set x1 = q1Q
4: Add to s1, fx1|y (x1)Q
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Answer to exercise 29 III

5: for q2 = − 1
Q2 : 1

Q2 do
6: Set x2 = q2Q
7: Add to s2, fx2|y (x2)Q

8: Compute s = s1s2.
9: Display s that should be close to 1

2 The goal is to find where in the feature space fx|y=1(x) > fx|y=0(x).

σ2 ln
(
fx|y=1(x)

fx|y=0(x)

)
= (x− µ0)(x− µ0)

T − (x− µ1)(x− µ1)
T

= −2µ0x
T + µ0µ

T
0 + 2µ1x

T − µ1µ
T
1

This proves y = 1 is more likely when
µ0µ

T
0 − µ1µ

T
1 − 2(µ0 − µ1)x

T ≥ 0
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Answer to exercise 29 IV

3 y = 1 is more likely when x2 ≥ x1. Indeed
(µ0 − µ1)x

T = x1 − x2 and µ0µ
T
0 − µ1µ

T
1 = 0
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LDA in a more general context

Probabilistic assumption

P (Y = 1) = p = 1− P (Y = 0) and P (
r
x|Y = 1) and P (

r
x|Y = 0) are two

independent multivariate normal distribution with an unknown common
covariance matrix Σ.

fr
x|Y=1

(x) = 1

(2π)
F
2 | det(Σ)|

F
2
e−(x−µ1)Σ

−1(x−µ1)
T

fx|y=0(x) =
1

(2π)
F
2 | det(Σ)|

F
2
e−(x−µ0)Σ

−1(x−µ0)
T

Σ is defined as the covariance matrix
Σ = E

[
(
r
x)T

r
x
]

where E is the expectation and here
r
x is a random row vector.
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Covariance matrix

It is estimated with X from the training set.

Σ̂ =
N−1∑
n=0

xTn xn = XTX

Note the striking similarity of this covariance matrix with
∆

X
T ∆

X used in the
least square methodology.

Is it appropriate to assume a common covariance matrix?

This assumption yields a linear classifier. Besides it is generally difficult to
estimate precisely Σ using all the samples in the training set, sometimes
some regularization is needed to help the estimation. So it would be even
more difficult to estimate two different covariance matrices.
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Derived linear classifier

Similarly to exercise 29, we compute the logarithm of the ratio of
ln f r

X|Y=1
(x)− ln f r

X|Y=0
(x)

= (x− µ0)Σ
−1(x− µ0)

T − (x− µ1)Σ
−1(x− µ1)

T

= 2(µ1 − µ0)Σ
−1xT −

(
µ1Σ

−1µT
1 − µ0Σ

−1µT
0

)
We get a linear classifier f (x) = δ(b − a�x ≥ 0) with{

a = 2(µ0 − µ1)Σ
−1

b = µ0Σ
−1µT

0 − µ1Σ
−1µT

1

Supervised feature extraction

We could use x ′ = b − a�x as an extracted feature. This is basically the
idea behind some LDA-derived feature-extraction techniques. It is limited
to the number of classes.
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New notations

r
x is a random vector.

fr
x
(x) is the probability density of P (

r
x).

µ0 and µ1 are the mean of the probability distributions of classes 0
and 1. They are estimated using averaging operators on the training
set. Their estimates is µ̂0 and µ̂1.

Σ is the common covariance matrix of both Gaussian probability
distributions. It is estimated using the whole training set. Its
estimation is denoted Σ̂.

det(A) is the determinant of A, it is a scalar.
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Conclusion of subsection 2, Linear discriminant analysis

When comparing with the L2-linear classifier.

1 We also have to inverse the covariance matrix.

2 Instead of considering the cross-covariance matrix XTY , we consider
here distorted means, of 1-samples and 0-samples.

3 Just like L2-linear classifier, it is prone to numerical instabilities when
the covariance matrix is badly conditioned.

Question?

When applying this probabilistic framework to inference, can we make
reliable predictions?
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Content of section 4, Predicting the learning performances
and probabilistic framework I

4.1 Inference on an example
4.2 Linear discriminant analysis
4.3 Predicting the true probabilities
4.4 Prior and Bayes formula
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Making inference on hidden parameters based on some
evidence

It is common to compute the probability of having a confusion matrix
given a certain probabilistic model.
Here we do the opposite, get some probability on some parameters of a
probabilistic model given that the observed confusion matrix meets some
constraint.

Given a dataset drawn from a unique probability distribution

Given a classifier drawn from a unique probability distribution

What is the likely accuracy given the confusion matrix computed on a
small example of 12 samples.

Beware

This section is meant only to better understand the Bayes formula
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Modeling the statistical inference

Here we do not consider the classification problem.

Y = 0 Ŷ = 0

Y = 1 Ŷ = 1

p0

1− p0

p1

1− p1

fth(p) =
p5(1− p)∫ 1

0 p5(1− p)dp
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Exercise 30

We assume here an experiment of 12 samples, 6 labeled positively and 6
negatively. We observed for each label, that 5 of them are correctly
predicted.

1 Write an algorithm computing an approximation of the probability
distributions that could best explain this experiment: the probability
of a negative label to be correctly labeled f0(p) and that of a positive
to be correctly labeled f1(p).

2 Given p0 and p1, and a column vector
Y T = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], show that the probability to have
Ŷ consistent with the confusion matrix is(

6

1

)
p50(1− p0)×

(
6

1

)
p51(1− p1)
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Answer to exercise 30

1 Require: C,Q, I
Ensure: p, f0,f1
1: Set Y = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
2: for i = 1 : I do
3: Draw p0, p1 as uniform variable on [0, 1].
4: Draw Ŷ along p0 and p1.
5: Compute Ĉ according to Ŷ and Y .
6: if Ĉ = C then
7: Adapt f0 and f1 with p0 and p1.

8: Normalize f0 and f1.

2 What happens to the six first component is independent of the
remaining. There are

(6
1

)
= 6 ways of selecting a component in an

array of 6 components. There is a probability of respectively p0, p1 to
predict the correct value 0, 1, and 1− p0, 1− p1 to predict the
incorrect values 1, 0.
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P(A|Ĉ = C ) are measured with two different techniques.

Comment on the figure

The second technique is a model of
the first technique as any
probabilistic model can be regarded
as a random decision with some
probability distribution for p0 and
p1. Both distributions appear
similar but they are not equal.
Could we explain the difference?

The technique shown in
purple, draws randomly
random datasets and
classification predictors, it
measures P (A|Ĉ = C ) by
selecting only the instances
where C is as expected.

The technique shown in
yellow, draws randomly some
probabilities p0 and p1 of
binary decisions and again only
the accuracies corresponding
to the expected C matrix are
taken into account to compute
P(A|Ĉ = C ).
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New notations

A → B: means that
P (A,B) = P (B|A)P (A)(n

p

)
means the number of different subsets of size p that can be

drawn out of a set of size n.(
n

p

)
=

n!

p!(n − p)!
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Conclusion of subsection 3, Predicting the true probabilities

1 We have modeled classifying samples as a binomial trial.

2 The confusion matrix measured during training yields the parameters
of the binomial trial.

3 Our model yields a prediction accuracy.

4 Unfortunately it is not accurate.

How could we be more precise

We are going to consider the Bayesian framework with which the
parameters of the binomial trial are regarded as random variables.

March 20, 2024 231 / 469



Content of section 4, Predicting the learning performances
and probabilistic framework I

4.1 Inference on an example
4.2 Linear discriminant analysis
4.3 Predicting the true probabilities
4.4 Prior and Bayes formula
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Modeling a prior

Prior is opposed to the
posterior probability
distribution.

Prior refers to the assumed
probability distribution before
some evidence is given. Often
the chosen probability
distribution is the most general
given some constraints.

Here we know the
experimental setup and we can
test it without applying to
data to read a probability
distribution.

Require:
Ensure: Probability distribution of

p0 and p1
1: for i = 1 : I do
2: Draw µ0,µ1, σ0, σ1, a and

b.
3: Set Y T

l = [0 . . . 0, 1 . . . 1].
4: Draw Xl .
5: Compute Ŷl with Xl

6: Compute p0 and p1 by com-
paring Ŷl and Yl .
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Do we need a prior to compute a conditional probability?

No

Computing P (C|p0, p1) does not require any prior. A specific value p0, p1
with the statistical model tells us the whole knowledge.

Yes

To compute P (p0, p1|C) we consider all possible values of p0 and p1 and
for each compute a probability of P (C|p0, p1) and by counting the number
of draws for which C has the appropriate value we get a probability of
p0, p1. But the relative importance of p0, p1 is precisely a prior. In
exercise 30, p0 and p1 are drawn according to a uniform distribution.

We may not care

To what extent the choice of the prior is significant and appropriate are
difficult questions. Not using it and considering that P (p0, p1|C) and
P (C|p0, p1) are proportionate is actually a choice of prior that might be a
not too bad choice.

March 20, 2024 234 / 469



Measured prior for this very specific problem
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Using Bayes formula to compute a posterior probability

Bayes formula

P (A|B) = P (B|A)P (A)
P (B|A)P (A) + P (B|¬A)P (¬A)

Applying this formula in our context

fA|Ĉ(a,C) =

∫
p0,p1

fA|Ĉ,p0,p1(a,C, p0, p1)f0(p0)f1(p1) dp0dp1

And we use for f0(p0) and f1(p1) the probability distribution measured
without considering the C-constraints.
This posterior probability distribution of A is shown in green in the
following figure.
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Modeling with a prior

Because the green distribution is closer to the purple distribution, it seems
that the prior is here useful.
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Posterior probability vs maximizing the likelihood

The two viewpoints exist in the literature.

Unknown parameters could
have any value.

It could be more precise.

Unknown parameters are
estimated taking into account
the data.

It makes computation easier
and is often a good
approximation.
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Experiment using the maximum likelihood

Here we consider the most likely
value of p0 and p1 that yield the ex-
pected C -matrix.

argmax
p

fC|p(p) = argmax
p

p5(1− p) =
5

6

Since d
dpp

5(1− p) = 0 ⇒ 5− 6p =

0 ⇒ p = 5
6

We then get the distribution of A

P (A|Ĉ = C) =

P (A|Ĉ = C, p0 = p1 =
5
6)

This new distribution of A is shown
in blue.

Conclusion

Drawing adequate conclusions based on a certain success rate on the
training set is definitely a hard issue.
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New notations

¬A is the alternative event to A.
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Conclusion of section 4, Predicting the learning
performances and probabilistic framework

1 In our attempt to have more precise predictions in terms of inference,
we investigated the Bayesian framework.

2 Regarding an estimated parameter, rather than finding its best value,
we assume it has an unknown value that follows a probability
distribution.

3 This yields more precise predictions if the probability distribution is
appropriate.

Conclusion

In my opinion, this framework is often relevant, it often increases accuracy
sometimes by a very little amount, at the expense of an increased
complexity.
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Histograms are empirical approximation of probability
distributions I

Let I (x , y) be a continuous image I (x , y) (i.e. an image defined with
real-valued coordinates)

Let X and Y be independent uniform random variables

The histogram of I is an approximation of the Z -probability
distribution

Z = I (X, Y)

The probability distribution is the derivative of the cumulative
distribution (for sufficiently regular random variables)

fZ(z) =
d

dz
P (Z ≤ z)
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Example of a continuous image

Exercise 31

We consider here a continuous image.
I (x , y) = x21(x ∈ [−1, 1])1(y ∈ [−1, 1])

Let Z be the random variable yielding the value of I (x , y) when a point is
selected randomly in the image.

1 Prove that

P (Z ≤ z) =
1

4

∫ 1

x=−1

∫ 1

y=−1
1(x2 ≤ z) dxdy

2 Show that
P (Z ≤ z) =

√
z1(z ∈ [0, 1]) + 1(z > 1)

3 Show that

fZ(z) =
1

2

1√
z
1(z ∈ [0, 1])

4 Write the code to check this last statement.
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Answer to exercise 31 I

1 The probability distribution of the uniform law on [−1, 1]×[−1, 1] is

fU(x , y) = 1(x ∈ [−1, 1])1(y ∈ [−1, 1])
1

4
PZ(Z ≤ z) = PX,Y (I(X, Y) ≤ z) =

∫
x

∫
y 1(I(x , y) ≤ z) fU(x , y) dxdy

= 1
4

∫ 1
x=−1

∫ 1
y=−1 1(x

2 ≤ z) dxdy

2 Let us assume z ∈ [0, 1].

PZ(Z ≤ z) = 2
4

∫ 1
−1 1(x

2 ≤ z) dx
∫ 1
0 1(x2 ≤ z) dx

=
∫ 1
0 1(x ≤

√
z dx =

∫ √
z

0 dx =
√
z

Let us assume z < 0, P (Z ≤ z) = P (Z < 0) = 0
Let us assume z > 1, P (Z ≤ z) ≥ P (Z ≥ 1) = 1
Therefore

P (Z ≤ z) =
√
z1(z ∈ [0, 1]) + 1(z > 1)
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Answer to exercise 31 II

3

fZ(z) =
∂

∂z
P (Z ≤ z) =

1

2
√
z
1(z ∈ [0, 1])

4 The following algorithm approximates fZ(z) (U(−1, 1) is the uniform
law on [−1, 1]).

Require: z
Ensure: fZ(z)
1: Set N = 107, h = 0.01
2: Draw randomly a vector X of size N×1 whose components

sample U(−1, 1)
3: Count n the number of components of X that fulfill

x2n ∈ [z , z + h).
4: Yield n

hN

This algorithm can be tested several times by drawing randomly z
and checking that the difference with fZ(z) remains small.
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Mean, median, quantile

The mean value of an image is

E [Z] =

∫
x

∫
y I (x , y)dxdy∫

x

∫
y 1(x , y ∈ I)dxdy

The k-th q-quantile is
P [Z ≤ zquantile] = kq ⇒ zquantile =

(
z 7→ P [Z ≤ zquantile]

)−1
(kq)
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Example on the continuous image

Exercise 32

We consider again the following continuous image.
I (x , y) = x21(x ∈ [−1, 1])1(y ∈ [−1, 1])

Let Z be the random variable yielding the value of I (x , y) when a point is
selected randomly in the image.

1 Using Z, show that EZ = 1
3 . And show that the mean value of I is

also 1
3 .

2 Compute the first and third quartile using the two techniques. The
result is 1

16 and 9
16 .
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Answer to exercise 32

1

EZ =

∫ 1

z=0
z
1

2

1√
z
dz =

1

2

∫ 1

z=0

√
z dz =

1

2

[
2

3
z3/2

]1
0

=
1

3
The mean of the image is

1

4

∫ 1

x=−1

∫ 1

y=−1
x2 dxdy =

1

2

∫ 1

x=−1
x2 dx =

1

2

[
1

3
x3
]1
−1

=
1

3
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Chebychev Inequality

For X a Gaussian random variable

P (|X− EX| ≥ c) = 1− erf

(
c√

2VarX

)
(5)

where erf(x) is defined as

erf(x) =
2√
π

∫ x

0
e−t2 dt

When X is not necessarily a Gaussian random variable,

P (|X− EX| ≥ c) ≤ VarX
c2

(6)

For sufficiently regular random variables, the probability distribution is
related to the cumulative distribution

fZ (z) =
d

dz
P (Z ≤ z)
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Checking the erf function I

Exercise 33

Software generally include the erf function, however to save time, it can be
useful to have a quick way to approximate it.

1 Using its integral formula, write a formula to approximate it.

2 Consider a Gaussian random variable on mean 0 and standard
deviation 1, and check equation (5) so as to give a high level of
confidence in this equation.
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Answer 1/2 to exercise 33

1 The integral is approximated with N rectangles of width |x |
N and

height e−
t2

2 paving the [0, |x |]. Note that the erf function is odd.

y = erf(x) =
2√
π

∫ x

0
e−t2 dt ≈ 2√

π

x

N

N−1∑
k=0

e−
k2x2

N2

Require: x , N,
Ensure: y
1: y = 0
2: for k = 0 : N − 1 do

3: Add to y , e−
k2x2

N2

4: Multiply y with 2√
π

x
N

>> c = -7.7189

>> y_app = -1.0044

>> y_th = -1

>> y_app-y_th= -4.3549e-03
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Answer 2/2 to exercise 33

2 Generate 1000 random numbers for X, denoted xi for i ∈ {1 . . . I}. An
approximation of the left part of (5) is

1

I

I∑
i=1

1 (|xi | ≤ c)

xi=randn(1,1000);

c=2*rand(1);

p_app=mean(abs(xi)>=c);

p_th=1-erf(c/sqrt(2));

c,p_app,p_th,

>>c = 1.1490

>> p_app = 0.2510

>> p_th = 0.2505
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Transforming a graph into an empirical distribution

Require: (xn, yn) and K
Ensure: (x ′k , nk)
1: Compute the ranging interval

a = min
n

xn and b = max
n

xn

2: for k = 0 : K − 1 do
3: x ′k = a+ k b−a

K−1

4: nk =
N−1∑
n=0

1(xn ∈ [xk , xk+1))

Generally, K is chosen
K ≈

√
N
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Normalizing empirical distributions

Classical technique

n′k =
nk∑K−1

k=0 nk

Technique required to compare with
parametric distributions

n′k =
nk∑K−1

k=0 nk(xk+1 − xk)
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Empirical distributions

Exercise 34

Figure 6: Empirical distributions of the bandwidth number 50 considering all
pixels in blue and only pixels showing soybean in red. The dotted curves are the
approximate Gaussian distributions.

1 Write the pseudo-code of an algorithm yielding figure 6, empirical
distributions are such that their sums equal 1.

2 Write the pseudo-code of an algorithm yielding figure 6, empirical
distributions are such that their approximate integral equal 1.
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Chebychov inequality and empirical distributions

Exercise 35

Let us call X and Y two empirical distributions obtained using the intensity
values at bandwidth number 50 and conditionally to being actually
soybean (i.e. labels 10, 11, 12 of the groundtruth map).

1 Transform X and Y into centered and normalized random variables
denoted Xr and Yr .

2 Plot as a function of c ∈ [0, 2] the left side of equation (6) for Xr and
Yr . Plot the right side of equation (6) and that of equation (5).
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Answer 1/2 to exercise 35

The lower curve is for Gaussian
random variable.

The blue curve is obtained
using the hyperspectral image
at bandwidth number 50.

The red curve is obtained
using the hyperspectral image
at bandwidth number 50
considering only the pixels
where land is covered with
soybeans.

The upper black curve is the
Chebychev upperbound.
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Answer 2/2 to exercise 35

1 First stack in x a column vector the intensities at the bandwidth
number 50.

xr =
1

σ
(x− µ1) where

{
σ =

√
1
N

∑N
n=1(xn − µ)2

µ = 1
N

∑N
n=1 xn

2 Require: x, K
Ensure: (C ,P)
1: y = 0,
2: for k = 0 : K do
3: Ck = k

K

4: Pk = 1
N

∑N
n=1 1(|xn| ≥ Ck)
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Proving the Chebychev inequality

Exercise 36

A simple proof of the Chebychev arises from the following steps.

1 Prove the Markov inequality which states

P [|X| ≥ c] ≤ E |X|
c

To do so, introduce a new random variable Y = c1(|X| ≥ c) and show
that it is upper bounded by X and compute its expectancy.

2 Apply the Markov inequality to Z = (X− EX)2.
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Answer 1/2 to exercise 36

1 Let Y be a new random variable
Y = c1(|X| ≥ c)

We first prove that Y ≤ |X|{
Y ≤ c ≤ |X| if |X| ≥ c
Y ≤ 0 ≤ |X| if |X| < c

This proves that E [Y] ≥ |X|
We then compute E [Y]

E [Y] = cP (Y = c) + 0P (Y = 0) = cP (|X| ≥ c)

2 To prove equation (6), P (|X− EX| ≥ c) ≤ VarX
c2

we apply the Markov
inequality

P (Z ≥ c2) ≤ E [Z]

c2
=

Var (X)
c2
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New notations

erf is the error function (a.k.a. Gauss error function).
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Conclusion of subsection 1, Probabilities
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Content of section 5, More in depth with probabilities I

5.1 Probabilities
5.2 Using Gaussians
5.3 Probabilities as a loss function designer
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Thresholding using Gaussian probability distributions I

Given a set of intensities In, we model the membership with each cluster as

fIn|n∈N0,µ0,σ0
(In) =

1√
2πσ0

e
− (In−µ0)

2

2σ2
0 = gµ0,σ0

(In)

fIn|n∈N1,µ1,σ1
(In) =

1√
2πσ1

e
− (In−µ1)

2

2σ2
1 = gµ1,σ1

(In)

seg thresholding3.m

Require: I
Ensure: T
1: select an initial value for T,
2: while T is modified do
3: N0 =

{
n ∈ N

∣∣fIn|n∈N0,µ0,σ0
(In) > fIn|n∈N1,µ1,σ1

(In)
}

4: N1 = N\N0

5: µ0, σ0 ∈ argmaxµ,σ fIn|n∈N0,µ0,σ0
(In)

6: µ1, σ1 ∈ argmaxµ,σ fIn|n∈N1,µ1,σ1
(In)
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Thresholding using Gaussian probability distributions II

This another iterated algorithm maximizing the likelihood using crisp
assignments.

Normalizing the probability density

Note that to answer the third question, one needs a correct normalization
1√
2πσ

. This can be an issue.
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Exercise 37

1 Prove that step 3 in seg thresholding3.m is

T =
σ1µ0 + σ0µ1
σ0 + σ1

and N0 = {n|In ≤ T}

2 Prove that in steps 5, 6, µ0 and µ1 should the average of samples in
N0 and N1.

3 Prove that in steps 5, 6, σ0 and σ1 should the standard deviation of
samples in N0 and N1.
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Answer to exercise 37 I

1 State 3 is
N0 =

{
n ∈ N

∣∣fIn|n∈N0,µ0,σ0
(In) > fIn|n∈N1,µ1,σ1

(In)
}

where fr
I n|n∈N0,µ,σ

(In) =
1√
2πσ

e−
(x−µ)2

σ2

Let us assume µ0 < µ1 and let us define T = σ1µ0+σ0µ1
σ0+σ1

Because
T ≤ µ1, we have

In ≤ T ⇔ (σ0 + σ1)In − (σ1µ0 + σ0µ1)

⇔ In−µ0
σ0

+ In−µ1
σ1

< 0

⇔ |In−µ0|
σ0

< |In−µ1|
σ1
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Answer to exercise 37 II

2 To make it easier, µ0, µ1 and σ0, σ1 are here replaced with µ and σ

fr
I |µ,σ

(I ) =
∏N−1

n=0
1√
2πσ

e−
1
2
(In−µ)2

σ2

− ln

(
fr
I |µ,σ

(I )

)
= N ln

(√
2πσ

)
+
∑N−1

n=0
1
2
(In−µ)2

σ2

We are looking for µ ∈ argmax
µ

fr
I |µ,σ

(I ) = argmax
µ

− ln

(
fr
I |µ,σ

(I )

)
Such values cancel the partial derivative w.r. to µ.

∂
∂µ

[
− ln

(
fr
I |µ,σ

(I )

)]
= 0 ⇔

∑N−1
n=0 (In − µ) = 0

⇔ µ = 1
N

∑N−1
n=0 In

From a mathematical viewpoint, we would need to make sure that
this maximize the probability.
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Answer to exercise 37 III

3 The only difference is that the partial derivative is with respect to σ.

∂
∂σ

[
− ln

(
fr
I |µ,σ

(I )

)]
= 0 ⇔ N

σ −
∑N−1

n=0
(In−µ)2

σ3 = 0

⇔ σ2 = 1
N

∑N−1
n=0 (In − µ)2
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Likelihood

Definition

The likelihood is the probability that the observations fit with the model
with its parameters.

L(I ,Θ)
where Θ is the set of parameters.

In exercise 37, we need new parameters N0,N1 to define the crisp
assignments:

n ∈ N0 ⇔ In ≤ T and n ∈ N1 ⇔ In > T

L(I , µ0, µ1, σ,N0,N1) =
∏
n∈N0

1√
2πσ0

e
− 1

2
(In−µ0)

2

σ2
0

∏
n∈N1

1√
2πσ1

e
− 1

2
(In−µ1)

2

σ2
1
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Maximizing the likelihood

Figure 7: Left: log-likelihood w.r. to T. Right: new threshold T′ w.r. to old
threshold T.

Exercise 38

1 Using right of figure 7, define the catchment areas (a.k.a. basins of
attraction): the set of values of T such that the algorithm converges
to a given value.
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New notations

gµ,σ(x) is the Gaussian deterministic function.

L is here the likelihood, it is used as the opposite of a loss function.
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Conclusion of subsection 2, Using Gaussians

Catchment areas in algorithms.

Likelihood. (discrete or dense probability distribution).
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Content of section 5, More in depth with probabilities I

5.1 Probabilities
5.2 Using Gaussians
5.3 Probabilities as a loss function designer
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About convexity

theorem

f ′′(x) > 0 ⇒ f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
when α ∈ [0, 1]

Recursively or using...

f

(∑
i

αixi

)
≤
∑
i

αi f (xi ) when
∑
i

αi = 1 and ∀i , αi ≥ 0
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First view-point on the Expectation-Minimization
algorithm I

Θ: set of parameters
r
x: random process modeling the observations (i.e. intensities)

x: observation values (i.e. pixel intensities)

Y: random variable modeling the hidden states (i.e. labels).

y: actual states (i.e. pixel labels), with Ωy as the set of all possible
values

L: likelihood

LL: log-likelihood

L(x,Θ) = P (X|Θ) =
∑

Ωy
P (X, Y = y|Θ)∑

Ωy
P (X|Y = y,Θ) P (Y = y)

This is an iterated algorithm and at step t + 1, the parameter values Θ(t)

are available.
L(x,Θ,Θ(t)) =

∑
Ωy

P
(
X|Y = y,Θ,Θ(t)

)
P
(
Y = y|Θ(t)

)
March 20, 2024 279 / 469



First view-point on the Expectation-Minimization
algorithm II

We consider the log-likelihood:

LL(x,Θ,Θ(t)) = ln

∑
Ωy

P
(
X|Y = y,Θ,Θ(t)

)
P
(
Y = y|Θ(t)

)
Two caveats

P
(
Y = y|Θ(t)

)
uses actually the data X considered as part of Θ(t).

When the components of X and Y are modeled as given-Θ independent
random variables , the summation over Ωy is restricted to each
components of y and ln is inside a first summation over the components.

The expectation step is

y
(t+1)
n = argmaxyn ML(Θ(t), x, y

(t)
0 . . . yn . . . y

(t)
N−1)

The maximization step is
Θ(t+1) = argmaxΘML(Θ(t), x, y(t+1))
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First view-point on the Expectation-Minimization
algorithm III

Because the logarithm is concave, we get a lower bound called Q (Θ,Θ(t))

LL(x,Θ,Θ(t)) ≥
∑
Ωy

P
(
Y = y|Θ(t)

)
ln P

(
X|Y = y,Θ,Θ(t)

)
There are two steps:

Expectation-step: computing Q (Θ,Θ(t)). That is fill in the unknown
or hidden parameters with most likely possible values computed using
observations and previous values of parameters, and weighing these
values with their probabilities.

Maximizition-step: finding Θ by maximizing Q (Θ,Θ(t)).

We get here soft assignments.
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ML with equal standard deviation I

Exercise 39

We consider a statistical model for a binary classification problem:

The intensity of each pixel follows a Gaussian random variable.

There is a unique standard deviation σ.

The mean value depending on its class membership µ0, µ1.

Conditionally to their classes, the random variables are independent.

We use this model to infer the parameters’ values involved in the model
and the hidden parameters by observing only the pixel values.

1 List the variables whose values are known and those whose values are
to find by maximizing the likelihood.

2 Write the likelihood of a given pixel’s intensity and that of all N pixels,
assuming we know which pixels follows which Gaussian variable.
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ML with equal standard deviation II

We now assume the assignment of pixels with each probability
distribution are N Gaussian probability distributions Yn.

The goal is to write the relationship between two successive iterations.

All parameters have now an indication of the iteration using t as an
integer.

y
(t)
0 . . . y

(t)
N−1, µ

(t)
0 , µ

(t)
1

We denote q
(t)
n = 1

N

∑N−1
n=0 1(yn = 0)
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ML with equal standard deviation III

Exercise 40

We consider the statistical model of exercise 39

1 Write the prior probability of Yn knowing parameters of the last
iteration (i.e. t-iteration).

2 Write the posterior probability of Yn knowing parameters of the last
iteration (i.e. t-iteration) and using the pixel intensity values.

3 Write the expectation step of the E-M algorithm, assuming µ1 > µ0.

4 Write the maximization step of the E-M algorithm.
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Answer to exercise 39 I

1 The parameters whose values are known are those of the observations:
N, x0 . . . xN−1.
The parameters whose values are to be found: µ0, µ1, σ.
Hidden variables: y0 . . . yN−1.

2 For a specific pixel, we have

fr
I n=x |Yn=0,Θ(t)

(x) = 1√
2πσ

e−
(x−µ0)

2

2σ2

fr
I n=x |Yn=1,Θ(t)

(x) = 1√
2πσ

e−
(x−µ1)

2

2σ2

The likelihood is

L(I ,Y , µ0, µ1, σ) =
∏N−1

n=0

(
1(yn = 0) 1√

2πσ
e−

(x−µ0)
2

2σ2

+1(yn = 1) 1√
2πσ

e−
(x−µ1)

2

2σ2

)
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Answer to exercise 39 I

1 At the last iteration, y
(t)
n have received integer values, this is a prior:

P (Yn = 0|Θ(t)) = 1
N

∑N−1
n=0 1(y

(t)
n = 0) = q

(t)
n

P (Yn = 1|Θ(t)) = 1− P (Yn = 0) = 1− q
(t)
n

2 The posterior probability is obtained with the likelihood and the prior:
f
Yn=yn|

r
I n,Θ(t)

(In) =

fr
I n|Yn=yn,Θ

(t)
(In)P(Yn=yn|Θ(t))

fr
I n|Yn=0,...

(In)P(Yn=0|...)+fr
I |Yn=1,...

(In)P(Yn=1|...)

Denoting q′n
(t) =

qng
µ
(t)
0

,σ
(In)

qng
µ
(t)
0

,σ
(In)+(1−qn)g

µ
(t)
1

,σ
(In)

we can write

f
Yn=yn|

r
I n,Θ(t)

= q′n
(t)
1(yn = 0) + (1− q′n

(t)
)1(yn = 1)
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Answer to exercise 39 II

3 The objective is to find the parameters maximizing the likelihood of
the data.

ln f
Y,

r
I ,Θ|Θ(t)

(I )

= ln
∏N−1

n=0

(
fr
I n,Yn=0,Θ|Θ(t)

(In) + fr
I n,Yn=1,Θ|Θ(t)

(In)

)
We use the posterior probabilities and the likelihood of In to compute
these probabilities:

fr
I n,Yn=0,Θ|Θ(t)

(In) = q′n
(t)fr

I n,Θ|Yn=0,Θ(t)
(In) = q′n

(t)
gµ0,σ(In)

fr
I n,Yn=1,Θ|Θ(t)

= (1− q′n
(t))fr

I n,Θ|Yn=1,Θ(t)
(In)

= (1− q′n
(t))gµ1,σ(In)

Combining
ln P (Yn = yn, I ,Θ|Θ(t)) =

ln
∏N−1

n=0

(
q′n

(t)
gµ0,σ(In) + (1− q′n

(t))gµ1,σ(In)
)

=
∑N−1

n=0 ln
(
q′n

(t)
gµ0,σ(In) + (1− q′n

(t))gµ1,σ(In)
)
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Answer to exercise 39 III

Because of the concavity of ln, we get a lower bound
ln f

Yn=yn,
r
I n,Θ|Θ(t)

(In)

≥
∑N−1

n=0 q′n
(t) ln gµ0,σ(In) + (1− q′n

(t)) ln gµ1,σ(In)

= −
∑N−1

n=0 q′n
(t) (In−µ0)2

2σ2 + (1− q′n
(t)) (In−µ1)2

2σ2

4 To approximate argmaxΘ Q
(
Θ|Θ(t)

)
we maximize the lower bound

denoted Q
(
Θ|Θ(t)

)
:

−Q
(
Θ|Θ(t)

)
=
∑N−1

n=0 q′n
(t) (In−µ0)2

2σ2 + q′n ln
√
2πσ

+(1− q′n
(t)) (In−µ1)2

2σ2 + (1− q′n) ln
√
2πσ

= N ln
√
2πσ +

∑N−1
n=0 q′n

(t) (In−µ0)2

2σ2 + (1− q′n
(t)) (In−µ1)2

2σ2

This maximization is obtained by zeroing the derivatives w.r. to µ0,
µ1 and σ.
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Answer to exercise 39 IV

Finding µ0

0 = ∂
∂µ0

[
−Q

(
Θ|Θ(t)

)]
= − 1

σ2

∑N−1
n=0 q′n(In − µ0)

⇒ µ0 =
∑N−1

n=0 q′
nIn∑N−1

n=0 q′
n

Finding µ1

0 = ∂
∂µ1

[
−Q

(
Θ|Θ(t)

)]
= − 1

σ2

∑N−1
n=0 (1− q′n)(In − µ1)

⇒ µ1 =
∑N−1

n=0 (1−q′
n)In∑N−1

n=0 (1−q′
n)

Finding σ

0 = ∂
∂σ

[
−Q

(
Θ|Θ(t)

)]
=

N
σ − 1

σ3

∑N−1
n=0 q′n(In − µ0)

2 − 1
σ3

∑N−1
n=0 (1− q′n)(In − µ1)

2

⇒ Nσ2 =
∑N−1

n=0 q′n(In − µ0)
2 +

∑N−1
n=0 (1− q′n)(In − µ1)

2
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Maximizing the likelihood

Figure 8: Left: log-likelihood w.r. to T. Right: new threshold T′ w.r. to old
threshold T.

What could explain the fact that on the left figure, the probability appears
more flat than on previous experiments?
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Second viewpoint on the Expectation-Minimization
algorithm I

When the optimization is
argmaxΘ P (X|Θ)

we consider instead
argmaxΘ Q (Θ|Θ(t))

where
Q (Θ|Θ(t)) = −

∑
Ωy

P
(
Y = y|X,Θ(t)

)
ln P

(
X|Y = y,Θ,Θ(t)

)
It is the expected value of the log likelihood function of the parameters Θ,
with respect to the current conditional distribution of Y given X and the
current estimates of the parameters Θ(t).

Θ: set of parameters
I: random process modeling the observations (i.e. intensities)
I : observation values (i.e. pixel intensities)
Y: random variable modeling the hidden states (i.e. labels).
Y : hidden state values (i.e. labels).
T : matrix describing the probabilities of each values for each hidden
state (i.e. probability labels)

L: likelihood

LLA: log-likelihood approximation

L(I ,Θ,Y ) = P (X|Y = y) P (Y = y|Θ)
Assumption

L(Θ, x, y) =
N−1∏
n=0

Ln(Θ, x, yn)

Approximation
The expectation step is

T
(t+1)
n,c = argmaxy=c L(Θ

(t), x, y(t))
The maximization step is

Θ(t+1) = argmaxΘ L(Θ(t), x, y(t+1))
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Exemple of Gaussian Mixture Models (GMM)

Exercise 41

We consider the following pseudo-code, what is the probability distribution
that is being sampled.

Require: N
Ensure: I0 . . . IN−1

1: for n=0:N-1 do
2: Draw k a binary integer
3: Draw x a random value using N (0, 1)
4: if k == 0 then
5: In = x
6: In = x + 3
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Answer to exercise 41 I
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Answer to exercise 41 II

1 We use the following notations

K: binary random variable P (K = 0) = P (K = 1) = 0.5.

X: Mixture of Gaussian random variable

P (X = x |K = 0) = g0,1(x) and P (X = x |K = 1) = g3,1(x)

P (X = x) = P (X = x |K = 0)P (K = 0) + P (X = x |K = 1)P (K = 1)

= 0.5g0,1(x) + 0.5g3,1(x)
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Expected value of the log likelihood function Q

Exercise 42

Write a pseudocode simulating P (σ) and Q (σ|σ(t))
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Answer to exercise 42 I

1 Based on exercise 41, the probability one observation xn is
fXn=xn|σ(xn) = 0.5g0,σ(xn) + 0.5g3,σ(xn)

The probability of all observations is

f r
X|σ

(X) =
N−1∏
n=0

0.5g0,σ(xn) + 0.5g3,σ(xn)

In order to make computations within the 16 or 32 bits,

ln f r
X|σ

(X) =
N−1∑
n=0

ln
(
0.5g0,σ(xn) + 0.5g3,σ(xn)

)
2 At iteration t, the prior is

P (Yn = 0) =
N−1∑
n=0

1(y
(t)
n = 0)

the posterior is

fYn=0|Xn,σ(t)(xn) =
P (Yn = 0)g0,σ(t)

P (Yn = 0)g0,σ(t)(xn) + P (Yn = 1)g3,σ(t)(xn)
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Answer to exercise 42 II

The log-likelihood given the hidden yn

ln f r
X|Yn,σ(t)

(X ) = − ln(
√
2πσ(t))−


x2

2σ(t)2
if yn = 0

(x−3)2

2σ(t)2
if yn = 1

The expectation of this log-likelihood using the posterior is
Qn = fYn=0|Xn,σ(t)(xn) ln f r

X=xn|Yn=0,σ(t)
(xn)

+fYn=1|xn,σ(t) ln f r
X|Yn=1,σ(t)

(xn)

The function to be maximized is

Q (σ|σ(t),Y (t)) =
N−1∑
n=0

Qn

The error rate w.r. to the best possible prediction is

E =
1

N

N−1∑
n=0

1(yn = 0 ⇔ xn < 1.5)
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Answer to exercise 42 III

Require: X
Ensure: σ
1: Choose randomly Y , σ,
2: Store Y old := 0
3: while ∃yoldn ̸= yn do
4: Store Y old := Y
5: Compute P (Yn = 0)
6: Compute P (Yn|xn, σ(t)) with σ(t) = σ
7: Find σ maximizing Q (σ|σ(t),Y (t)) with Y (t) = Y
8: Find yn = 1(P (Yn|xn, σ(t)) < 0.5)

9: Compute Q (σ|σ(t),Y (t)) with σ(t) = σ and Y (t) = Y
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Experimental results

In blue:
ln P (X = X |σ)

In red:
Q (σ|X , σ(t), y (t)n )

1

N

N−1∑
n=0

1(yn = 0 ⇔ xn < 1.5) σ(t)

Horizontal axis indicates the value of σ.

The thick lines in red and green are those obtained with many
iterations.

The thin lines in magenta and cyan are obtained at the first iteration.

The initialization uses random values (σ 7→ U(0.5, 4.5))
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Third viewpoint on the Expectation-Minimization
algorithm I

We need not use the correct probability distribution of the parameters.
Instead of P (Yn|X,Θ(t)), we may use any probability distribution q(yn) (or
family of distributions).

q(yn) = PQ(Yn|xn,Θ(t)) is an inference model, its probability law is
here denoted Q.

p(xn, yn) = P (Yn, Xn,Θ(t)) is the joint distribution.

p′(yn) = P (Yn|Xn,Θ(t)) is the posterior distribution.

The evidence lower bound (ELBO) is

EQ

(
ln

p(xn, yn)

q(yn)

)
The Kullback-Leibler Divergence used here is

0 ≤ DKL
(
q||p′)

)
= EQ

(
q(yn) ln

(
q(yn)

p′(yn)

))
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Third viewpoint on the Expectation-Minimization
algorithm II

Instead of maximizing

Q (Θ|Θ(t)) = −
∑
Ωy

P
(
Y = y|X,Θ(t)

)
ln P

(
X|Y = y,Θ,Θ(t)

)
We maximize ELBO− H (q)

−
∑
Ωy

q(yn) ln P
(
X|Y = y,Θ,Θ(t)

)
= EQ

(
ln

p(yn)

q(yn)

)
− HQ

because HQ does not depend on Θ and because
ELBO = P (Xn)− DKL ≤ P (Xn)

This is a small proof:

ln P (Xn,Θ) = EQ ln P (Xn,Θ) = EQ ln P(Xn,Yn,Θ)
P(Yn|Xn,Θ)

= EQ ln P(Xn,Yn,Θ)
q(yn)

+ EQ ln q(yn)
P(Yn|Xn,Θ) = ELBO+ DKL
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Using the E-M algorithm to make crisp choices I

Exercise 43

We consider again the statistical model of exercise 39. We consider a
discrete probability distribution depending on a parameter T for a given
sample n, denoting here xn and yn as x and y .

q(y) =

{
1(y = 0) if x ≤ T

1(y = 1) if x > T

1 Show that q is indeed a probability distribution whose entropy is zero.

2 Given the posterior of the probability distribution computed in
exercise 40,

p′(y = 0) =
αg0,σ(x)

αg0,σ(x) + g3,σ(x)
and p′(y = 1) = 1− p′(y = 0)

where σ denotes the estimated value σ(t). Compute the
KL-divergence between the q and p′.
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Using the E-M algorithm to make crisp choices II

Exercise
3 Show that

p′(y = 0) >
1

2
⇔ x <

3

2
+
σ2 ln(α)

3

4 Show that the KL-divergence is minimized when T = 3
2 + σ2 ln(α)

3 .

We now consider the whole dataset.

5 Compute ELBO− HQ

6 Compute σ(t+1) maximizing ELBO− HQ as a function of N (t)
0 and

N (t)
1 which are the set containing the samples y

(t)
n = 0 and y

(t)
n = 1.

Show that

σ(t+1) =

√√√√√√ 1

N

 ∑
n∈N (t)

0

x2n +
∑

n∈N (t)
1

(xn − 3)2
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Answer to exercise 43 I

1 q is a discrete probability distribution with two possible values
y ∈ {0, 1} because

q(y) ≥ 0 and q(y = 0) + q(y = 1) = 1
The Entropy is

HQ = q(y = 0) ln
1

q(y = 0)
+ q(y = 1) ln

1

q(y = 1)
with the notation that 0× ln 0 = 0. HQ = 0 because first, 1× ln 1 = 0
and second, either q(y = 0) = 0 and q(y = 1) = 1 or q(y = 0) = 1
and q(y = 1) = 0.

2 The KL-divergence between q and p′ is

DKL(q||p′) = q(y = 0) ln q(y)=0
p′(y=0) + q(y = 1) ln q(y)=1

p′(y=1)

= 1(x ≤ T) ln 1
p′(y=0) + 1(x > T) ln 1

1−p′(y=0)

= −1(x ≤ T) ln
αg0,σ(x)

αg0,σ(x)+g3,σ(x)
− 1(x > T) ln

g3,σ(x)
αg0,σ(x)+g3,σ(x)
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Answer to exercise 43 II

3

p′(y = 0) > 1
2 ⇔ αg0,σ(x) >

α
2 g0,σ(x) +

1
2g3,σ(x)

⇔ α
2 g0,σ(x) >

1
2g3,σ(x) ⇔

g0,σ(x)
g3,σ(x)

> 1
α

⇔ − x2

2σ2 +
(x−3)2

2σ2 > − ln(α) ⇔ −6x + 9 > −2σ2 ln(α)

⇔ x < 3
2 + σ2

3 ln(α)

4 We first prove that

ln
1

p′(y = 0)
< ln

1

1− p′(y = 0)
⇔ x <

3

2
+
σ2

3
ln(α)

The left statement is true iff

1 <
1

1−p′(y=0)
1

p′(y=0)

= p′(y=0)
1−p′(y=0) ⇔ 1− p′(y = 0) < p′(y = 0)

⇔ 1
2 < p′(y = 0)
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Answer to exercise 43 III

Let us assume x < 3
2 + σ2

3 ln(α), the former property proves that

D(T≤x)
KL (q||p′) ≥ D(T>x)

KL (q||p′)
Therefore T ≥ 3

2 + σ2

3 ln(α)

Let us assume x > 3
2 + σ2

3 ln(α), the former property proves that

D(T≤x)
KL (q||p′) ≤ D(T>x)

KL (q||p′)
Therefore T ≤ 3

2 + σ2

3 ln(α)
This finally proves that the equality.

5 We set T = 3
2 + σ2

3 ln(α), however, σ is actually σ(t). Let

T(t) = 3
2 + (σ(t))2

3 ln(α)

q(yn = 0) = 1(x ≤ T(t)) and q(yn = 1) = 1(x > T(t))
Whereas fXn=xn|σ,yn=0(xn) depends on σ:

− ln fXn=xn|σ,yn=0(xn) = − ln g0,σ(xn) = ln(
√
2πσ) +

x2n
2σ2
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Answer to exercise 43 IV

And

− ln fXn=xn|σ,yn=1(xn) = − ln g3,σ(xn) = ln(
√
2πσ) +

(xn − 3)2

2σ2
So J = ELBO− HQ is

J =
∑N−1

n=0

(
−1(x ≤ T(t)) ln fXn=xn|σ,yn=0(xn)

−1(x > T(t)) ln fXn=xn|σ,yn=1(xn)
)

= N ln(
√
2πσ) +

∑N−1
n=0 1(xn ≤ T(t)) xn

2

σ2

+
∑N−1

n=0 1(xn > T(t)) (xn−3)2

σ2

6 To find the value of σ minimizing J, we compute

∂J

∂σ
=

N

σ
− 2

σ3

N−1∑
n=0

1(xn ≤ T(t))
x2n
2

+ 1(xn > T(t))
(xn − 3)2

2

Canceling this derivative yields a value of σ now called σ(t+1)(
σ(t+1)

)2
=

1

N

N−1∑
n=0

(
1(xn ≤ T(t))x2n + 1(xn > T(t))(xn − 3)2

)
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Answer to exercise 43 V

Note that because q is actually modeling a deterministic function

1(xn ≤ T(t)) ⇔ y
(t)
n = 0 ⇔ n ∈ N (t)

0
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New notations

Entropy: H (p) = −
∑

xi
p(xi ) ln p(xi ) ≥ 0 There exists also a

differential definition of H .

KL-divergence: DKL(q||p) =
∑

xi
q(xi ) ln

q(xi )
p(xi )

≥ 0 There exists also a
differential definition of DKL.

ELBO = ln
(
p(x ,y)
q(y)

)
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Conclusion of subsection 3, Probabilities as a loss function
designer

Difference between P and f

Expectation-maximization = soft assignment with a probabilistic
interpretation

Simplifies only the local probabilistic expression

First viewpoint: Concavity based lower-bound

Second viewpoint: Average value of the log-likelihood with weights
equal to the probability of a hidden parameters given previous
iteration.

Third viewpoint: Average value of the log-likelihood with weights
equal to probabilities chosen so as to minimize a distance with the
probability of a hidden parameter given previous iteration.
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Table of Contents I

1. Classification of hyperspectral images

2. Image processing

3. Learning regarded as an optimization problem

4. Predicting the learning performances and probabilistic framework

5. More in depth with probabilities

6. Curse of dimensionality, regularization and sparsity

7. Spatial context
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Content of section 6, Curse of dimensionality,
regularization and sparsity I

6.1 Data preparation
6.2 Feature construction
6.3 Kernel trick
6.4 Curse of dimensionality and feature extraction
6.5 Principal Component Analysis
6.6 Supervised feature extraction
6.7 Regularization
6.8 Feature selection
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Centering the feature matrix

A centered feature matrix fulfills
N∑

n=1

Xn,f = 0

Exercise 44

Let X be a feature matrix. Show that there exists βf such that
X′ = X− [β1 . . . βF ] is centered.
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Answer to exercise 44

Let βf be defined as

βf =
1

N

N∑
n=1

Xnf

We then get for any f ∈ {1 . . .F}
N∑

n=1

X ′
nf =

N∑
n=1

(Xnf − βf ) =
N∑

n=1

Xnf − βf = 0
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Normalizing features

Normalizing means
xnf 7→ x ′nf = αf xnf
such that 1

N

∑N
n=1 x

′2
nf = 1

Exercise 45

Given a data set X = [xnf ], compute a value αf such that

1

N

N∑
n=1

x ′
2
nf = 1

where x ′nf = αf xnf
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Answer to exercise 45

αf =
1√

1
N

N∑
n=1

x2nf

we get

1

N

N∑
n=1

(x ′nf )
2 =

1

N

N∑
n=1

α2
f x

2
nf = α2

f

1

N

N∑
n=1

x2nf =
1
N

∑N
n=1 x

2
nf

1
N

∑N
n=1 x

2
nf

= 1
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Analysis Synthesis

X

µ σ

x x′ x′′ x′′ x′ x

µσ
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Matrix notations

Exercise 46

The exercises 44 and 45 provided formulas to center and normalize the
samples in the feature space. The goal here is to express these
transformations with matrices. An interesting side-effect is the
simplification of the implementation.
We consider here a dataset described with a matrix X of size N×F and a
column vector Y of size N×1.

1 Define a matrix H of size N×N such that HX is centered (i.e. the
sums of each column of HX are null).

2 Show that HX
(
diag(XTH2X)

)− 1
2 is centered and normalized.

3 Write the Matlab/Octave implementation of HX
(
diag(XTH2X)

)− 1
2

(diag(A))ij = aij1(j = i) and ((diag(A))ij)
− 1

2 =
1

√
aii

1(j = i)
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Matrix formulas

Column number j of a matrix A: a1j
...
aIj


Row number i of a matrix A:

[ai1, . . . , aiJ ]

Left-multiplication of A by a diagonal matrix D = [di1(j = i)]ij :
(DA)ij = diaij

Right-multiplication of A by a diagonal matrix D = [di1(j = i)]ij :
(AD)ij = aijdj

Multiplication of two matrices

(AB)ij =
∑
k

aikbkj

Left-multiplication of B by AT

(ATB)ij =
∑
k

akibkj
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Answer to exercise 46 I

1 Let H be a N×N matrix defined as the identity matrix subtracted to
a constant matrix equal to 1

N

H =


1 . . . 0

... · · ·
...

0 . . . 1

 − 1

N


1 . . . 1

...
. . .

...

1 . . . 1


Components of HX are

(HX)ij = xij −
1

N

N∑
n=1

xnj

The column number j is(
x1j −

1

N

N∑
n=1

xnj

)
, . . . ,

(
xFj −

1

N

N∑
n=1

xnj

)
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Answer to exercise 46 II

2 Let X′ = HX. X′ is centered.(
X′TX′)

ij
=
∑N

n=1 x
′
nix

′
nj(

diag(X′TX′)
)
ij
=
∑N

n=1 (x
′
ni )

21(j = i)(
diag(X′TX′)−

1
2

)
ij
= 1√∑N

n=1 (x
′
ni )

2
1(j = i)(

X′diag(X′TX′)−
1
2

)
ij
=

x ′ij√∑N
n=1 (x

′
nj )

2

Therefore X′diag(X′TX′)−
1
2 is the centered and normalized matrix.

And applying the transposing rules, we get

X′diag(X′TX′)−
1
2 = HXdiag(XTH2X)−

1
2

3 H=eye(N)-1/N*ones(N);

Xp=H*X*diag( diag(X’*H*H*X).^(-1/2) );
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New notations

diag(A) is a diagonal matrix composed of the diagonal components of
A.

diag(A)α when the diagonal components are positive is equal to Aα
ii .
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Conclusion of subsection 1, Data preparation

Normalization gives equal importance to all features regardless of their
variance.

Should we do centering and normalization?

Centering and normalization is generally considered a good practice.
However, mean and standard deviation are not kept, it erases some
information, this should be done considering the specific experiment.

If a feature variable has great variance (high value of 1
N

∑N
n=1 xnf ),

without normalization there is a high risk that only this variable is
taken into account.

If a feature variable contains only noise and has therefore little
variance, normalization will give it more importance and data analysis
could be compromised.

The given features can provide more information

Polynomial expansions
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Content of section 6, Curse of dimensionality,
regularization and sparsity I

6.1 Data preparation
6.2 Feature construction
6.3 Kernel trick
6.4 Curse of dimensionality and feature extraction
6.5 Principal Component Analysis
6.6 Supervised feature extraction
6.7 Regularization
6.8 Feature selection
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Can we classify the following datasets with a linear
classifier?

Yes

With F (F+1)
2 new features:

{xf1xf2 |f1 ≤ f2} here numbered with the lexicographic order
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Notations

x is a feature vector in the feature space F .
ω
x is any feature vector in the augmented feature space denoted

ω

F .
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Examples of linear classifiers I

Exercise 47

The goal is to write linear classifiers corresponding to these domains in the
feature space composed of two dimensions.

1 Write equations delimiting the area of the left figure.

2 Write equations delimiting the area of the right figure.

3 Define the added features.
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Examples of linear classifiers II

Exercise
4 Define two linear classifiers bounding the left area using also the

added features.
f (

ω
x) = 1(b1 − a1�

ω
x)1(b2 − a2�

ω
x)

with f (
ω
x) = 1 iff x is inside the domain.

5 Define two linear classifiers bounding the right area using also the
added features.

f (
ω
x) = 1(b1 − a1�

ω
x)1(b2 − a2�

ω
x)

with f (
ω
x) = 1 iff x is inside the domain.

March 20, 2024 329 / 469



Answer to exercise 47 I

1

x2 ≤ x1 +
1

5
and x2 ≥ x21

2

x21 + x22 ≥ 0.72 and x21 + x22 ≤ 1

3 F = 2 and there are F (F+1)
2 = 3 new features.

ω
x3 = x21
ω
x4 = x1x2
ω
x5 = x22
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Answer to exercise 47 II

4 The delimiting equations can be written as
1
5 +

ω
x1 −

ω
x2 ≥ 0

0 +
ω
x2 −

ω
x3 ≥ 0

b1 =
1
5 a1 = [1,−1, 0, 0, 0]

b2 = 0 a2 = [0, 1,−1, 0, 0]
The delimiting equations can be written as

−0.72 +
ω
x3 +

ω
x5 ≥ 0

1− ω
x3 −

ω
x5 ≥ 0

b1 = −0.72 a1 = [0, 0, 1, 0, 1]

b2 = 1 a2 = [0, 0,−1, 0,−1]
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ω

F ̸= ω(F )

We introduce some new notations

ω(x) is the constructed feature vector.

ω is a mapping of F into
ω

F
(i.e. injective or one-to-one but not surjective or onto and clearly not
bijective or one-to-one correspondance).

It is false to claim that ∀ω
x,∃x, ω

x = ω(x).

∥ ∥ is the Euclidean norm of F and ∥ ∥ω is the Euclidean norm of
ω

F .

Contradiction between
ω

F and ω(F )

The samples in the dataset is inside ω(F ). However they are considered

as members of the 5D-space denoted
ω

F .
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Growth of the distances

Generally when norms are compared we have some bounding properties:

κ1 ≤ norm1(x)
norm2(x) ≤ κ2 Here we do not have this bounding property.

∥x∥
√
1 +

3

4
∥x∥2 ≤ ∥ω(x)∥ω ≤ ∥x∥

√
1 + ∥x∥2
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Most points in
ω

F are far from ω(F )

Average distance between points in
ω

F and points that can be mapped
from F with ω.

d(t) = E
[
min
x′∈F

{
∥ω(x′)− ω

x∥ω
∣∣∣∥ω
x∥ω = t

}]
where E is expected value when following here the uniform law.
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The closest point are close to where we expect them

We are considering a segment line in
ω

F joining two points in ω(F ), ω(x1)
and ω(x2). And we look for points x′ in F which are mapped into the
closest points of the segment line.

xα = argmin
x′∈F

∥αω(x1) + (1− α)ω(x2)− ω(x′)∥ω

with α ∈ [0, 1]
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New notations

F and
ω

F
x and

ω
x

∥ ∥ and ∥ ∥ω
ω
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Conclusion of subsection 2, Feature construction

Nonlinear transformations on features can transform a linear classifier
into a more complex and possibly more appropriate classifier.

We have studied the example of quadratic classifier.

The extended feature space is embedded into a vector space but

∥ ∥ω is different in nature from ∥ ∥
∥ ∥ is different in value from ∥ω( )∥ω
Most points in the embedded feature space are far from the extended
feature space
The projected points from the embedded space are not exactly where
one might expect.

Reducing dimensions?
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Content of section 6, Curse of dimensionality,
regularization and sparsity I

6.1 Data preparation
6.2 Feature construction
6.3 Kernel trick
6.4 Curse of dimensionality and feature extraction
6.5 Principal Component Analysis
6.6 Supervised feature extraction
6.7 Regularization
6.8 Feature selection
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An example with ω(F ) I

Exercise 48

We consider a small dataset
x1 = [1, 0]
x2 = [0, 1]
x3 = [1, 1]

We consider three new features x21 , x1x2 and x22 and its corresponding
mapping ω. We consider a first kernel K

K(x, x′) = ω(x)�ω(x′)

1 Express K as function of [x1, x2] and [x ′1, x
′
2]. Is it left-linear,

right-linear?

2 Compute K = [K(xm, xn)]m,n

3 Show that the inverse of K is defined?
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An example with ω(F ) II

Exercise

The inverse of K is

K−1 =

 1.5 1 −1
1 1.5 −1
−1 −1 1


We define

K(x) = [K(x, x1),K(x, x2),K(x, x3)]K
−1

 x1
x2
x3


4 Compute K(x1), K(x2) and K(x3).

5 Show that there exists x such that ω(x) ̸∈ span(ω(x1), ω(x2), ω(x3)).
Explain how we could manage to avoid this problem?

6 Compute K(x1 − x2).

March 20, 2024 340 / 469



Answer to exercise 48 I

1

K(x, x′) = x1x
′
1 + x2x

′
2 + x21x

′
1
2
+ x1x

′
1x2x

′
2 + x22x

′
2
2

It is not left-linear (nor right-linear for the same reasons). If it were
then for x′ = [1 0], the mapping x1 7→ x1 + x21 would be linear.

2 (K)11 = K([1 0], [1 0]) = 1×1 + 0 + 12×12 + 0 + 0
(K)12 = K([1 0], [0 1]) = 1×0 + 0×1 + 12×02 + 1×0×0×1 + 02×12

K =

 2 0 2
0 2 2
2 2 5


3 K is invertible because det(K) ̸= 0.

det(K) = 2

∣∣∣∣ 2 2
2 5

∣∣∣∣+ 2

∣∣∣∣ 0 2
2 2

∣∣∣∣ = 12− 8 = 4
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Answer to exercise 48 II

4 [K (x1, xm)]m is the first line of K, [2, 0, 2] so
K(x1) = [K (x1, xm)]mK−1 = [1, 0, 0] and K(x1)ω(X) = [1, 0, 1, 0, 0]
[K (x2, xm)]m is the first line of K, [0, 2, 2] so
K(x2) = [K (x2, xm)]mK−1 = [0, 1, 0] and K(x2)ω(X) = [0, 1, 0, 0, 1]
[K (x3, xm)]m is the first line of K, [2, 2, 5] so
K(x3) = [K (x2, xm)]mK−1 = [0, 0, 1] and K(x3)ω(X) = [1, 1, 1, 1, 1]

5 Let us consider x′ = [1, −1].
ω(x′) = [1, −1, 1, −1, 1]

6 To see if ω(x) ̸∈ span(ω(x1), ω(x2), ω(x3)), we set α, β, γ, δ such that
αω(x1) + βω(x2) + γω(x3) + δω(x′) = 0

and we try to show that they are necessarily equal to 0.
α+ γ + δ = 0
β + γ − δ = 0
α+ γ + δ = 0
γ − δ = 0
β + γ + δ = 0
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Answer to exercise 48 III

And indeed. When we add samples, we quickly get to span the whole
constructed feature space.

7

K(x′) = [ω(x′)�ω(X)]nK
−1 = [2, 0, −1]K−1 = [2, 1, −1]

and K(x′)ω(X) = [1, 0, 1, −1, 0] Now we want to show that
K(x′)ω(X) ̸∈ ω(F )

If this was wrong then there would exists x ′′1 , x
′′
2 such that

x ′′1 = 1, x ′′2 = 0, x ′′1
2
= 1, x ′′1 x

′′
2 = −1, x ′′2

2
= 0

This is not possible.
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Kernel trick

Basic idea

x�x′ is replaced by K(x, x′)

K is called a kernel.

We only need to have K(x, x′) = K(x′, x).

We do not need left or right linearity.

Samples act as a basis

Not an orthogonal basis, but a generally overcomplete basis.

Representing theorem

This theorem states that all samples in the induced feature space can be
represented using the data samples using the kernel. It is based on the
minimization of a loss function
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General scheme

K(x, x′) K X

K(x,X)x K(x) K(x)X

March 20, 2024 345 / 469



Definitions

Kernel matrix
K = [K(xm, xn)]nm

Kernel values on the dataset as a row vector
[K(x, (X)n)]n

Mapping in the kernel-induced space
K(x)

Back to the feature space
K(x)X

Nonlinearity remains an issue

This is more adapted to SVM (support vector machine) that uses a dual
expression.
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Testing the representation theorem

The X-axis is N

The Y-axis is

mean
x∈F

(

∥∥∥∥ω( x

∥x∥
)− K(x)X

∥∥∥∥)
Samples are drawn with
r
x ∼ N (0, diag([1 1]))

The average is computed
10000 experiments.

Exercise 49

Write an algorithm to test the representation theorem on the kernel
derived from x 7→ ω(x).
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Answer to exercise 49 I

Require: N, I
Ensure: d
1: d = 0
2: for i = 1 : I do
3: Draw the N samples to get X
4: Compute ω(X)
5: Compute K
6: Set K := K+ 10−5I
7: Compute K−1

8: Draw x and normalize it.
9: Compute x′ = [ω(x)�ω(X(1, :)) . . .]K−1

10: Update d with d := d + ∥x′ω(X)− ω(x)∥ ω
F
.

11: d := d
I
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Conclusion of subsection 3, Kernel trick

To represent samples in a feature space, it is custom to use an
orthonormal basis, with which we have

x =
N∑

n=1

(en�xn)en

Here we have a more general representing technique. Instead of using
orthogonality we inverse a matrix.

And when that matrix is singular we add a diagonal matrix. This is
regularization.

Why could this be a problem to add features?

We have seen technique to increase the number of features. We are going
to see that this could be an issue.
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Content of section 6, Curse of dimensionality,
regularization and sparsity I

6.1 Data preparation
6.2 Feature construction
6.3 Kernel trick
6.4 Curse of dimensionality and feature extraction
6.5 Principal Component Analysis
6.6 Supervised feature extraction
6.7 Regularization
6.8 Feature selection
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Reasons to do feature extraction?

Numerical complexity

As of now, time is generally not the main issue. However numerical
complexity can increase exponentially. We might choose to use the
increase numerical complexity for other task.

Hughes phenomenon

This is also called the curse of dimensionality.
If when inverting a matrix, you see the following warning, it could be an
indication to reduce the dimensionality.

warning: matrix singular to machine precision, rcond = 1.56642e-18

warning: called from
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Example of this phenomenon

The training set contains 10 samples. We use the L2-solver.
r
y ∼ U({0, 1}) and r

x|y=0 ∼ N (−1, 1)
r
x|y=1 ∼ N (1, 1)

Require: F dimension of feature space
Ensure: A1,A2,A3

1: for 500 experiments do
2: Draw Y and X
3: Learn w1 from X and Y
4: Learn w2 from X1TF and Y
5: Draw Yt and Xt

6: Compute A1 with Yt and w1-predictions.
7: Compute A2 with Yt and w2-predictions.
8: Draw x1 and x0
9: Draw noisy copies of x1 and x0 into X3, Y3.

10: Learn w3 from X3 and Y3

11: Compute A3 with Yt and w2-predictions.

12: Average A1,A2,A3.
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Simulations
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Feature extraction feature selection

Experiment
With feature extraction, we try to find linear combinations of existing
features that captures most information.

Experiment
With feature selection, we try to keep only the most informative
features.

Is a dataset of high dimension?

It is tempting to read this issue from the number of features in a given
dataset. However this may not be relevant.
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Goal

Have a reduced number of
features. It is also called
dimensionality reduction.

extraction as opposed to
selection, it means that all
features changed.

Feature values are changed?

Stored features values are modified.

The original feature values can be recovered with the inverse
transform (if we do not reduce the number of components).

Geometric interpretation: same points but different axis and different
coordinates.
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Conclusion of subsection 4, Curse of dimensionality and
feature extraction

To illustrate the need for feature extraction, we made three experiments.

• x are drawn with respect to y

• The obtained x are replaced by the mean.

• x1 and x0 are drawn and the remaining features are copies.

The first experiment shows the need for feature extraction. The third
experiment shows the need for feature selection.

A popular feature extraction technique

We will see in detail PCA (principal component analysis), an unsupervised
technique.

March 20, 2024 356 / 469



Content of section 6, Curse of dimensionality,
regularization and sparsity I

6.1 Data preparation
6.2 Feature construction
6.3 Kernel trick
6.4 Curse of dimensionality and feature extraction
6.5 Principal Component Analysis
6.6 Supervised feature extraction
6.7 Regularization
6.8 Feature selection
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Principal Component Analysis

Unsupervised technique

In 2D and 3D, features are rotated.

New features are ordered by order of importance.

We may keep only the most important.
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PCA: getting the transformation matrix P

Require: X centered
Ensure: P and D
1: Compute covariance matrix XTX
2: Compute the eigenvalue decomposition yielding V1 and D1

3: Find a permutation order to have decreasing eigenvalues
4: Apply the permutation order to transform V1 and D1 into P and D

[V1,D1]=eig(X’*X);

[~,ind]=sort(D1);

P=V1*eye(size(D))(ind,:);

D=D1*eye(size(D))(ind,:);
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PCA in a nutshell

Linear algebra
X → P,D

Matrix computations
P → PCAP

P,F1 → PCATP , PCAT

D,F1 → AT PCA

Analysis and synthesis

x →
∈P︷ ︸︸ ︷

PCAP(x) → x
Approximation

x →
∈P︷ ︸︸ ︷

PCAP(x)
F1→

∈P or ∈PF1︷ ︸︸ ︷
PCATP(x) → PCAT (x)

Accuracy of approximation
∥x− PCAT (x)∥

∥x∥
is on average equal to 1− AT PCA
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What we get with PCA I

Analysis

Given x, we transform into
PCAP(x) = xP

Components are statistically independent from each others

f ̸= f ′ ⇒
N∑

n=1

( PCAP(x))nf ( PCAP(x))nf ′ = 0

We can construct approximations by truncating the vector.

PCAT P(x) = xPdiag([
<−F1−>
1 . . . 1 , 0 . . . 0])
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What we get with PCA: II

Synthesis

Given PCAP(x), we get x
x = PCAP(x)P

T

Given the truncated vector PCAT P(x), we get a good approximation of x,
denoted PCAT (x)

PCAT (x) = PCAT P(x)P
T

We also have an orthogonality property
PCAT (x)� (x− PCAT (x)) = 0

The accuracy of the approximation is

AT PCA = 1−mean
x∈X

∥x− PCAT (x)∥2

∥x∥2
where ∥x∥2 = x�x = xxT

Perhaps in terms of accuracy, it would have made more sense to consider

1− ∥x− PCAT (x)∥
∥x∥

But then we loose an easy connection with variance.
March 20, 2024 362 / 469



Accuracy as a function of F1 and D

PCA yields a diagonal matrix D
D = diag(λ1 . . . λF )

with λ1 ≥ λ2 ≥ . . . ≥ λF

F1 is the number of components not canceled in P
The accuracy is

AT PCA =

∑F1
f=1 λf∑F
f=1 λf

=
1

tr(D)

F1∑
f=1

λf
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Illustrating the notations in a toy example I

Exercise 50

We consider a tiny dataset with
x1 =

[
2
3

1
3

]
x2 =

[
1
3

2
3

]
1 Compute X and XTX

We assume that using a PCA-algorithm we found P and D

P =

√
2

2

[
1 1
1 −1

]
and D =

[
1 0
0 1

9

]
2 Write the analysis and synthesis equations and check that we have a

perfect reconstruction.
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Illustrating the notations in a toy example II

Exercise
3 Considering that we keep only one component, write the

approximation scheme.

4 Check the orthogonality property.

5 Compute ∥x∥2, ∥x− PCAT (x)∥2

6 Compute AT PCA

7 Check the X-signification of AT PCA
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Answer to exercise 50 I

x1 =
[
2
3

1
3

]
x2 =

[
1
3

2
3

]
1

X =

[ 2
3

1
3

1
3

2
3

]
= XT

XTX =
1

9

[
5 4

4 5

]
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Answer to exercise 50 II

2

x →
∈P︷ ︸︸ ︷

PCAP(x) → x
We denote eT1 , e

T
2 the column vectors of P

P = [eT1 e
T
2 ] with e1 =

√
2

2
[1 1], e2 =

√
2

2
[1 − 1]

For the analysis we get

PCAP(x) = xP = [xeT1 bxeT2 ] =

[√
2

2
(x1 + x2)

√
2

2
(x1 − x2)

]
Denoting the component of PCAP(x) as x

′
1, x

′
2, we get for the

synthesis

PCAP(x)P
T = [x ′1 x ′2]

[
e1
e2

]
=

[√
2

2
(x ′1 + x ′2)

√
2

2
(x ′1 − x ′2)

]
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Answer to exercise 50 III

To check PCAP(x)P
T = x, we check the first component√

2

2
(x ′1 + x ′2) =

√
2

2

(√
2

2
(x1 + x2) +

√
2

2
(x1 − x2)

)
= x1

then the second component√
2

2
(x ′1 − x ′2) =

√
2

2

(√
2

2
(x1 + x2)−

√
2

2
(x1 − x2)

)
= x2

3

x →
∈P︷ ︸︸ ︷

PCAP(x)
F1→

∈P or ∈PF1︷ ︸︸ ︷
PCATP(x) → PCAT (x)

We have shown previously

PCAP(x) =

[√
2

2
(x1 + x2)

√
2

2
(x1 − x2)

]
As we keep only the first component,

PCATP(x) =

√
2

2
(x1 + x2)
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Answer to exercise 50 IV

After synthesis, we get

PCAT (x) =

√
2

2
(x1 + x2)e1 =

[
x1 + x2

2

x1 + x2
2

]
4 The difference between x and its approximation PCAT (x) is

x− PCAT (x) =

[
x1 − x2

2

x2 − x1
2

]
The orthogonality property claims that (x− PCAT (x)) � PCAT (x) = 0[

x1 − x2
2

x2 − x1
2

]
�

[
x1 + x2

2

x1 + x2
2

]
= 0

5 The square norm of x is
∥x∥2 = x�x = x21 + x22

The square norm of x− PCAT (x) is

∥x− PCAT (x)∥2 =
(x1 − x2)

2

2
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Answer to exercise 50 V

6 Since D = diag([1 1
9 ]),

AT PCA =
1

1 + 1
9

=
9

10

7 The signification of AT PCA for x

1− ∥x− PCAT (x)∥2

∥x∥2
= 1−

(x1−x2)2

2

x21 + x22
= 1− 1

2

(x1 − x2)
2

x21 + x22
When x = x1, we get

1− 1

2

(23 − 1
3)

2(
2
3

)2
+
(
1
3

)2 = 1− 1

10

When x = x2, we get

1− 1

2

(13 − 2
3)

2(
1
3

)2
+
(
2
3

)2 = 1− 1

10

Hence

mean
x∈X

(
1− ∥x− PCAT (x)∥2

∥x∥2

)
= 1− 1

10
= AT PCA
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Insight into the use of XTX

A F -multivariate distribution is defined with a mean µ and a
covariance matrix Σ

fr
x
(x) =

1

(2π| det(Σ)|)F/2
e−

1
2
(x−µ)Σ−1(x−µT )

Σ = E
[
(
r
x− µ)T (

r
x− µ)

]
Notation
r
x denotes a random row vector.
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Variance computations

Exercise 51

We consider two independant Gaussian random variable
r
z1 and

r
z2

centered and normalised.
r
z1 ∼ N (0, 1) and

r
z2 ∼ N (0, 1)

We define a random vector
r
x =

[
2

3

r
z1 +

1

3

r
z2,

1

3

r
z1 +

2

3

r
z2

]
1 Compute the covariance matrix using Σ = E

[
(
r
x− µ)T (

r
x− µ)

]
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Answer to exercise 51 I

r
x =

[
2

3

r
z1 +

1

3

r
z2,

1

3

r
z1 +

2

3

r
z2

]
1 Here µ = 0 so the covariance matrix is E [xTx].

r
x
T r
x =

[
4
9(

r
z1)

2 + 1
9(

r
z2)

2 + 4
9

r
z1

r
z2

2
9(

r
z1)

2 + 2
9(

r
z2)

2 + 5
9

r
z1

r
z2

2
9(

r
z1)

2 + 2
9(

r
z2)

2 + 5
9

r
z1

r
z2

4
9(

r
z1)

2 + 1
9(

r
z2)

2 + 4
9

r
z1

r
z2

]
Because these are independant Gaussian distributions, we have

E
[
(
r
z l)

2
]
= E

[
(
r
z2)

2
]
= 1 and E

[
r
z l

r
z2
]
= 0

So we get

E
[

r
x
T r
x
]
=

[
5
9

4
9

4
9

5
9

]
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Contours I

Exercise 52

We consider a centered multivariate normal distribution
r
x ∼ N (0,Σ) and Σ =

[
5
9

4
9

4
9

5
9

]
We want to find the locus of equal density probability of x.

1 Show that this locus fullfills

J =
1

2
xΣ−1xT

with a probability density of 9
2π e

−J

2 Check that

Σ−1 =

[
5 −4
−4 5

]
3 Defining x with coordinates: x = [x1 x2], show that they fullfill

2J = 5x21 − 8x1x2 + 5x22
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Contours II

Exercise
4 We now use polar coordinates x1 = r cos(θ) and x2 = r sin(θ). Show

that

r(θ) =

√
2J√

5− 4 sin(2θ)
and hence that a parametric description of the contour is{

x(θ) = r(θ) cos(θ)
y(θ) = r(θ) sin(θ)

5 Describe the contour and find its closest and farthest points.

6 Find a unit vector along the farthest point’s direction. We will see
that this is the first eigenvector and hence the first column of the
P-matrix.
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Simulations

Using the theoretical equations, By drawing 1000 points of
r
z1,

r
z2,

and computing x,
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Answer to exercise 52 I

fr
x
(x) =

1

2π| det(Σ)|
e−

1
2
xΣ−1xT

1 By defining J = 1
2xΣ

−1xT , we get

fr
x
(x) =

1

2π| det(Σ)|
e−J

2J = [x1 x2]

[
5 −4
−4 5

] [
x1
x2

]
2J =

5x1x1 + −4x1x2 +
−4x2x1 + 5x2x2

2J = 5x21 − 8x1x2 + 5x22
2 Because sin(2θ) = 2 sin(θ) cos(θ), and

det(Σ) = det

[
5
9

4
9

4
9

5
9

]
=

25− 16

81
=

1

9
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Answer to exercise 52 II

3

Σ ∗ Σ−1 =
1

9

[
25− 16 −20 + 20
−20 + 20 25− 16

]
4

2J = [x1 x2] Σ
−1 =

[
5 −4
−4 5

] [
x1
x2

]
2J = [5x1 − 4x2 − 4x1 + 5x2]

we get
2J = r2(5− 4 sin(2θ))

And finally

r =

√
2J

5− 4 sin(2θ)
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Answer to exercise 52 III

5 When θ ∈ [−π
4 ,

π
4 ], θ 7→ sin(2θ) is an increasing function,

θ 7→ − sin(2θ) is decreasing and r =
√

2J
5−4 sin(2θ) is increasing. The

closest point is when sin(2θ) is minimal that is θ = −π
4 or θ = 3π

4 .
The farthest point is when sin(2θ) is maximal that is θ = π

4 or
θ = −3π

4 . θ 7→ r(θ) ranges between those two extreme points.

6 The farthest point is obtained with θ = π
4 , that is with

x = cos(π4 ) =
√
2
2 and y = sin(π4 ) =

√
2
2 . The corresponding unit

vector is
[√

2
2

√
2
2

]
.
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Trace and variance

Let x ∼ N (0,Σ)

var(
r
x) = E

[
r
x(

r
x)T
]
= tr(Σ)

An experiment

1: for i = 1 : 105 do
2: Draw randomly Σ of size 5×5.
3: Rescale Σ so that tr(Σ) = 1.
4: Draw x of size 1×5 following N (0,Σ).
5: Store xxT

6: Plot histogram of the stored values

The simulation shows:
xxT is very unlikely to be equal to tr(Σ),

the average of xxT is tr(Σ).
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Variance
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Mean adds to the variance

In the previous experience µ = 0. If not we have to replace x with
x− µ.

The mean’s square adds to the variance
E [

r
x(

r
x)T ] = var(

r
x) + E [

r
x]E [

r
x]T = tr(Σ) + µµT

In the previous experiment, when we draw x, its mean is non-zero.
This non-zero mean is a significant contribution to the measured xxT

as (x−mean(x))(x−mean(x))T would be on average much smaller!
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Accuracy of the approximation

Let
r
x ∼ N (0,Σ) and PCAT

(
r
x
)
its F1-component PCA-approximation.

E
[
∥ r
x− PCAT (

r
x)∥2

]
= (1− AT ,PCA(Σ,F1)) tr(Σ)

E
[
∥r
x−PCAT (

r
x)∥2

∥x∥2

]
= 1− AT ,PCA(Σ,F1)

An experiment

1: for i = 1 : 105 do
2: Draw randomly Σ of size 5×5.
3: Rescale Σ so that tr(Σ) = 1.
4: With F1 = 1, compute A(i) := AT ,PCA

5: Draw x of size 1×5 following N (0,Σ).
6: Compute and store a(i) := ∥x− PCAT (x)∥2
7: Compute and store b(i) :=

(
∥x− PCAT (x)∥2

)
/∥x∥2

8: Plot histogram of a(i)

1−A(i)
and of b(i)

1−A(i)
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Variance 2

∥x− PCAT (x)∥2

1− AT ,PCA

∥x− PCAT (x)∥2

∥x∥2(1− AT ,PCA)
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Probability distribution of the square root of the relative
error

∥x− PCAT (x)∥
∥x∥
√

1− AT ,PCA
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Frobenius norm and variance

∥ ∥2F has a definition using trace.
∥X∥2 = tr(XTX)

∥ ∥F is a matrix norm (one among many).

∥X∥F =

√∑
n,f

x2nf

It has a link with the eigenvalue decomposition problem of XTX

∥X∥2F = tr(D) =
F∑

f=1

λf

It has a link with Σ and variance.
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XTX and xxT why?

Here X is obtained by stacking row vectors xn
X is also the concatenation of column vectors Xf .

xxT is a scalar (∥x∥2).
xTx is a F×F matrix.
1

xxT
xTx is a projector along x.

XTX is also a F×F matrix.

XTX =
N∑

n=1

xTn xn

XTX is an estimate of the
covariance matrix.

XTX = [Xf Xf ′ ]f ,f ′

XXT is a N×N matrix with
components [xnxTn′ ]n,n′ .

∥X∥2F = tr(XTX) = tr(XXT )
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A PCA algorithm I

Projector along axis e

P(x) = xeTe
When applied to a matrix it renders a matrix whos rows are the projected
rows

P(X) = XeTe

Direction explaining best the variance

We look for e such that P(X) is maximal in some sense.
ê = argmax

e, ∥e∥=1
∥P(X)∥F = argmax

e, ∥e∥=1
eXTXeT

This could be obtained for instance with simulated annealing.m

X=[2/3 1/3; 1/3 2/3];

J=@(e)(-e*X’*X*e’)/(e*e’);

e=simulated_annealing(J,size(X,2),’silent’);

e=(e(:)./sqrt(e(:)’*e(:)))’;
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A PCA algorithm II

Require: X
Ensure: P and D
1: X′ := X
2: for f = 1 : F do
3: Compute ef
4: Project X′ := X′ − P(X′)
5: Update (X′)TX′

6: P := [eT1 . . . e
T
F ]

T

7: D := PTXTXP

Note that with exercise 52 we used this idea to find e1.
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PCA and eigenvalue decomposition

PCA can be regarded as the eigenvalue decomposition of XTX.
XTX = PDPT

with PTP = IF and D is a F×F diagonal matrix. This is the idea used in
the proposed Matlab/Octave implementation in frame 359.

Eigenvalue decomposition of XTX

Because XTX is symmetric, it exists.

D = diag([λ1 . . . λF ]) with λf as eigen values.

λf are solutions of the polynomial of degree F
det(XTX− λIF ) = 0

P = [eT1 . . . e
T
F ] with ef as eigen vectors.

XTXeTf = λf e
T
f with ef e

T
f = 1.

We only need to sort in decreasing order the eigenvalues.
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Example of eigenvalued decomposition

Exercise 53

We consider a covariance matrix

Σ =
1

9

[
5 4
4 5

]
We are trying to solve the eigenvalue problem.

1 Write the second order polynomial yielding the eigenvalues and find
them.

2 Find the eigenvectors and write the equation.
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Answer to exercise 53 I

1

f (λ) = det(Σ− λI2) =

∣∣∣∣ 5
9 − λ 4

9
4
9

5
9 − λ

∣∣∣∣ = (59 − λ
)2 − (49)2

f (λ) =
(
5
9 − λ− 4

9

) (
5
9 − λ+ 4

9

)
Hence f (λ) = 0 ⇔ λ = 1 or λ = 1

9

2 We see that if x = [1 1],
xΣ = [1 1] = x

So e1 = [1 1]
√
2
2 is the first eigenvector.

We see that if x = [1 − 1],

xΣ = [
1

9

1

9
] = x

So e2 = [1 − 1]
√
2
2 is the second eigenvector.

ΣP = Σ[eT1 e
T
2 ] = [eT1

1

9
eT2 ] = PD
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PCA and singular value decomposition

Definition of SVD

X = UΣDV
T

where ΣD is N×F and diagonal, UUT = IN , VV
T = IF

XTX = PDPT = VΣT
DU

TUΣDV
T = VΣT

DΣDV
T

So we have
V = P and (ΣD)ff =

√
(D)ff
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Whitening the process
Deterministic Statistic

We assume X = [xT1 . . . x
T
N ]

T

XTX = PDPT

with PPT = I and D diagonal.
The whitened vector is

x 7→ z = xPD−1/2

The covariance matrix of
Z = [zT1 . . . z

T
N ]

T is

ZTZ = D−1/2PTXTXPD−1

= D−1/2PT (PDPT )PD−1/2

= IF

We assume X = [xT1 . . . x
T
N ]

T

ΣD = PDPT

with PPT = I and D diagonal.
The whitened vector is

z = xPD−1/2

Components of z, zf are indepen-
dent centered normalized Gaussians.
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whitening vs normalization

x 7→ z = xPD−1/2

with
XTX = PDPT

We get independent normalized
Gaussian random variables

r
zf ∼ N (0, 1)

and a white covariance matrix
ZTZ = 1

x 7→ x′ = xdiag(XTX)−1/2

We get unitary random components

∀f , var(
r

x ′f ) = 1
And unitary column vectors

∥X ′
f ∥ = 1

The diagonal of the covariance ma-
trix is equal to one.

∀f ,
(
(X′)TX′

)
ff
= 1

March 20, 2024 395 / 469



Solving the eigenvalue problem on a toy example

Exercise 54

We consider the same centered multivariate normal distribution as defined
in exercise 52.

r
x ∼ N (0,Σ) and Σ =

[
5
9

4
9

4
9

5
9

]
We assume that using a PCA-algorithm we found P and D

P =

√
2

2

[
1 1
1 −1

]
and D =

[
1 0
0 1

9

]
1 Write the equations of the whitening process transforming

r
x into

r

z′.

We now assume as in exercise 51 that actually
r
x comes from two centered

normalized Gaussian random variable
r
z1 and

r
z2.

r
x1 =

2

3

r
z1 +

1

3

r
z2 and

r
x2 =

1

3

r
z1 +

2

3

r
z2

2 Check that
r
z is indeed white.
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Answer to exercise 54 I

P =

√
2

2

[
1 1
1 −1

]
and D =

[
1 0
0 1

9

]
1 Whitening means that z′ = xPD−1/2

z ′1 =
√
2
2 (x1 + x2)

z ′2 =
3
√
2

2 (x1 − x2)

2 We now combine these equations with

x1 =
2

3
z1 +

1

3
z2 and x2 =

1

3
z1 +

2

3
z2

And we get

z ′1 =
√
2
2 (z1 + z2)

z ′2 =
√
2
2 (z1 − z2)

which is clearly white as
var(z ′1) = var(z ′2) = 1 and E [z ′1z

′
2] = 0
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Correlation matrix

We get correlations when we first normalize then compute covariances.

corrX = cov normX
with normX = Xdiag(XTX)−1/2

and covX = XTX
Its components are estimated with

corrX =

 ∑N
n=1 xnf xnf ′√∑N

n=1 x
2
nf

√∑N
n=1 x

2
nf ′


ff ′

=
( covX)ff ′√

( covX)ff
√
( covX)f ′f ′

Its components are between −1 and 1
−1 ≤ ( corr(X))ff ′ ≤ 1

Its diagonal is equal to one.

Here correlation is not concerned with neighboring pixels

It may have to do with neighboring bandwidths.
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Example of correlation matrix

Exercise 55

We consider the tiny dataset of exercise 50with
x1 =

[
2
3

1
3

]
x2 =

[
1
3

2
3

]
1 Compute the correlation matrix.
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Answer to exercise 55 I

X =
1

3

[
2 1
1 2

]
1

cov(X) = XTX =
1

9

[
5 4
4 5

]
corr(X) =

[
1 4

5

4
5 1

]
because

4

5
=

4
9√
5
9

√
5
9
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Conclusion of subsection 5, Principal Component Analysis

PCA is very popular.

Linear algebra: Eigenvalue decomposition problem and singular value
decomposition problem.

Transformations: analysis/synthesis and whitening

Uncorrelated and variance explanation

Trace of the covariance matrix, Frobenius norm and approximation

PCA is unsupervised

The important information may not be obvious. A supervised technique?
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Content of section 6, Curse of dimensionality,
regularization and sparsity I

6.1 Data preparation
6.2 Feature construction
6.3 Kernel trick
6.4 Curse of dimensionality and feature extraction
6.5 Principal Component Analysis
6.6 Supervised feature extraction
6.7 Regularization
6.8 Feature selection
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Transforming PCA into a supervised feature extraction
technique

To have zero mean, we consider ỹ instead of y . We are going to rotate x
into x′ and the question is what for?

Not the cross-covariance matrix

We want to maximize the covariance between
r
x and

r
y . It is tempting to

consider

cov(
r
x

r

ỹ) = [E(
r
x1

r

ỹ) . . .E(
r
xF

r

ỹ)]

We have seen before in some conditions that E [∥ r
x∥2] = tr(XTX)

PCA with a modification on the covariance matrix

Let Ỹ = diag(Ỹ )

E [∥ r
x

r

ỹ∥2] = tr
(
(ỸX)T (ỸX)

)
= tr

(
XT ỸT ỸX

)
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How to find the eigenvectors?

The first eigenvector e defines a projector on X
X′ = XeTe

We get the optimization problem

e = argmax
e

tr
(
(X′)T ỸT ỸX′

)
= argmax

e
eXT ỸT ỸXeT

subjected to ∥e∥ = 1.

The new PCA supervised-methodology

We replace XTX with XTỸỸX.
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Conclusion of subsection 6, Supervised feature extraction

1 PCA is the most popular dimensional reduction technique.

2 PCA can be adapted by computing the covariance matrix using
diag(Ỹ )X instead of X.

3 We have also seen in frame 221 that using LDA we get a new
supervised feature.

4 Other techniques make use of labels to select the appropriate number
of features.

A different linear classifier

The probabilistic framework yields a different linear classifier. It yields a
new feature: the linear hyperplane separating predictions.
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Content of section 6, Curse of dimensionality,
regularization and sparsity I

6.1 Data preparation
6.2 Feature construction
6.3 Kernel trick
6.4 Curse of dimensionality and feature extraction
6.5 Principal Component Analysis
6.6 Supervised feature extraction
6.7 Regularization
6.8 Feature selection
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What it is

About the previous examples of regularization

We had to inverse an ill-conditioned matrix and to achieve this we add λI
with λ could be very small.

Definition of the condition of a matrix

Given a square matrix A we call the condition number of a matrix

κ(A) =
max(σ(A))

min(σ(A))
where σ(A) is the set diagonal components of D in a singular value
decomposion.

A = UDV ′
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Smoothing and conditioning?

Exercise 56

1 What is doing this code?

function fig_cond()

N=10; F=10; cd=zeros(3); X=randn(N,F);

for m=1:4

Xn=X; X=smooth(X’)’;

for n=1:3

Xn=smooth(Xn); cd(m,n)=cond(Xn);

end

end

disp(num2str(round(cd))),

end

function X2=smooth(X1)

N=size(X1,2); X2=[X1(:,1) (X1(:,1:N-1)+X1(:,2:N))/2];

end
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Output of an experiment

smoothing along features−→
↓ smoothing along samples

109 1001 7055

240 1651 9359

2257 13293 59172

17129 96773 395674
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Answer to exercise 56 I

Random vectors stacked in X.
r
x ∼ N (0, diag(1F ))

When drawn, the condition number is okay because,
(XTX)mn ≈ N1(m = n)

The smoothing along the features

S(X) =
[
Xn1,

Xn1 + Xn2

2
, . . .

Xn,F−1 + XnF

2

]
The smoothing along the samples

S(XT )T

Border effect

When there are N columns, we can output only N − 1 values depending
each on two values, if the operations are the same.
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Answer to exercise 56 II

Coding the smoothing effect

The computation is operations on a sliding window.
(S(X))nf = Xnf w0 + Xnf+1w1

with w0 = w1 = 0.5.

How can we compute the composition?

x ′n = xnw0 + xn+1w1

x ′′n = x ′nw0 + x ′n+1w1

The important property is invariance with respect to a right shift. We see
that

[w0 w1] ∗ [w0 w1] = [w2
0 2w0w1 w2

1 ]
This is actually the same as polynomial multiplication.
(w0 + xw1)(w0 + xw1) = w2

0 + 2w0w1x + w2
1 x

2

March 20, 2024 411 / 469



What are the practical consequences?

Because of sensitivity to correlations

The training set consists of samples drawn randomly in the
hyperspectral image. They are not close to each others.

It is generally a good idea to do dimensionality reduction to reduce
correlations among bandwiths.

However using test samples very close to training samples is an issue.

March 20, 2024 412 / 469



Modified loss function

L2-regularization consists in adding

Lr2(S , f v ) =
1

2

N∑
n=1

(b − a�xn − ỹn)
2 + λ(b2 + ∥a∥2)

with λ > 0 a cost parameter.
This is called the ridge OLS.
OLS stands for Ordinary Least Square.

Exercise 57

Solve analytically the new optimization problem with the regularized
L2-loss function.
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Answer to exercise 57 I

2Lr (S , f v ) =

(
∆

XwT

)T (∆

XwT

)
−
(

∆

XwT

)T

Ỹ

−Ỹ T

(
∆

XwT

)
+ Ỹ T Ỹ + λwwT

2L(S , f v ) = w(
∆

X
T ∆

X+ λI)wT − 2w
∆

X
T

Ỹ + Ỹ T Ỹ
And after derivation with respect to w, we get

wT =

(
∆

X
T ∆

X+ λI

)−1
∆

X
T

Ỹ
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An experiment showing increased performance with
L2-regularization

Require: λ
Ensure: mean(A)
1: for 100 experiments do
2: Draw a probabilistic problem
3: Draw 10 labeled samples
4: Compute w (ridge OLS)
5: Draw 10 labeled samples
6: Predict 10 labels
7: Measure accuracy

8: Compute average accuracy
r
µ0,

r
µ1 ∼ N (0, 4I10) and

r

Σ1 ∼ U([0, 1]10),
r

Σ2 = 0.5(
r

Σ+ (
r

Σ)T )
r

X
|
r
Y=0

∼ N (µ0,Σ2) and
r

X
|
r
Y=1

∼ N (µ1,Σ2)
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Regularization regarded as the choice of an increased prior I

Exercise 58

We consider a regression problem, that is we want to predict values
instead of labels. The values are represented by Y . For the sake of
simplicity, we consider here only one feature, so the data matrix X is here
a column vector X . a is a scalar, a.

Y = aX + η
a and η are here regarded as a random variable and vector.

r
a ∼ N (0, σa) and

r
η ∼ N (0, σηIN)

1 Write the likelihood of Y given X and a.

2 Write the posterior probability a given X and Y as a function of the
likelihood and a prior.
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Regularization regarded as the choice of an increased prior
II

Exercise
3 Show that â maximizing the posterior probability is defined as

â = argmin
a

(Y − aX )T (Y − aX ) +
σ2η
σ2a

a2
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Answer to exercise 58 I

1 Denoting the likelihood of Y given X and a

f r
Y |X ,a

(X ,Y , a) =
1

√
2π

N | det(σ2ηIN)|N/2
e−

1
2
(Y−aX )T (σ2

ηIN)
−1

(Y−aX )

σ2ηIN is a diagonal matrix whose inverse and determinant are
1

σ2η
IN and σ2Nη

This covariance matrix being diagonal we also get the independence
among the different components.

f r
Y |X ,a

(X ,Y , a) =
1

(2π)N/2σNη
e
− 1

2σN
η
(Y−aX )T (Y−aX )
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Answer to exercise 58 II

2 The Bayesian formula is sometimes written as

P(A|B) = P(B|A)P(A)
P(B|A)P(A) + P(B|¬A)P(¬A)

Here this actually means

f r
a|

r
Y ,X

(X ,Y , a) =
f r
Y | ra,X

(X ,Y , a)f r
a
(a)∫ +∞

−∞ f r
Y | ra,X

(X ,Y , a)f r
a
(a) da

3 Because the denominator depends only of X and Y , it is possible to
denote its logarithm −Z (X ,Y ) and hence to get

ln f r
a|

r
Y ,X

(X ,Y , a) = Z (X ,Y ) + ln f r
Y | ra,X

(X ,Y , a) + ln f r
a
(a)

There exists a quantity κ not depending on X and Y such that
ln f r

a|
r
Y ,X

(X ,Y , a) = Z (X ,Y ) + κ− 1
2σ2

η
(Y − aX )T (Y − aX )− 1

2σ2
a
a2

= Z (X ,Y ) + κ− 1
σ2
η

(
(Y − aX )T (Y − aX ) +

σ2
η

σ2
a
a2
)
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Probability distribution of the learned parameters
Prior modeling Choice of the prior

wT =

(
∆

X
T ∆

X

)−1
∆

X
T

Y

⇒ wf ∼ L(0, 0.2) or wf ∼ N (0, 0.4)
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Probability distributions of noise
Modeling the noise Choice of likelihood

(btw, I did not use here Ỹ )

η = Y − Xw with wT =

(
∆

X
T ∆

X

)−1
∆

X
T

Y

⇒ ∥η∥ ∼ N (0, 0.04) and λ ∼ σ2
η

σ2
w
≈ 10−2
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Two kinds of regularization for OLS

LASSO

Least absolute shrinkage and selection operator
It is a Laplacian approximation of the parameter prior.

Lr1(S , f v ) =
1

2

N∑
n=1

(b − a�xn − ỹn)
2 + λ(|b|+ ∥a∥)

Ridge OLS

It is a Gaussian approximation of the parameter prior. This regularization
is also called the Tikhonov regularization.

Lr2(S , f v ) =
1

2

N∑
n=1

(b − a�xn − ỹn)
2 + λ(b2 + ∥a∥2)
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Laplace function

Figure 9:
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Conclusion of subsection 7, Regularization

1 We first saw a practical classification ill-posed.

2 In the example it results from correlated samples.

3 In an image, training sets and training sets are generally drawn from
randomly sampled pixels to avoid such correlations. But practically,
this could be an issue for a given application.

4 A Bayesian interpretation of this regularization is given.

5 On an experimental example, it yields two regularization techniques
Ridge and LASSO.

Feature selection technique

These regularization techniques yield two feature selection technique.
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Content of section 6, Curse of dimensionality,
regularization and sparsity I

6.1 Data preparation
6.2 Feature construction
6.3 Kernel trick
6.4 Curse of dimensionality and feature extraction
6.5 Principal Component Analysis
6.6 Supervised feature extraction
6.7 Regularization
6.8 Feature selection
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Feature selection

Exercise 59

We consider again exercise 25 and the proposed solution in exercise 27
where

∆

X = [X1], w = [−a b] and wT =

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ

with
fa,b(x) = 1(a�x ≤ b)

1 Let us suppose that the first component of all samples in S2 is
constant, why would this be a problem in these equations. Suggest an
experiment studying this question.

2 What should we think of this situation?

3 What could we do?
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Answer to exercise 59 I

1 When first components of all samples have roughly the same value,

the first column and the last column of
∆
x are proportional and the

matrix
∆

X
T ∆

X becomes more and more ill-conditioned.
In this experiment, the first col-

umn of
∆

X is replaced with ones
added to a random number drawn
from a centered Gaussian distri-
bution with σ as standard devi-
ation. Each point in this graph
indicates vertically the maximum

value of the

(
∆

X
T ∆

X

)−1

and hori-

zontally 1
σ .

Require: σ
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Answer to exercise 59 II

Ensure: c value of the greatest component

1: Define X and
∆

X
2: Draw 3 random values from a Gaussian distribution with mean 1

and standard deviation σ.

3: Replace in
∆

X the first column with these values.

4: Compute

(
∆

X
T ∆

X

)−1

.

5: Let c be the greatest value of

(
∆

X
T ∆

X

)−1

.
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Answer to exercise 59 III

2 If first components of all samples have exactly the same value, say 2,
then

1(b − [a1, a2]�x ≥ 0) = 1(0− [a1 −
b

2
, a2]�x ≥ 0)

= 1(b − 2a1 − [0, a2]�x ≥ 0)
This identity adds to the general property when b > 0,
1(b − [a1, a2]�x ≥ 0) = 1(1− [a1b ,

a2
b ]�x ≥ 0)

3 To cope with this problem, we can just remove this non-informative
first component. This is feature selection. (Other ideas could be used
too).
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Goal in selecting features

Given a dataset (and some information), we would like to select a subset
of features.

What for?

Less features decreases the numerical complexity and we may get
increased accuracy for a given algorithm. This could be a way to test the
efficiency of selecting features.
Another important reason is to yield more understandable predictive
models.

Why wouldn’t we prefer feature selection rather than feature
extraction

To get a more understandable model.
Features could be independent and feature extraction introduces
dependency.
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Image published by Thenkabail in 2013
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Image published by Thenkabail in 2013
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General methodology

There are many feature subsets

F = 10,F1 = 5 ⇒
(

10
5

)
= 252

prod(1:10)/prod(1:5)/prod(1:5)

Starting point
Fit=1 = F (Backward
selection, more popular)
or F = 0 (Forward selection)

Which feature to select

Stopping criteria
Use of validation set.

Require: F
Ensure: F ′

1: repeat
2: Apply a 1-feature selection

technique.
3: Update F
4: until Stopping criteria
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Two 1-feature selection techniques

Assuming we have decided to remove a feature, which one are we
choosing?

The less decrease in accuracy

Ridge:
f̂ = argmin

f
|wf |

for a given λ.

LASSO:
λ̂ = argmin

λ
{λ| ∃f |ŵf = 0}
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Lasso experiment

µ0 = 0 µ1 = [1, 0.9 . . . 0.1], Σ = I10
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L1 minimization ⇒ features are cancelled
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Conclusion of subsection 8, Feature selection

1 Classifying is not only a question of having the best accuracy.
Explaining what happens if interesting too.

2 And for hyperspectral images, there is a literature and some specific
indexes (NDVI) and many other vegetation indexes.

3 We have discussed the backward and forward feature selection in
combination with Ridge regression.

4 We have seen the LASSO feature selection technique.

Spatial context

How these techniques can be applied in a more general context.
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Content of section 7, Spatial context I

7.1 Spatial context
7.2 Texture descriptors
7.3 Noise estimation
7.4 Spatial prior
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Different goals Xie 2015

1 Texture (=preprocessing)

2 Measuring the noise
(=preprocessing)

3 Prior on the classification map
(=post-processing)

4 Mixture of end-vectors

5 Use of Digital Elevation Map
(DEM)
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Content of section 7, Spatial context I

7.1 Spatial context
7.2 Texture descriptors
7.3 Noise estimation
7.4 Spatial prior
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Rich literature from image processing

What is a texture?

There is no absolute definition. It
rather means that we understand
the content as a texture.
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No perfect tool
How to group the texture descriptors?

Is the technique sensitive to

a global increase in intensity?

an image rotation?

a rescaling of the image?

a quantification of the image?

Is the technique equivalent to?

Nonlinear processing, filtering
and nonlinear processing?

Histogram and a diversity
index on the histogram?
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Proposed techniques I

Let Vmn be the neighborhood of m, n and V ′
mn the same neighborhood

without the last column.
Vmn = {m′, n′|max(|m′ −m|, |n′ − n|) ≤ 2}

1 Horizontal filter

f ′mn =
1

5

m+2∑
m′=m−2

fm′n

2 Variance
f ′mn =

∑
Vmn

(fm′n′ − µmn)
2

with µmn = 1
25

∑
Vmn

fm′n′

3 Diversity index

f ′mn =
∑
g

h(g)2 where h(g) is the estimated probability distribution
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Proposed techniques II

4 Correlation

f ′mn =

∑
V ′
mn

fm′n′fm′−1n′√∑
V ′
mn

f 2m′n′

√∑
Vmn

f 2m′n′

5 Mean

f ′mn =
1

25

∑
Vmn

fm′n′

Exercise 60

Considering a noisy image of a chessboard with only one feature.

1 Which technique has which property?
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Application to a chessboard
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Feature used in the kmeans algorithm in the next slide
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Pixel value

Diversity

Horizontal filtering

Correlation

Variance

Mean

March 20, 2024 449 / 469



Content of section 7, Spatial context I

7.1 Spatial context
7.2 Texture descriptors
7.3 Noise estimation
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An example
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Explaining the experiment

ymn = Chess Board

r
xmn ∼ N (ymn, 0.2 + ymn)

noisemn =
√∑

Vmn

(fm′n′ − µmn)2

µmn = 1
25

∑
Vmn

fm′n′
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An application of noise estimation

The noise measurement is here a measurement specific to the feature. Let
us denote these measurements as z and Z for the corresponding dataset. z
and Z are of the same size than x and X.

A noise-aware PCA algorithm

ê = argmax
e, eZTZeT=1

eXTXeT

This is actually a linear algebra problem called generalized eigenvalue
problem. An algorithm is to find

ê = argmax
e,

eXTXeT − λeZTZeT

with λ chosen to fit the constraint.
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Content of section 7, Spatial context I

7.1 Spatial context
7.2 Texture descriptors
7.3 Noise estimation
7.4 Spatial prior
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Markov Random Field

Assumption

It is likely that the neighboring pixels belong to the same class.

Neighborhood = four closest pixels (generally). Here it is denoted
V ′′
mn.

Conditional probability with respect to neighbors is a Gaussian of the
difference.

Markov property = independence with respect to non-neighbors
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An example

Problem at stake
ymn = chess Board and

r
xmn ∼ N (ymn, 2)

Equations

P(Y |X ) ∝
∏
mn

f1(xmn|ymn) f2(ymn|yV ′′(mn))

where

f1(xmn|ymn) ∝ e
− 1

2σ2
1
(xmn−µ0)2δ(yn=0)− 1

2σ2
1
(xmn−µ1)2δ(yn=1)

f2(ymn|yV ′′
mn
) ∝ e

− 1

2σ2
2

∑
m′n′∈V ′′ (ymn−ym′n′ )

2

Finally we get a new global function to minimize
J =

∑
mn(xmn − µ0)

2δ(yn = 0) + (xmn − µ1)
2δ(yn = 1)+

λ
∑

m′n′∈V ′′
mn

(ymn − ym′n′)
2

And this time the simulated annealing is clearly not powerful enough.
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Reordering a dataset

Exercise 61

Considering a binary dataset (X,Y ) composed of N = 3 samples
belonging to a feature space of size F , and considering a matrix T of size
3×3 defined as

T =

 0 1 0
0 0 1
1 0 0


show that (TX,TY ) is the same dataset.

Left multiplication

Left multiplication acts on the samples, whereas right multiplication acts
on the features.
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Answer to exercise 61

T =

 0 1 0
0 0 1
1 0 0


Denoting xn = [xn1, xn2, xn3] the rows of x and yn the components of Y ,
we see that

Tx =

 x2
x3
x1

 and TY =

 y2
y3
y1


There is a one-to-one relation between (x,Y ) and (Tx,TY ).

How do we know if (Tx)T is [xT2 , x
T
3 , x

T
1 ] or [x

T
3 , x

T
1 , x

T
2 ]

T

 1
2
3

 =

 0×1 + 1×2 + 0×3
0×1 + 0×2 + 1×3
1×1 + 0×2 + 0×3

 =

 2
3
1
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Content of section 8, Supplementary material regarding
matrices I

8.1 Proving that kmeans is related to an optimization problem
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Star-triangle identity

We consider a set of N samples xn

2N
N∑

n=1

∥xn − µ∥2 =
N∑

n=1

N∑
n′=1

∥xn − xn′∥2

where the mean is given by

µ =
1

N

N∑
n=1

xn

µ

γ

β

α
b

c

a

2×3(α2 + β2 + γ2) = 2(a2 + b2 + c2)
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Adding-a-sample identity

We consider a set of N samples xn and an extra sample x denoted also
xN+1.
N+1∑
n=1

N+1∑
n=1

∥xn − xn′∥2 =
(
1 +

1

N

) N∑
n=1

N∑
n=1

∥xn − xn′∥2 + 2N∥µ− x∥2

µ

x

γ

β

α
b

c

a

d

e

f

2(a2 + b2 + c2 + d2 + e2 + f 2) = (1 +
1

3
)(a2 + b2 + c2) + 2×3∥µ− x∥2
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Optimization problem I

Exercise 62

We consider a dataset (X,Y ) and denote N0,N1,µ0,µ1 the number of
0-labeled samples, 1-labeled samples, the geometric center of the 0-labeled
samples and that of the 1-labeled samples.

1 Prove that

N0µ0 + N1µ1 = Nµ =
N∑

n=1

xn

where µ is the geometric center of the samples in the feature space.

2 Let Y ′ = Y except for n = n0 where yn0 = 0 and y ′n0 = 1. Show that
N0(Y

′) = N0(Y )− 1, N1(Y
′) = N1(Y ) + 1,
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Optimization problem II

Exercise
3 Let µ0,µ1 be the means of the 0 and 1-labeled samples before the

modification. Let µ′
0,µ

′
1 be the corresponding means after the

modification. Show that

µ′
0 − x =

N0

N0 − 1
(µ0 − x)

4 We denote by J and J ′ the values of loss function for (X,Y ) and
(X′,Y ′). Using the adding-a-sample identity, show that

J ′ − J =
N1

N1 + 1
∥µ1 − x∥2 − N0

N0 − 1
∥µ0 − x∥2

5 Show that J ′ ≤ J, when Y ′ is modified according to kmeans, still
assuming that here only one component changes.
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Answer to exercise 62 I

1

N0µ0 + N1µ1 =

(
N∑

n=1

(1− yn)xn

)
+

(
N∑

n=1

ynxn

)
=

N∑
n=1

xn

2 Observing that y ′n = yn + δ(n = n0), we get

N0(Y
′) =

∑N
n=1 1− y ′n =

(∑N
n=1 1− yn

)
− 1 = N0(Y )− 1

N1(Y
′) =

∑N
n=1 y

′
n =

(∑N
n=1 yn

)
+ 1 = N1(Y ) + 1

3 When a new element is removed from the geometric-center
computation, we have

(N0 − 1)µ′
0 = N0(Y

′)µ′
0 = N0(Y )µ0 − x = N0µ0 − x

We then get
(N0 − 1)(µ′

0 − x) = (N0 − 1)µ′
0 − (N0 − 1)x

= N0µ0 − x− (N0 − 1)x = N0(µ− x)

and hence that µ′
0 − x = N0

N0−1(µ− x)
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Answer to exercise 62 II

4 We consider two sets of samples: X ′
0 is the set of 0-labeled samples

after modification, and X1 is the set of 1-labeled samples before
modification. We denote V(X ) the sum of all distinct one-to-one
square distances in X .

V(X ) =
∑
x∈X

∑
x′∈X

∥x− x′∥2

Thanks to the adding-one-sample identity, we have

V(X ′
0

⋃
x) =

N0

N0 − 1
V(X ′

0 ) + 2(N0 − 1)∥x− µ′
0∥2

and

V(X1

⋃
x) =

N1 + 1

N1
V(X1) + 2N1∥x− µ1∥2

The last question makes it possible to rewrite the first identity.

V(X ′
0

⋃
x) =

N0

N0 − 1
V(X ′

0 ) + 2N0∥x− µ0∥2
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Answer to exercise 62 III

The definition of J and J ′ tells us
J = 1

2N0
V(X ′

0

⋃
x) + 1

2N1
V(X1)

J ′ = 1
2(N0−1)V(X

′
0 ) +

1
2(N1+1)V(X1

⋃
x)

We finally get

J ′ − J =
N1

N1 + 1
∥x− µ1∥2 −

N0

N0 − 1
∥x− µ0∥2

5 The label of x is changed from 0 to 1 in the kmeans-algorithm
because ∥x− µ0∥ is greater than ∥x− µ1∥. So here we have

∥x− µ1∥2 ≤ ∥x− µ0∥2
We can then prove that J ′ ≤ J if we show that N1

N1+1 ≤ N0
N0−1 And the

latter is true as
N1

N1 + 1
− N0

N0 − 1
=

N1(N0 − 1)− (N1 + 1)N0

(N1 + 1)(N0 − 1)
< 0

This proves also that if a 1-sampled label was replaced with a
0-sampled label for a similar reason, we would also have J ′ ≤ J. To
really complete the proof we would need to consider the case where
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Answer to exercise 62 IV

multiple samples are relabeled and this is out of the focus of this
lecture. In simulations it appears that J is also non-increasing.
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