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What is an image

(
f Rmn, f

G
mn, f

B
mn

)
Exercise 1

What image is this showing?

R=[1;1;0]; G=[0.5;1;1]; B=[0;1;0];

im=cat(3,R,G,B),

figure(1); imshow(im);
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Answer to exercise 1

R=[1;1;0]; G=[0.5;1;1]; B=[0;1;0];

im=cat(3,R,G,B),

figure(1); imshow(im);
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Wavelengths
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Hyperspectral image
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Raster scanning order

Feature space x ∈ RF

Input matrix
x = [xnf ]n,f

Sample, instance or record xn

Set of samples

X =

 x1
...
xN
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Labels supervised classification

Classes yn ∈ {0 . . .C − 1}.
Binary classification problem
C = 2, yn ∈ {0, 1}.
Label column vector.

Y = [yn]n
Proximity in the feature space
means
Labels are more likely to be the
same
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Feature space

Exercise 2

Draw and code with Octave the scatter plot of the following dataset

X =



0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2


Y =



1
0
0
1
1
0
1
1
1
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Answer to exercise 2

X=zeros(9,2);

X(:,1)=[0 0 0 1 1 1 2 2 2]’;

X(:,2)=[0 1 2 0 1 2 0 1 2]’;

Y=[1 0 0 1 1 0 1 1 1]’;

ind1=find(Y==1);

ind0=find(Y==0);

figure(1); plot(X(ind1,1),...

X(ind1,2),’+’,...

’LineWidth’,3,...

X(ind0,1),...

X(ind0,2),’o’,...

’LineWidth’,3);

legend(’y=1’,’y=0’);

axis([-0.1 2.1 -0.1 2.1]);
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Reordering a dataset

Exercise 3

Considering a binary dataset (X,Y ) composed of N = 3 samples
belonging to a feature space of size F , and considering a matrix T of size
3×3 defined as

T =

 0 1 0
0 0 1
1 0 0


show that (TX,TY ) is the same dataset.

Left multiplication

Left multiplication acts on the samples, whereas right multiplication acts
on the features.
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Answer to exercise 3

T =

 0 1 0
0 0 1
1 0 0


Denoting xn = [xn1, xn2, xn3] the rows of x and yn the components of Y ,
we see that

Tx =

 x2
x3
x1

 and TY =

 y2
y3
y1


There is a one-to-one relation between (x,Y ) and (Tx,TY ).

How do we know if (Tx)T is [xT2 , x
T
3 , x

T
1 ] or [x

T
3 , x

T
1 , x

T
2 ]

T

 1
2
3

 =

 0×1 + 1×2 + 0×3
0×1 + 0×2 + 1×3
1×1 + 0×2 + 0×3

 =

 2
3
1
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What is classification?

Query sample: blue square

Given the training set, is it more likely to be green (y = 1) or red
(y = 0)?

May 8, 2023 15 / 272



Conclusion of section 1, Classification of hyperspectral
images

The classification of hyperspectral images yields a classification map
and hence an interpretation.

Need of ground truth data to learn information

Need of some belief

Numerical complexity is an issue, here out of the scope of this lecture

Choice of a technique should take into account what the technique is
meant for.

What are classifiers

In the next section, we discuss of two simple classifiers.
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Predictor function

Predictor function
ŷ = f (x)

Iverson bracket

δ(Π) =

{
1 if Π is true

0 if not

Sample x is row-vector.

y is the label 0 or 1.
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Decision stumps: example

Exercise 4

We are considering the following predictor which is
an example of decision stump.

fa,b(x) = (2a− 1)δ(x ≤ b) + 1− a
with a and b as parameters.

1 Compute f1,2(0.5), f1,0.5(2).

2 Prove that
fx ,y (z) = fx ,z(y)δ(y = z)

+(1− fx ,z(y))δ(y ̸= z)
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Integers representing binaries

Logic

y = POSITIVE
y = NEGATIVE

−1,+1

y = +1
y = −1

0, 1

y = 1
y = 0

y1 = y2 y1y2

δ(y1 = y2)
= y1y2+(1−y1)(1−y2)
= (2y1−1)y2+(1− y1)
= 0.5ỹ1ỹ2 + 0.5

ỹ = 2y − 1 and y = 0.5ỹ + 0.5
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Answer to exercise 4

fa,b(x) = (2a− 1)δ(x ≤ b) + 1− a

fx ,y (z) = fx ,z(y)δ(y = z)

+(1− fx ,z(y))δ(y ̸= z)

1 f1,2(0.5) = (2×1− 1)δ(0.5 ≤ 2) + 1− 1 = 1
f1,0.5(2) = (2×1− 1)δ(2 ≤ 0.5) + 1− 1 = 0

2 Assuming y = z , fx ,y (z) = fx ,z(z) = fx ,z(y)

Assuming y ̸= z , fx ,y (z) = (2x − 1)δ(z ≤ y) + 1− x
= (2x − 1)(1− δ(y < z)) + 1− x = (1− 2x)δ(y ≤ z) + x
= −(2x − 1)δ(y ≤ z) + 1− (1− x) = 1− fx ,z(y)
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Decision stumps: definition

A decision stump makes a decision based on the value of a feature.
fθF ,θx ,θy (x) = (2θy − 1)δ(xθF ≤ θx) + 1− θy (1)

with θy ∈ {0, 1}, θF ∈ {1 . . .F} and θx ∈ R
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Scalar product

The feature space is the set comprising all possible values of x. We
define on it a scalar product

x�x′ =
F∑

f=1

xf x
′
f

This scalar product can be written with matrix operations.
x�x′ = xx′

T

Note that the transpose operation would apply on the first element if x
and x′ were column vectors.
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Example of linear predictor

Exercise 5

We consider a predictor f defined as
f (x) = δ(2x1 + x2 ≤ 2) (2)

1 Rewrite f using the scalar product.

2 Rewrite f using matrix operations.

3 Plot x1 7→ f ([x1, 0]).

4 Plot x2 7→ f ([0, x2]).

We are considering two sets
X0 = {x |f (x) = 0} and X1 = {x |f (x) = 1}

6 Plot the line separating the two sets and indicate which set is where?
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Linear predictors

fa,b(x) = δ(a�x ≤ b)

Remark

When b > 0, for any λ > 0, fa,b(x) = fλa,λb(x) This property shows that
the proposed model is not non-identifiable. Note that if we use only a to
define this predictor, then we need some extra information.
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Answer to exercise 5

f (x) = δ(2x1 + x2 ≤ 2)

1 Let u = [1 2],
f (x) = δ(x�u ≤ 2).

2 f (x) = δ(xuT ≤ 2).

3 f ([x1, 0]) = δ(x1 ≤ 1)

4 f ([0, x2]) = δ(x2 ≤ 2)

5 Let x2 = g(x1) be the edge.
g(x1) = 2− 2x1.
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Conclusion of subsection 1, Decision stump and linear
classifier

Binary context: 2 classes

Decision stumps and linear classifiers are predictor functions

They act on the feature space

They are defined by a parameter here θF , θx , θy or b, a

Given a query sample x, they give a prediction ŷ

How can we compute the parameters defining the predictor functions?

In the next subsection, we discuss metrics designed for assessing predictor
functions.
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Content of section 2, Learning regarded as an optimization
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Accuracy vs loss functions

Accuracy (overall accuracy)
what is at stake?

A(Y , Ŷ ) =
1

N

N∑
i=1

δ(ŷn = yn)

Example of loss function

L(Y , Ŷ ) = −A(Y , Ŷ )

Notations

Y and Ŷ are column vectors stacking yn and ŷn. yn is the true label and
ŷn is the label predicted using xn.

Note that in L(Y , Ŷ ), depending on the choice ŷn could be a real number
and not a boolean in {0, 1}. This is up to the choice of the technique.
Now it is not depending on x.
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Exercise 6

We are considering the predictor fa,b(x) defined as
fa,b(x) = (2a− 1)δ(x ≤ b) + 1− a

with a and b as parameters. and the following database S1

x1 = 1 y1 = 1
x2 = 1.5 y2 = 0
x3 = 6 y3 = 1
x4 = 3 y4 = 1
x5 = 0.5 y5 = 0

1 Plot the function defined by b 7→ A(S1, f1,b).

2 Plot the function defined by b 7→ A(S1, f0,b).

3 Select values for a and b maximizing A(S1, fa,b).

4 Find the corresponding maximum value of A(S1, fa,b).

5 Use argmax and max to write the answers to the two last questions.
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Answer to exercise 6

fa,b(x) = (2a− 1)δ(x ≤ b) + 1− a
x1 = 1 y1 = 1
x2 = 1.5 y2 = 0
x3 = 6 y3 = 1
x4 = 3 y4 = 1
x5 = 0.5 y5 = 0

1 a = 1
δ(y1 = ŷ1,b) = δ(b ≥ 1)
δ(y2 = ŷ2,b) = δ(b < 1.5)
δ(y3 = ŷ3,b) = δ(b ≥ 6)
δ(y4 = ŷ4,b) = δ(b ≥ 3)
δ(y5 = ŷ5,b) = δ(b < 0.5)

2 a = 0
δ(yn = ŷn,0,b) = 1− δ(yn = ŷn,1,b)

3 aopt = 0 and bopt = 2.2

4 Aopt = 0.8.

5

aopt, bopt = argmax
a,b

A(S1, fa,b)

Aopt = max
a,b

A(S1, fa,b)
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Conclusion of subsection 2, Accuracy and loss functions

Accuracy and loss functions tell us whether a predictor function is
consistent with a dataset.

A is the accuracy. It is expected to be the more appropriate metric
(this depends on the application).

Loss functions denoted L are less appropriate. We will see examples.

Here higher values of A and lower values of L indicate better
performance.

In the binary context ỹ ∈ {−1, 1} can be more appropriate than
y ∈ {0, 1}.

How these metrics are going to help us finding the parameters.
θF , θx , θy or b, a.

Parameters are chosen with respect to these metrics.
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Optimization problem

The loss function is a proxy indicating how to approach the goal.

Parameters are selected so that
Θ∗ = argmin

Θ
L(Y , [f vΘ(xn)]n)

where f vΘ(x) is a real-valued function.

Real-valued predictor
f v (x) ∈ R

(the dependency w.r. to Θ is often omitted for the sake of clarity)

Linear real-valued predictor
f v (x) = b − a�x

L2-loss function

L(S , f v ) =
1

2

N∑
n=1

(f v (xn)− ỹn)
2
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Exercise 7

We are considering the following 2-feature data set denoted S2.
x11 = 2 x12 = 0.5 y1 = 1
x21 = 1 x22 = 2 y2 = 0
x31 = 0 x32 = 0 y3 = 1

We consider a family of predictors fa,b defined as
fa,b(x) = δ(a�x ≤ b)

with a = [a1, a2].
We define J (a1, a2, b) = L(S2, fa,b)

1 Compute J (a1, a2, b) as the sum of three quadratic expressions. And
explain why 0 an obvious lower bound of J is likely to be reached.

2 Show that J (a1, a2, b) = 0 if this system is solved.
2a1 + 0.5a2 − b = −1
a1 + 2a2 − b = 1
b = 1

3 Solve the system and show that a1 = −2
7 , a2 =

8
7 and b = 1.
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Answer to exercise 7 I

1

J (b, a) = L(S , f v ) =
1

2

3∑
n=1

(b − a�x− ỹn)
2

Square values are necessarily non-negative so J (b, a) ≥ 0. This lower
bound is the actual minimum value if these square values are zeroed,
that is if three constrained equations are met by three free variables
b, a1, a2.

2

2J (b, a) = (b − 2a1 − 0.5a2 − 1)2 + (b − a1 − 2a2 + 1)2 + (b − 1)2

J (b, a) = 0 iff 
2a1 + 0.5 ∗ a2 − b = −1
a1 + 2a2 − b = 1
b = 1
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Answer to exercise 7 II

3

J (1, [−2/7, 8/7]) = (1− 2 ∗ (−2/7)− 0.5 ∗ 8/7− 1)2

+(1− (−2/7)− 2(8/7) + 1)2 + (1− 1)2 = 0
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Need of a more general technique

In the example shown in exercise 7, we have three samples and three free
variables

min
a,b

J (a, b) = 0 and a, b = argmin
a,b

J (a, b)

In general this is not true.

Finding a solution using an algorithm

Using linear algebra.
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Conclusion of subsection 3, Optimization problem

Parameters of a predictor function are chosen so as to minimize or
maximize a loss function or the accuracy for a given dataset.

An L2-loss function is an example.

It works like a regression, as if we wanted to predict a real value for ỹ .

Even a simple example seems to require complex computations, how
are we going to deal with more complex examples?

In the next section, we will see an example of algorithm. And in the section
after, we will see how we can make use of linear algebra and matrices.
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Simulated annealing (a more complex kind)
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Simplified simulated annealing

Require: Loss function
Ensure: Θ parameters minimizing the loss function.
1: Select randomly Θ and set L := +∞.
2: for k=1:10000 do
3: Select randomly r , a real in [0, 6] and set σ := 10−r .
4: Select randomly ∆Θ along a centered Gaussian distribution with σ

as standard deviation.
5: if L(Θ +∆Θ) < L then
6: Set Θ := Θ +∆Θ and L := L(Θ).

7: Display Θ.
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Using simulated annealing.m

cost_function=@(theta)(theta(1)-2)^2+(theta(2)-3)^2;

dim=2;

theta=simulated_annealing(cost_function,dim);

The code displays

L=28.2762

L=25.1406

L=23.7017

L=15.3473

We have the best parameter found with

octave:24> theta

theta =

1.9994

3.0029
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Exercise 8

Give the Octave code that uses simulated annealing to find an
approximation of a and a of exercise 7.
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Example of poor performances with simulated annealing
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Answer to exercise 8 I

function J=J2(theta)

x1=[2 0.5]; y1=1;

x2=[1 2]; y2=0;

x3=[0 0]; y3=1;

tilde=@(y)2*y-1;

b=theta(1); a1=theta(2); a2=theta(3);

J=(b-a1*x1(1)-a2*x1(2)-tilde(y1))^2;

J=J+(b-a1*x2(1)-a2*x2(2)-tilde(y2))^2;

J=J+(b-a1*x3(1)-a2*x3(2)-tilde(y3))^2;

end

theta=simulated_annealing(@(theta)J2(theta),3);

May 8, 2023 47 / 272



Conclusion of subsection 4, Simulated annealing

Simulated annealing is quicker than a uniform random search.

It refines the search after some iterations.

The choice of the proposed algorithm is to make it easy to use at the
expense of a high numerical complexity.

An other technique to select parameters with respect to a loss
function and a dataset?

In the next subsection, we discuss the minimization of the L2-loss function
for linear classifiers.
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Product of two matrices

C = AB

cij =
m∑

k=1

aikbkj
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biais considered as a supplementary feature

Predicting function

f v (x) = b − a�x = w�
∆
x

We use the following definition
w = [−a1 − a2 . . . − aF b] = [−a b]
∆
x = [x1 x2 . . . xF 1] = [x 1]

The matrix definition of X is modified into

∆

X =

 x1 1
... 1
xN 1

 =


∆
x1
...
∆
xN

 =

X 1
...
1
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Expressing the loss function with matrices I

[. . . . . . . . .]


...
...
...


Scalar product as vector multiplication

w�
∆
x = w

∆
x
T

L(S , f v ) =
1

2

N∑
n=1

(w
∆
x
T

n − ỹn)
2
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Expressing the loss function with matrices II

Sum of square values as vector multiplication

N∑
n=1

ỹn = Ỹ T Ỹ

In the same way,

L(S , f v ) =
1

2

(
∆

XwT − Ỹ

)T (∆

XwT − Ỹ

)
Expanding follows classical rules

2L(S , f v ) =

(
∆

XwT

)T (∆

XwT

)
−
(

∆

XwT

)T

Ỹ − Ỹ T

(
∆

XwT

)
+ Ỹ T Ỹ
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Transpose of the product of two matrices

Rule

(AB)T = BTAT and if AB is a scalar AB = (AB)T = BTAT

we also have (AB)C = A(BC )

2L(S , f v ) =

(
∆

XwT

)T (∆

XwT

)
−
(

∆

XwT

)T

Ỹ − Ỹ T

(
∆

XwT

)
+ Ỹ T Ỹ

becomes

2L(S , f v ) = w
∆

X
T ∆

XwT − 2w
∆

X
T

Ỹ + Ỹ T Ỹ
We are now considering J (w) = L(S , f v )
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Finding a local minimum

w0 is local minimum iff for all w in a
neighborhood of w0, J (w0) ≤ J (w)

If w is a local minimum then
∂J (w)

∂w
= 0

w∗ is a global minimum iff
∀w, J (w∗) ≤ J (w)

Under some more involved conditions,
a unique local minimum that bounds from
below all values at the domain’s edges is a
global minimum.
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Partial derivative: definition

Rule

The derivative of a scalar function with respect to a row or a column
vector is a column or a row vector.

∂J (w)
∂[w1,w2,...,wF+1]

=


∂J (w)
∂w1

∂J (w)
∂w2
...

∂J (w)
∂wF+1

 ∂J (w)

∂


w1

w2
...

wF+1



=
[
∂J (w)
∂w1

, . . . ∂J (w)
∂wF+1

]
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Partial derivative: formulas

Notations

w is a row vector and V is a column vector. wV is a scalar and
wV = V TwT . A is a square matrix.

if A is symmetric:
AT = A

∂wV
∂w = ∂VTwT

∂w = V

∂wV
∂wT = ∂VTwT

∂wT = V T

∂wAwT

∂w = AwT + ATwT = (A+ AT )wT = 2AwT

∂wAwT

∂wT = wA+wAT = w(A+ AT ) = 2wA
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Derivative of J

Cost function

2J (w) = w
∆

X
T ∆

XwT − 2w
∆

X
T

Ỹ + Ỹ T Ỹ

Applying the rules and because
∆

X
T ∆

X is symmetric ((
∆

X
T ∆

X)T =
∆

X
T ∆

X)
∂J (w)

∂w
=

∆

X
T ∆

XwT −
∆

X
T

Ỹ

Cancellation of the derivative

wT =

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ

Instead of an optimization algorithm, we need to inverse a matrix (or
solve a linear system).
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Solving exercise 7 I

Exercise 9

We consider once again exercise 7 to solve without using the trick of
zeroing J which usually does not work.

x11 = 2 x12 = 0.5 y1 = 1
x21 = 1 x22 = 2 y2 = 0
x31 = 0 x32 = 0 y3 = 1

We consider a linear family of predictors fa,b defined as
fa,b(x) = δ(a�x ≤ b)

with a = [a1, a2]. We consider an L2-loss function
J (a1, a2, b) = L(S2, fa,b) =

1
2

∑N
n=1(f

v (xn)− ỹn)
2

1 Define w with respect to a and b and
∆
x with respect to x1 and x2.

2 Compute X,
∆

X and
∆

X
T ∆

X.
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Solving exercise 7 II

Exercise

3 Compute Y , Ỹ and
∆

X
T

Ỹ

4 Show that when a1 = −2
7 , a2 =

8
7 and b = 1, we have indeed that

∂J (w)
∂w = 0.

5 Let us suppose that we have an extra sample in S2. What are the
sizes of the different vectors and matrices involved here.

6 Assuming that w∗ that cancels the J -derivative is a global minimum,
show that

min
w

J (w) = Ỹ T Ỹ − Ỹ T
∆

X

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ
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Answer to exercise 9 I

1 w = [−a1,−a2, b] and
∆
x = [x1, x2, 1] because

f v (w) = b − a�x = w�
∆
x

2

X =

 2 0.5
1 2
0 0

 and
∆

X =

 2 0.5 1
1 2 1
0 0 1


∆

X
T

=

 2 1 0
0.5 2 0
1 1 1

 and
∆

X
T ∆

X =

 5 3 3
3 17

4
5
2

3 5
2 3


5 = 2×2 + 1×1 + 0×0

3

Y =

 1
0
1

 and Ỹ =

 1
−1
1

 and
∆

X
T

Ỹ =

 1
−3

2
1
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Answer to exercise 9 II

4 Knowing that

∆

X
T ∆

X =

 5 3 3
3 17

4
5
2

3 5
2 3


and based on the solution found in exercise 7, we select
w∗ = [27 ,−

8
7 , 1].(

∆

X
T ∆

X

)
w∗T =

 1
−3

2
1

 =
∆

X
T

Ỹ

5 We consider four samples.

The size of Y and Ỹ is 4×1.
The size of X is 4×2.

The size of
∆

X is 4×3.

The remaining sizes are unchanged.

The size of
∆

X
T ∆

X and

(
∆

X
T ∆

X

)−1

is 3×3.
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Answer to exercise 9 III

The size of
∆

X
T

Ỹ is 3×1.
The size of w is 1×3.

6 We assume that w∗ is a global minimum.

(w∗)T =

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ

w∗ = Ỹ T
∆

X

(
∆

X
T ∆

X

)−1

We plug this in the definition of J .

J (w∗) = Ỹ T
∆

X

(
∆

X
T ∆

X

)−1
∆

X
T ∆

X

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ

−2Ỹ T
∆

X

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ + Ỹ T Ỹ
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Answer to exercise 9 IV

After simplification we get the expected result.

J (w∗) = Ỹ T Ỹ − Ỹ T
∆

X

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ
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Comment on exercise 9

Remark 1

This least square technique is good for regression, not so much for
classification as we will see later on.

Remark 2

Techniques that can be defined with matrices are generally easier to
implement. It is easier to check the implementation.
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Conclusion of subsection 5, Method of least squares

Matrix formulas: product, transposition, expanding rules.

Derivative of a scalar function with respect to a vector.

First use of XTX also called covariance matrix.

Definition of
∆

X.

Parameter values are obtained by minimizing
∆

X
T ∆

X.

These are techniques requiring the knowledge of Y

In the next section we discuss technique not needing Y .
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Content of section 2, Learning regarded as an optimization
Problem

2.1 Decision stump and linear classifier
2.2 Accuracy and loss functions
2.3 Optimization problem
2.4 Simulated annealing
2.5 Method of least squares
2.6 Unsupervised classification regarded as an optimization problem
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Unsupervised classification

Definition

Of the dataset (X,Y ), only x is
used. (XT = [xT1 , . . . , x

T
N ])

Clusters

Instead of classes, we consider
clusters.
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kmeans
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Algorithm of kmeans

Exercise 10

We consider a set of points X and two clusters. Two points are first
randomly selected. Then the two following iterations are repeated.

Each point is assigned to the closest point.

Each geometric center is updated with its new and removed members.

1 Give the algorithm
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Answer to exercise 10

Require: X
Ensure: Y
1: Select randomly two rows of x: µ0 and µ1.
2: Set Y with zeros.
3: repeat
4: Yold = Y
5: for n = 1 : N do
6: yn = δ(d(xn,µ0) > d(xn,µ1))

7: Y = [y1 . . . yN ]
T

8: µ0 =
1

#{n|yn=0}
∑

yn=0 xn

9: µ1 =
1

#{n|yn=1}
∑

yn=1 xn
10: until Y = Yold
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An ad hoc loss function

The number of samples assigned to each cluster is

N0(Y ) =
N∑

n=1

δ(yn = 0) =
N∑

n=1

1− yn and N1(Y ) =
N∑

n=1

δ(yn = 1) =
N∑

n=1

yn

Given a set of assignments indicated with Y , we define the geometric
center of the two clusters in the feature space

µ0(X,Y ) = 1
N0(Y )

∑N
n=1(1− yn)xn

µ1(X,Y ) = 1
N1(Y )

∑N
n=1 ynxn

We derive a norm from the scalar product
∥x∥2 = x�x

We define a modified kind of within point scatter
J(X,Y ) =

∑N
n=1(1− yn)∥xn − µ0(X,Y )∥2

+
∑N

n=1 yn∥xn − µ1(X,Y )∥2
This is the loss function that is non-increasing when Y is modified along
kmeans.

May 8, 2023 72 / 272



Star-triangle identity

We consider a set of N samples xn

2N
N∑

n=1

∥xn − µ∥2 =
N∑

n=1

N∑
n′=1

∥xn − xn′∥2

where the mean is given by

µ =
1

N

N∑
n=1

xn

µ

γ

β

α
b

c

a

2×3(α2 + β2 + γ2) = 2(a2 + b2 + c2)
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Adding-a-sample identity

We consider a set of N samples xn and an extra sample x denoted also
xN+1.
N+1∑
n=1

N+1∑
n=1

∥xn − xn′∥2 =
(
1 +

1

N

) N∑
n=1

N∑
n=1

∥xn − xn′∥2 + 2N∥µ− x∥2

µ

x

γ

β

α
b

c

a

d

e

f

2(a2 + b2 + c2 + d2 + e2 + f 2) = (1 +
1

3
)(a2 + b2 + c2) + 2×3∥µ− x∥2
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Optimization problem I

Exercise 11

We consider a dataset (X,Y ) and denote N0,N1,µ0,µ1 the number of
0-labeled samples, 1-labeled samples, the geometric center of the 0-labeled
samples and that of the 1-labeled samples.

1 Prove that

N0µ0 + N1µ1 = Nµ =
N∑

n=1

xn

where µ is the geometric center of the samples in the feature space.

2 Let Y ′ = Y except for n = n0 where yn0 = 0 and y ′n0 = 1. Show that
N0(Y

′) = N0(Y )− 1, N1(Y
′) = N1(Y ) + 1,

May 8, 2023 75 / 272



Optimization problem II

Exercise
3 Let µ0,µ1 be the means of the 0 and 1-labeled samples before the

modification. Let µ′
0,µ

′
1 be the corresponding means after the

modification. Show that

µ′
0 − x =

N0

N0 − 1
(µ0 − x)

4 We denote by J and J ′ the values of loss function for (X,Y ) and
(X′,Y ′). Using the adding-a-sample identity, show that

J ′ − J =
N1

N1 + 1
∥µ1 − x∥2 − N0

N0 − 1
∥µ0 − x∥2

5 Show that J ′ ≤ J, when Y ′ is modified according to kmeans, still
assuming that here only one component changes.
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Answer to exercise 11 I

1

N0µ0 + N1µ1 =

(
N∑

n=1

(1− yn)xn

)
+

(
N∑

n=1

ynxn

)
=

N∑
n=1

xn

2 Observing that y ′n = yn + δ(n = n0), we get

N0(Y
′) =

∑N
n=1 1− y ′n =

(∑N
n=1 1− yn

)
− 1 = N0(Y )− 1

N1(Y
′) =

∑N
n=1 y

′
n =

(∑N
n=1 yn

)
+ 1 = N1(Y ) + 1

3 When a new element is removed from the geometric-center
computation, we have

(N0 − 1)µ′
0 = N0(Y

′)µ′
0 = N0(Y )µ0 − x = N0µ0 − x

We then get
(N0 − 1)(µ′

0 − x) = (N0 − 1)µ′
0 − (N0 − 1)x

= N0µ0 − x− (N0 − 1)x = N0(µ− x)

and hence that µ′
0 − x = N0

N0−1(µ− x)
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Answer to exercise 11 II

4 We consider two sets of samples: X ′
0 is the set of 0-labeled samples

after modification, and X1 is the set of 1-labeled samples before
modification. We denote V(X ) the sum of all distinct one-to-one
square distances in X .

V(X ) =
∑
x∈X

∑
x′∈X

∥x− x′∥2

Thanks to the adding-one-sample identity, we have

V(X ′
0

⋃
x) =

N0

N0 − 1
V(X ′

0 ) + 2(N0 − 1)∥x− µ′
0∥2

and

V(X1

⋃
x) =

N1 + 1

N1
V(X1) + 2N1∥x− µ1∥2

The last question makes it possible to rewrite the first identity.

V(X ′
0

⋃
x) =

N0

N0 − 1
V(X ′

0 ) + 2N0∥x− µ0∥2
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Answer to exercise 11 III

The definition of J and J ′ tells us
J = 1

2N0
V(X ′

0

⋃
x) + 1

2N1
V(X1)

J ′ = 1
2(N0−1)V(X

′
0 ) +

1
2(N1+1)V(X1

⋃
x)

We finally get

J ′ − J =
N1

N1 + 1
∥x− µ1∥2 −

N0

N0 − 1
∥x− µ0∥2

5 The label of x is changed from 0 to 1 in the kmeans-algorithm
because ∥x− µ0∥ is greater than ∥x− µ1∥. So here we have

∥x− µ1∥2 ≤ ∥x− µ0∥2
We can then prove that J ′ ≤ J if we show that N1

N1+1 ≤ N0
N0−1 And the

latter is true as
N1

N1 + 1
− N0

N0 − 1
=

N1(N0 − 1)− (N1 + 1)N0

(N1 + 1)(N0 − 1)
< 0

This proves also that if a 1-sampled label was replaced with a
0-sampled label for a similar reason, we would also have J ′ ≤ J. To
really complete the proof we would need to consider the case where
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Answer to exercise 11 IV

multiple samples are relabeled and this is out of the focus of this
lecture. In simulations it appears that J is also non-increasing.
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Conclusion of subsection 6, Unsupervised classification
regarded as an optimization problem

Description of a very popular algorithm: kmeans

It is an unsupervised algorithm

There exists a loss function for which this algorithm is non-increasing

In terms of algorithm efficiency, this property is an appealing
characteristic, but it is far from explaining the generally good
performance and its popularity.

Knowing the equation of this loss function can be used to adapt this
algorithm to other contexts.

We have seen algorithms that seem to have good performance in
terms of accuracy or at least with a loss function, can we say
something about the reliability of a prediction regarding a new sample.

In the next section, we are measuring the reliability of such predictions?
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Table of Contents

1. Classification of hyperspectral images

2. Learning regarded as an optimization Problem

3. Predicting the learning performances and probabilistic framework

4. Curse of dimensionality, regularization and sparsity

5. Spatial context
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Content of section 3, Predicting the learning performances
and probabilistic framework

3.1 Training, testing and validation sets
3.2 Confusion matrix
3.3 Inference on an example
3.4 Linear discriminant analysis
3.5 Predicting the true probabilities
3.6 Prior and Bayes formula
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Training and testing set

Training set

Test set

Supervised
classification
problem
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Validation set

Different from Training set and Test set.

Differences caused by Randomization and/or Overfitting

Size could be of 1
3 of the labeled samples available.

Trade-off between reliability and scarcity of labeled samples.

Ground truth is costly and could be erroneous.

Numerical complexity could be an issue.
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Cross-validation set

Use of validation sets to select among parameter values {θ1 . . . θP}.
Example with K = 5.

Ak,p = TEST(LEARN(Sk ′ ̸=k , θp),Sk)

θopt = θpopt = argmin
p≤P

∑
k

Ak,p

May 8, 2023 86 / 272



Exercise 12

Given a certain data set S3
⋃

S4 with S3 as labeled and S4 not labeled.

1 Improve the following algorithm using validation sets.

Require: S3,S4: data sets
Ensure: a, b: linear classifier
1: Sopt = S3.
2: (aopt, bopt) = LEARN(Sopt)
3: Compute Aopt with (aopt, bopt) and Sopt.
4: repeat
5: (x, (x′, y ′)) = argminx∈S4,(x′,y ′)∈S3

d(x′, x)
6: Set S = Sopt

⋃
(x, y ′)

7: (a, b) = LEARN(S )
8: Compute A with (a, b) and S
9: if A > Aopt then

10: (aopt, bopt) = (a, b), Sopt = S , Aopt = A.

11: until A <= Aopt
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Answer to exercise 12

Require: S3,S4, I
Ensure: [(a, b),A] = LEARN(S3,S4, I )
1: Set Sopt, (aopt, bopt), Aopt.
2: for i = 1 : I do
3: (x, (x′, y ′)) = argminx∈S4,(x′,y ′)∈S3

d(x′, x)
4: Set S = Sopt

⋃
(x, y ′)

5: (a, b) = LEARN(S )
6: Compute A with (a, b) and S
7: if A > Aopt then
8: (aopt, bopt) = (a, b), Sopt = S , Aopt = A.
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Continuation of answer to exercise 12

Require: S3,S4

Ensure: (a, b)
1: S3k = SPLIT(S3,K )
2: for i = 1 : I do
3: Ai = 0
4: for k = 1 : K do
5: Ai = Ai + LEARN(S3,S4, i)/K

6: iopt = argmax
i

Ai

7: [(a, b),A] = LEARN(S3,S4, iopt)
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Conclusion of subsection 1, Training, testing and validation
sets I

The question of the training set, validation set and testing set, is
generally studied in the context of supervised learning (labeled
samples).

We have seen the definitions of training, validation and test set and
the cross validation technique.

When we study a technique and want to assess its performance we
need to now the true labels of the test samples.

In a given application, we would be using the technique on samples
for which we don’t know the true label and we would give some
confidence in the prediction yielded by the technique.

The use of a validation set and of the cross validation technique are
precisely tools that can tell us more specifically what confidence we
may have.
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Conclusion of subsection 1, Training, testing and validation
sets II

Regarding the unsupervised learning, we could build similarly the
same sets. We can also consider that samples from the test set can
be used to increase or update the knowledge we have.

Confusion matrix?

In the next section in order to study the reliability of a given technique
based on its performance on a training set, we need a more precise
indicator to describe the obtained performances, better than accuracy.
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Content of section 3, Predicting the learning performances
and probabilistic framework

3.1 Training, testing and validation sets
3.2 Confusion matrix
3.3 Inference on an example
3.4 Linear discriminant analysis
3.5 Predicting the true probabilities
3.6 Prior and Bayes formula
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Confusion matrix

True Labels

Predicted Labels

C =


N∑

n=1
δ(yn = ŷn = 0)

N∑
n=1

δ(yn = 0 and ŷn = 0)

N∑
n=1

δ(yn = 1 and ŷn = 0)
N∑

n=1
δ(yn = ŷn = 1)
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Exercise 13

We consider the following confusion matrix.

C =

[
5, 1
1, 5

]
1 Give an example of Y and Ŷ consistent with C.

2 Given YT = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], how many different Ŷ are
consistent with C?
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Answer to exercise 13

1

ŶT = [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0]

2 6×6.

[1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
...

[1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0]

[0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0]
...
...

[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0]
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Conclusion of subsection 2, Confusion matrix

We have seen the definition of the confusion matrix

It should not be confused the transpose of this confusion matrix.
When go down, scrolling down the different rows, we get information
on samples having actually different labels. When going to the right,
we get information on samples having different predicted labels.

In non-binary classification problems, confusion matrix are not of size
2×2.

How are the confusion matrix going to be used in the next section?

We are considering different experiments for which techniques have
parameters yielding a performance measured by a unique confusion matrix.
So we are studying what we can see differences that are not measured by
confusion matrices.
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Content of section 3, Predicting the learning performances
and probabilistic framework

3.1 Training, testing and validation sets
3.2 Confusion matrix
3.3 Inference on an example
3.4 Linear discriminant analysis
3.5 Predicting the true probabilities
3.6 Prior and Bayes formula
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A linear classifier separating gaussians

Exercise 14

Let Y be a uniform binary random variable and X when conditioned to Y
be a 2D-gaussian variable with mean µ0 ∈ R2 or µ1 ∈ R2 and standard
deviation σ0 > 0 or σ1 > 0.

1 What is the probability that Y = 0 on a given experiment?

2 What is the probability density function that X = [x1, x2] given Y = 0
and then given Y = 1?

3 We now assume that σ0 = σ1 = σ, show that a straight line separates
points that are more likely when Y = 1 from the more likely points
when Y = 0.

fX |Y=1(x) ≥ fX |Y=0(x) ⇔ (µ1 − µ0)x
T ≥ (µ1 − µ0)(

1

2
µ1 +

1

2
µ0)

T

The last question refers to an example of linear discriminant analysis that
we will discuss at the end of this section.
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Answer to exercise 14

1 {
P(Y = 0) = P(Y = 1)
P(Y = 0) + P(Y = 1) = 1

⇒ P(Y = 0) = 0.5

2

fX |Y=0(x) =
1

2πσ2
0
e
− 1

2σ2
0
(x−µ0)(x−µ0)

T

fX |Y=1(x) =
1

2πσ2
1
e
− 1

2σ2
1
(x−µ1)(x−µ1)

T

3

fX |Y=1(x)

fX |Y=0(x)
= e

1
2πσ2 (x−µ0)(x−µ0)

T− 1
2πσ2 (x−µ1)(x−µ1)

T
≥ 1

⇔ (x− µ0)(x− µ0)
T ≥ (x− µ1)(x− µ1)

T

⇔ −2µ0x
T + µ0µ0

T ≥ −2µ1x
T + µ1µ1

T

⇔ (µ1 − µ0)x
T ≥ (µ1 − µ0)(

1
2µ0 +

1
2µ1)

T
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An experiment

A

Xq,Yq Ŷq

D a, b R

Xl ,Yl C

a, b are randomly chosen according
to R.
x are drawn according to a distribu-
tion D .
Training set:12 samples
Y T
l = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]

Ŷ T
l = [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0]

Confusion matrix

C =

[
5, 1
1, 5

]
Testing set: 2 samples

Y T
q = [0, 1]

Accuracy: 3 possible values

A =
1

2
δ(yq0 = ŷq0) +

1

2
δ(yq1 = ŷq1)
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Algorithm of a random classifier

Require: C
Ensure: P(A)
1: Set P(A) = [0, 0, 0].
2: for i = 1 : I do
3: repeat
4: Draw µ0,µ1, σ0, σ1, a and b.
5: Set Y T

l = [0 . . . 0, 1 . . . 1].
6: Draw Xl .
7: Compute Ŷl with Xl and Ĉ with Yl , Ŷl .
8: until Ĉ = C
9: Set Y T

q = [0, 1].
10: Draw Xq.

11: Compute Ŷ
12: Compute A = 1

2δ(ŷq0 = 0) + 1
2δ(ŷq1 = 1)

13: Adapt P(A) with A
14: Normalize P(A)

Conditional proba-
bilities
P(A = 0|Ĉ = C ),

P(A = 0.5|Ĉ = C ),

P(A = 1|Ĉ = C )
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Joint probabilities conditional probabilities

We assume here it is very unlikely that Ĉ = C

P(A = 1 and Ĉ = C ) means
the probability of having
A = 1 and that Ĉ = C

The assumption implies
P(A = 1 and Ĉ = C ) is small.

If each time Ĉ = C , we also
have A = 1 then the
assumption makes it invisible
in P(A = 1 and Ĉ = C )

P(A = 1|Ĉ = C ) means the
probability of having A = 1
given that Ĉ = C

The assumption does not
imply anything on
P(A = 1|Ĉ = C )

If each time Ĉ = C , we also
have A = 1 then
P(A = 1|Ĉ = C ) = 1 is high.
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Example on the computation of conditional probabilities

Concerning a dice, we consider an event E dice equal 1 and a side
information S dice is odd.

Two theoretical formulas
First definition
Second definition

P(E |S) = P(E&S)

P(S)
dice E S

1 1 1
2 0 0
3 0 1
4 0 0
5 0 1
6 0 0

dice=ceil(rand(1,1000)*6);

odd=@(n)mod(n,2)==1;

dice2=dice(odd(dice));

proba_EGS_1=sum(dice2==1)/length(dice2),

proba_E=sum(mod(dice,2)==1)/length(dice),

proba_S=sum(dice2==1)/length(dice),

proba_EGS_2=proba_E/proba_S,
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Conclusion of subsection 3, Inference on an example

By repeating a random experiment, we can measure inference.

Probability distributions is a interesting framework to describe
experiments.

As a side effect

From this probabilistic framework we get a new classifier.
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Content of section 3, Predicting the learning performances
and probabilistic framework

3.1 Training, testing and validation sets
3.2 Confusion matrix
3.3 Inference on an example
3.4 Linear discriminant analysis
3.5 Predicting the true probabilities
3.6 Prior and Bayes formula
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LDA on a simplified example

Exercise 15

We consider here a data set defined by a probability distribution.

P(y = 0) = P(y = 1) = 0.5 and

 fx|y=0(x) =
1

2πσ2 e
− 1

2σ2 (x−µ0)(x−µ0)
T

fx|y=1(x) =
1

2πσ2 e
− 1

2σ2 (x−µ1)(x−µ1)
T

with µ0 = [1, 0],µ1 = [0, 1] and σ = 2.

1 Write an algorithm to check that these expressions are probability
distributions. Use the independence between the two components to
reduce the numerical complexity.∫
x1

∫
x2
f (x1)f (x2)dx1dx2 =

∫
x1
f (x1)dx1

∫
x2
f (x2)dx2

2 Show that with this model, y = 1 is more likely than y = 0 iff
µ0µ

T
0 − µ1µ

T
1 − (µ0 − µ1)x

T ≥ 0

3 Draw in the feature space the domains for which y = 1 or y = 0 is
more likely.
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Answer to exercise 15 I

1 We need to check
+∞∫

x1=−∞

+∞∫
x2=−∞

fx|y=0(x) dx1dx2 =

+∞∫
x1=−∞

+∞∫
x2=−∞

fx|y=1(x) dx1dx2 = 1

Require: σ, y
Ensure: s value of the integral
1: Set s = 0, Q = 1e − 2
2: for q1 = − 1

Q2 : 1
Q2 do

3: Set x1 = q1Q
4: for q2 = − 1

Q2 : 1
Q2 do

5: Set x2 = q2Q
6: Add to s, fx|y (x1, x2)Q

2

7: Display s that should be close to 1
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Answer to exercise 15 II

However this is actually quite complex. So we separate what happens
to each component.

fx|y=0(x) =
1√
2πσ

e−
1

2σ2 (x1−µ01)2× 1√
2πσ

e−
1

2σ2 (x2−µ02)2

fx|y=1(x) =
1√
2πσ

e−
1

2σ2 (x1−µ11)2× 1√
2πσ

e−
1

2σ2 (x2−µ12)2

+∞∫
x1=−∞

1√
2πσ

e−
1

2σ2 (x1−µ01)2
+∞∫

x2=−∞

1√
2πσ

e−
1

2σ2 (x2−µ02)2 =

+∞∫
x1=−∞

1√
2πσ

e−
1

2σ2 (x1−µ11)2
+∞∫

x2=−∞

1√
2πσ

e−
1

2σ2 (x2−µ12)2 = 1

Require: σ, y
Ensure: s value of the integral
1: Set s1 = s2 = 0, Q = 1e − 2
2: for q1 = − 1

Q2 : 1
Q2 do

3: Set x1 = q1Q
4: Add to s1, fx1|y (x1)Q
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Answer to exercise 15 III

5: for q2 = − 1
Q2 : 1

Q2 do
6: Set x2 = q2Q
7: Add to s2, fx2|y (x2)Q

8: Compute s = s1s2.
9: Display s that should be close to 1

2 The goal is to find where in the feature space fx|y=1(x) > fx|y=0(x).

σ2 ln
(
fx|y=1(x)

fx|y=0(x)

)
= (x− µ0)(x− µ0)

T − (x− µ1)(x− µ1)
T

= −2µ0x
T + µ0µ

T
0 + 2µ1x

T − µ1µ
T
1

This proves y = 1 is more likely when
µ0µ

T
0 − µ1µ

T
1 − 2(µ0 − µ1)x

T ≥ 0
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Answer to exercise 15 IV

3 y = 1 is more likely when x2 ≥ x1. Indeed
(µ0 − µ1)x

T = x1 − x2 and µ0µ
T
0 − µ1µ

T
1 = 0
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LDA in a more general context

Probabilistic assumption

P(y = 1) = p = 1− P(y = 0) and fx|y=1(x) and fx|y=0(x) are two
independent multivariate normal distribution with an unknown common
covariance matrix Σ.

fx|y=1(x) =
1

(2π)
F
2 | det(Σ)|

F
2
e−(x−µ1)Σ

−1(x−µ1)
T

fx|y=0(x) =
1

(2π)
F
2 | det(Σ)|

F
2
e−(x−µ0)Σ

−1(x−µ0)
T

Σ is defined as the covariance matrix
Σ = E

[
(
r
x)T

r
x
]

where E is the expectation and here
r
x is a random raw vector.

May 8, 2023 111 / 272



Covariance matrix

It is estimated with X from the training set.

Σ̂ =
N∑

n=1

xTn xn = XTX

Note the striking similarity of this covariance matrix with
∆

X
T ∆

X used in the
least square methodology.

Is it appropriate to assume a common covariance matrix?

This assumption yields a linear classifier. Besides it is generally difficult to
estimate precisely Σ using all the samples in the training set, sometimes
some regularization is needed to help the estimation. So it would be even
more difficult to estimate two different covariance matrices.
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Derived linear classifier

Similarly to exercise 15, we compute the logarithm of the ratio of
ln fx|y=1(x)− ln fx|y=0(x)

= (x− µ0)Σ
−1(x− µ0)

T − (x− µ1)Σ
−1(x− µ1)

T

= 2(µ1 − µ0)Σ
−1xT −

(
µ1Σ

−1µT
1 − µ0Σ

−1µT
0

)
We get a linear classifier f (x) = δ(b − a�x ≥ 0) with{

a = 2(µ0 − µ1)Σ
−1

b = µ0Σ
−1µT

0 − µ1Σ
−1µT

1

Supervised feature extraction

We could use x ′ = b − a�x as an extracted feature. This is basically the
idea behind some LDA-derived feature-extraction techniques. It is limited
to the number of classes.
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Conclusion of subsection 4, Linear discriminant analysis

We comparing with the L2-linear classifier.

1 We also have to inverse the covariance matrix.

2 Instead of considering the cross-covariance matrix XTY , we consider
here distorted means, of 1-samples and 0-samples.

3 Just like L2-linear classifier, it is prone to numerical instabilities when
the covariance matrix is badly conditioned.

Question?

When applying this probabilistic framework to inference, can we make
reliable predictions?
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Content of section 3, Predicting the learning performances
and probabilistic framework

3.1 Training, testing and validation sets
3.2 Confusion matrix
3.3 Inference on an example
3.4 Linear discriminant analysis
3.5 Predicting the true probabilities
3.6 Prior and Bayes formula
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Making inference on hidden parameters based on some
evidence

It is common to compute the probability of having a given confusion
matrix given a certain probabilistic model.
Here we do the opposite, get some probability on some parameters of a
probabilistic model given that the observed confusion matrix meets some
constraint.
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Modeling the statistical inference

Y = 0 Ŷ = 0

Y = 1 Ŷ = 1

p0

1− p0

p1

1− p1

fth(p) =
p5(1− p)∫ 1

0 p5(1− p)dp
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Exercise 16

We assume here an experiment of 12 samples, 6 labeled positively and 6
negatively. We observed for each label, that 5 of them are correctly
predicted.

1 Write an algorithm computing an approximation of the probability
distributions that could best explain this experiment: the probability
of a negative label to be correctly labeled f0(p) and that of a positive
to be correctly labeled f1(p).

2 Given p0 and p1, and a column vector
Y T = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], show that the probability to have
Ŷ consistent with the confusion matrix is(

6

1

)
p50(1− p0)×

(
6

1

)
p51(1− p1)
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Answer to exercise 16

1 Require: C,Q, I
Ensure: p, f0,f1
1: Set Y = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
2: for i = 1 : I do
3: Draw p0, p1 as uniform variable on [0, 1].
4: Draw Ŷ along p0 and p1.
5: Compute Ĉ according to Ŷ and Y .
6: if Ĉ = C then
7: Adapt f0 and f1 with p0 and p1.

8: Normalize f0 and f1.

2 What happens to the six first component is independent of the
remaining. There are

(6
1

)
= 6 ways of selecting a component in an

array of 6 components. There is a probability of respectively p0, p1 to
predict the correct value 0, 1, and 1− p0, 1− p1 to predict the
incorrect values 1, 0.
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P(A|Ĉ = C ) are measured with two different techniques.

Comment on the figure

The second technique is a model of
the first technique as any
probabilistic model can be regarded
as a random decision with some
probability distribution for p0 and
p1. Both distributions appear
similar but they are not equal.
Could we explain the difference?

The technique shown in
purple, draws randomly several
multivariate normal
distributions and measures
P(A|Ĉ = C ) by selecting only
the instances where C is as
expected.

The technique shown in
yellow, draws randomly some
probabilities p0 and p1 of
binary decisions and again only
the accuracies corresponding
to the expected C matrix are
taken into account to compute
P(A|Ĉ = C ).
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Conclusion of subsection 5, Predicting the true probabilities

1 We have modeled classifying samples as a binomial trial.

2 The confusion matrix measured during training yields the parameters
of the binomial trial.

3 Our model yield a prediction accuracy.

4 Unfortunately it is not accurate.

How could we be more precise

We are going to consider the Bayesian framework with which the
parameters of the binomial trial are regarded as random variables.
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Content of section 3, Predicting the learning performances
and probabilistic framework

3.1 Training, testing and validation sets
3.2 Confusion matrix
3.3 Inference on an example
3.4 Linear discriminant analysis
3.5 Predicting the true probabilities
3.6 Prior and Bayes formula
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Modeling a prior

Prior is opposed to the
posterior probability
distribution.

Prior refers to the assumed
probability distribution before
some evidence is given. Often
the chosen probability
distribution is the most general
given some constraints.

Here we know the
experimental setup and we can
test it without applying to
data to read a probability
distribution.

Require:
Ensure: Probability distribution of

p0 and p1
1: for i = 1 : I do
2: Draw µ0,µ1, σ0, σ1, a and

b.
3: Set Y T

l = [0 . . . 0, 1 . . . 1].
4: Draw Xl .
5: Compute Ŷl with Xl

6: Compute p0 and p1 by com-
paring Ŷl and Yl .
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Do we need a prior to compute a conditional probability?

No

Computing P(C |p0, p1) does not require any prior. A specific value p0, p1
with the statistical model tells us the whole knowledge.

Yes

To compute P(p0, p1|C ) we consider all possible values of p0 and p1 and
for each compute a probability of P(C |p0, p1) and by counting the number
of draws for which C has the appropriate value we get a probability of
p0, p1. But the relative importance of p0, p1 is precisely a prior. In
exercise 16, p0np1 are drawn according to a uniform distribution.

We may not care

To what extent the choice of the prior is significant and appropriate are
difficult questions. Not using it and considering that P(p0, p1|C ) and
P(C |p0, p1) are proportionate is actually a choice of prior that might be a
not too bad choice.

May 8, 2023 124 / 272



Measured prior
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Using Bayes formula to compute a posterior probability

Bayes formula

P(A|B) = P(B|A)P(A)
P(B|A)P(A) + P(B|¬A)P(¬A)

Applying this formula in our context

P(A = a|Ĉ = C ) =

∫
p0,p1

P(A = a|Ĉ = C , p0, p1)f0(p0)f1(p1) dp0dp1

And we use for f0(p0) and f1(p1) the probability distribution measured
without considering the C -constraints.
This posterior probability distribution of A is shown in green in the
following figure.
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Modeling with a prior

Because the green distribution is closer to the purple distribution, it seems
that the prior is here useful.
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Posterior probability vs maximizing the likelihood

The two viewpoints exist in the literature.

Unknown parameters could
have any value.

It could be more precise.

Unknown parameters are
estimated taking into account
the data.

It makes computation easier
and is often a good
approximation.
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Experiment using the maximum likelihood

Here we consider the most likely
value of p0 and p1 that yield the ex-
pected C -matrix.

argmax
p

fC |p(p) = argmax
p

p5(1− p) =
5

6

Since d
dpp

5(1− p) = 0 ⇒ 5− 6p =

0 ⇒ p = 5
6

We then get the distribution of A
P(A|Ĉ = C ) =

P(A|Ĉ = C , p0 = p1 =
5
6)

This new distribution of A is shown
in blue.

Conclusion

Drawing adequate conclusions based on a certain success rate on the
training set is definitely a hard issue.
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Conclusion of section 3, Predicting the learning
performances and probabilistic framework

1 In our attempt to have more precise predictions in terms of inference,
we investigated the Bayesian framework.

2 Regarding an estimated parameter, rather than finding its best value,
we assume it has an unknown value that follows a probability
distribution.

3 This yields more precise predictions if the probability distribution is
appropriate.

Conclusion

In my opinion, this framework is often relevant, it often increases accuracy
sometimes by a very little amount, at the expense of an increased
complexity.
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Table of Contents

1. Classification of hyperspectral images

2. Learning regarded as an optimization Problem

3. Predicting the learning performances and probabilistic framework

4. Curse of dimensionality, regularization and sparsity

5. Spatial context
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Content of section 4, Curse of dimensionality,
regularization and sparsity

4.1 Data preparation
4.2 Feature construction
4.3 Kernel trick
4.4 Curse of dimensionality and feature extraction
4.5 Principal Component Analysis
4.6 Supervised feature extraction
4.7 Regularization
4.8 Feature selection
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Centering the feature matrix

A centered feature matrix fulfills
N∑

n=1

Xn,f = 0

Exercise 17

Let X be a feature matrix. Show that there exists βf such that
X′ = X− [β1 . . . βF ] is centered.
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Answer to exercise 17

Let βf be defined as

βf =
1

N

N∑
n=1

Xnf

We then get for any f ∈ {1 . . .F}
N∑

n=1

X ′
nf =

N∑
n=1

(Xnf − βf ) =
N∑

n=1

Xnf − βf = 0
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Normalizing features

Normalizing means
xnf 7→ x ′nf = αf xnf
such that 1

N

∑N
n=1 x

′2
nf = 1

Exercise 18

Given a data set X = [xnf ], compute a value αf such that

1

N

N∑
n=1

x ′
2
nf = 1

where x ′nf = αf xnf

May 8, 2023 135 / 272



Answer to exercise 18

αf =
1√

1
N

N∑
n=1

x2nf

we get

1

N

N∑
n=1

(x ′nf )
2 =

1

N

N∑
n=1

α2
f x

2
nf = α2

f

1

N

N∑
n=1

x2nf =
1
N

∑N
n=1 x

2
nf

1
N

∑N
n=1 x

2
nf

= 1
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Analysis Synthesis

X

µ σ

x x′ x′′ x′′ x′ x

µσ
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Matrix notations

Exercise 19

The exercises 17 and 18 provided formulas to center and normalize the
samples in the feature space. The goal here is to express these
transformations with matrices. An interesting side-effect is the
simplification of the implementation.
We consider here a dataset described with a matrix X of size N×F and a
column vector Y of size N×1.

1 Define a matrix H of size N×N such that HX is centered (i.e. the
sums of each column of HX are null).

2 Show that HX
(
diag(XTH2X)

)− 1
2 is centered and normalized.

3 Write the Matlab/Octave implementation of HX
(
diag(XTH2X)

)− 1
2

(diag(A))ij = aijδ(j = i) and ((diag(A))ij)
− 1

2 =
1

√
aii

δ(j = i)
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Matrix formulas

Column number j of a matrix A: a1j
...
aIj


Row number i of a matrix A:

[ai1, . . . , aiJ ]

Left-multiplication of A by a diagonal matrix D = [diδ(j = i)]ij :
(DA)ij = diaij

Right-multiplication of A by a diagonal matrix D = [diδ(j = i)]ij :
(AD)ij = aijdj

Multiplication of two matrices

(AB)ij =
∑
k

aikakj

Left-multiplication of B by AT

(ATB)ij =
∑
k

akiakj
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Answer to exercise 19 I

1 Let H be a N×N matrix defined as the identity matrix subtracted to
a constant matrix equal to 1

N

H =


1 . . . 0

... · · ·
...

0 . . . 1

 − 1

N


1 . . . 1

...
. . .

...

1 . . . 1


Components of HX are

(HX)ij = xij −
1

N

N∑
n=1

xnj

The column number j is(
x1j −

1

N

N∑
n=1

xnj

)
, . . . ,

(
xFj −

1

N

N∑
n=1

xnj

)
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Answer to exercise 19 II

2 Let X′ = HX. X′ is centered.(
X′TX′)

ij
=
∑N

n=1 x
′
nix

′
nj(

diag(X′TX′)
)
ij
=
∑N

n=1 (x
′
ni )

2δ(j = i)(
diag(X′TX′)−

1
2

)
ij
= 1√∑N

n=1 (x
′
ni )

2
δ(j = i)(

X′diag(X′TX′)−
1
2

)
ij
=

x ′ij√∑N
n=1 (x

′
nj )

2

Therefore X′diag(X′TX′)−
1
2 is the centered and normalized matrix.

And applying the transposing rules, we get

X′diag(X′TX′)−
1
2 = HXdiag(XTH2X)−

1
2

3 H=eye(N)-1/N*ones(N);

Xp=H*X*diag( diag(X’*H*H*X).^(-1/2) );
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Conclusion of subsection 1, Data preparation

Normalization gives equal importance to all features regardless of their
variance.

Should we do centering and normalization?

Centering and normalization is generally considered a good practice.
However, mean and standard deviation are not kept, it erases some
information, this should be done considering the specific experiment.

If a feature variable has great variance (high value of 1
N

∑N
n=1 xnf ),

without normalization there is a high risk that only this variable is
taken into account.

If a feature variable contains only noise and has therefore little
variance, normalization will give it more importance and data analysis
could be compromised.

The given features can provide more information

Polynomial expansions
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Content of section 4, Curse of dimensionality,
regularization and sparsity

4.1 Data preparation
4.2 Feature construction
4.3 Kernel trick
4.4 Curse of dimensionality and feature extraction
4.5 Principal Component Analysis
4.6 Supervised feature extraction
4.7 Regularization
4.8 Feature selection
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Can we classify the following datasets with a linear
classifier?

Yes

With F (F+1)
2 new features:

{xf1xf2 |f1 ≤ f2} here numbered with the lexicographic order
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Notations

x is a feature vector in the feature space F .
ω
x is any feature vector in the augmented feature space denoted

ω

F .
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Examples of linear classifiers I

Exercise 20

The goal is to write linear classifiers corresponding to these domains in the
feature space composed of two dimensions.

1 Write equations delimiting the area of the left figure.

2 Write equations delimiting the area of the right figure.

3 Define the added features.
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Examples of linear classifiers II

Exercise
4 Define two linear classifiers bounding the left area using also the

added features.
f (

ω
x) = δ(b1 − a1�

ω
x)δ(b2 − a2�

ω
x)

with f (
ω
x) = 1 iff x is inside the domain.

5 Define two linear classifiers bounding the right area using also the
added features.

f (
ω
x) = δ(b1 − a1�

ω
x)δ(b2 − a2�

ω
x)

with f (
ω
x) = 1 iff x is inside the domain.
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Answer to exercise 20 I

1

x2 ≤ x1 +
1

5
and x2 ≥ x21

2

x21 + x22 ≥ 0.72 and x21 + x22 ≤ 1

3 F = 2 and there are F (F+1)
2 = 3 new features.

ω
x3 = x21
ω
x4 = x1x2
ω
x5 = x22
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Answer to exercise 20 II

4 The delimiting equations can be written as
1
5 +

ω
x1 −

ω
x2 ≥ 0

0 +
ω
x2 −

ω
x3 ≥ 0

b1 =
1
5 a1 = [1,−1, 0, 0, 0]

b2 = 0 a2 = [0, 1,−1, 0, 0]
The delimiting equations can be written as

−0.72 +
ω
x3 +

ω
x5 ≥ 0

1− ω
x3 −

ω
x5 ≥ 0

b1 = −0.72 a1 = [0, 0, 1, 0, 1]

b2 = 1 a2 = [0, 0,−1, 0,−1]
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ω

F ̸= ω(F )

We introduce some new notations

ω(x) is the constructed feature vector.

ω is a mapping of F into
ω

F
(i.e. injective or one-to-one but not surjective or onto and clearly not
bijective or one-to-one correspondance).

It is false to claim that ∀ω
x,∃x, ω

x = ω(x).

∥ ∥ is the Euclidean norm of F and ∥ ∥ω is the Euclidean norm of
ω

F .

Contradiction between
ω

F and ω(F )

The samples in the dataset is inside ω(F ). However they are considered

as members of the 5D-space denoted
ω

F .
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Growth of the distances

Generally when norms are compared we have some bounding properties:

κ1 ≤ norm1(x)
norm2(x) ≤ κ2 Here we do not have this bounding property.

∥x∥
√
1 +

3

4
∥x∥2 ≤ ∥ω(x)∥ω ≤ ∥x∥

√
1 + ∥x∥2
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Most points in
ω

F are far from ω(F )

Average distance between points in
ω

F and points that can be mapped
from F with ω.

d(t) = E

[
min
x′∈F

{
∥ω(x′)− ω

x∥ω
∣∣∣∥ω
x∥ω = t

}]
where E is expected value when following here the uniform law.
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The closest point are close to where we expect them

We are considering a segment line in
ω

F joining two points in ω(F ), ω(x1)
and ω(x2). And we look for points x′ in F which are mapped into the
closest points of the segment line.

xα = argmin
x′∈F

∥αω(x1) + (1− α)ω(x2)− ω(x′)∥ω

with α ∈ [0, 1]

May 8, 2023 153 / 272



Conclusion of subsection 2, Feature construction

Nonlinear transformations on features can transform a linear classifier
into a more complex and possibly more appropriate classifier.

We have studied the example of quadratic classifier.

The extended feature space is embedded into a vector space but

∥ ∥ω is different in nature from ∥ ∥
∥ ∥ is different in value from ∥ω( )∥ω
Most points in the embedded feature space are far from the extended
feature space
The projected points from the embedded space are not exactly where
one might expect.

Reducing dimensions?
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Content of section 4, Curse of dimensionality,
regularization and sparsity

4.1 Data preparation
4.2 Feature construction
4.3 Kernel trick
4.4 Curse of dimensionality and feature extraction
4.5 Principal Component Analysis
4.6 Supervised feature extraction
4.7 Regularization
4.8 Feature selection
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An example with ω(F ) I

Exercise 21

We consider a small dataset
x1 = [1, 0]
x2 = [0, 1]
x3 = [1, 1]

We consider three new features X 2
1 , x1x2 and x22 and its corresponding

mapping ω. We consider a first kernel K
K(x, x′) = ω(x)�ω(x′)

1 Express K as function of [x1, x2] and [x ′1, x
′
2]. Is it left-linear,

right-linear?

2 Compute K = [K(xm, xn)]m,n

3 Show that the inverse of K is defined?

May 8, 2023 156 / 272



An example with ω(F ) II

Exercise

The inverse of K is

K−1 =

 1.5 1 −1
1 1.5 −1
−1 −1 1


We define

K(x) = [K(x, x1),K(x, x2),K(x, x3)]K
−1

 x1
x2
x3


4 Compute K(x1), K(x2) and K(x3).

5 Show that there exists x such that ω(x) ̸∈ span(ω(x1), ω(x2), ω(x3)).
Explain how we could manage to avoid this problem?

6 Compute K(x1 − x2).
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Answer to exercise 21 I

1

K(x, x′) = x1x
′
1 + x2x

′
2 + x21x

′
1
2
+ x1x

′
1x2x

′
2 + x22x

′
2
2

It is not left-linear (nor right-linear for the same reasons). If it were
then for x′ = [1 0], the mapping x1 7→ x1 + x21 would be linear.

2 (K)11 = K([1 0], [1 0]) = 1×1 + 0 + 12×12 + 0 + 0
(K)12 = K([1 0], [0 1]) = 1×0 + 0×1 + 12×02 + 1×0×0×1 + 02×12

K =

 2 0 2
0 2 2
2 2 5


K is invertible because det(K) ̸= 0.

det(K) = 2

∣∣∣∣ 2 2
2 5

∣∣∣∣+ 2

∣∣∣∣ 0 2
2 2

∣∣∣∣ = 12− 8 = 4
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Answer to exercise 21 II

3 [K (x1, xm)]m is the first line of K, [2, 0, 2] so
K(x1) = [K (x1, xm)]mK−1 = [1, 0, 0] and
K(x1)ω(X) = [1, 0, 1, 0, 0]
[K (x2, xm)]m is the first line of K, [0, 2, 2] so
K(x2) = [K (x2, xm)]mK−1 = [0, 1, 0] and
K(x2)ω(X) = [0, 1, 0, 0, 1]
[K (x3, xm)]m is the first line of K, [2, 2, 5] so
K(x3) = [K (x2, xm)]mK−1 = [0, 0, 1] and
K(x3)ω(X) = [1, 1, 1, 1, 1]

4 Let us consider x′ = [1, −1].
ω(x′) = [1, −1, 1, −1, 1]
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Answer to exercise 21 III

5 To see if ω(x) ̸∈ span(ω(x1), ω(x2), ω(x3)), we set α, β, γ, δ such that
αω(x1) + βω(x2) + γω(x3) + δω(x′) = 0

and we try to show that they are necessarily equal to 0.
α+ γ + δ = 0
β + γ − δ = 0
α+ γ + δ = 0
γ − δ = 0
β + γ + δ = 0

And indeed. When we add samples, we quickly get to span the whole
constructed feature space.
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Answer to exercise 21 IV

6

K(x′) = [ω(x′)�ω(X)]nK
−1 = [2, 0, −1]K−1 = [2, 1, −1]

and K(x′)ω(X) = [1, 0, 1, −1, 0] Now we want to show that
K(x′)ω(X) ̸∈ ω(F )

If this was wrong then there would exists x ′′1 , x
′′
2 such that

x ′′1 = 1, x ′′2 = 0, x ′′1
2
= 1, x ′′1 x

′′
2 = −1, x ′′2

2
= 0

This is not possible.
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Kernel trick

Basic idea

x�x′ is replaced by K(x, x′)

K is called a kernel.

We only need to have K(x, x′) = K(x′, x).

We do not need left or right linearity.

Samples act as a basis

Not an orthogonal basis, but a generally overcomplete basis.

Representing theorem

This theorem states that all samples in the induced feature space can be
represented using the data samples using the kernel. It is based on the
minimization of a loss function
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General scheme

K(x, x′) K X

K(x,X)x K(x) K(x)X
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Definitions

Kernel matrix
K = [K(xm, xn)]nm

Kernel values on the dataset as a row vector
[K(x, (X)n)]n

Mapping in the kernel-induced space
K(x)

Back to the feature space
K(x)X

Nonlinearity remains an issue

This is more adapted to SVM (support vector machine) that uses a dual
expression.
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Testing the representation theorem

The X-axis is N

The Y-axis is

mean
x∈F

(

∥∥∥∥ω( x

∥x∥
)−K(x)X

∥∥∥∥)
Samples are drawn with
r
x ∼ N (0, diag([1 1]))

The average is computed
10000 experiments.

Exercise 22

Write an algorithm to test the representation theorem on the kernel
derived from x 7→ ω(x).
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Answer to exercise 22 I

Require: N, I
Ensure: d
1: d = 0
2: for i = 1 : I do
3: Draw the N samples to get X
4: Compute ω(X)
5: Compute K
6: Set K := K+ 10−5I
7: Compute K−1

8: Draw x and normalize it.
9: Compute x′ = [ω(x)�ω(X(1, :)) . . .]K−1

10: Update d with d := d + ∥x′ω(X)− ω(x)∥ ω
F
.

11: d := d
I
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Conclusion of subsection 3, Kernel trick

To represent samples in a feature space, it is custom to use an
orthonormal basis, with which we have

x =
N∑

n=1

(en�xn)en

Here we have a more general representing technique. Instead of using
orthogonality we inverse a matrix.

And when that matrix is singular we add a diagonal matrix. This is
regularization.

Why could this be a problem to add features?

We have seen technique to increase the number of features. We are going
to see that this could be an issue.
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Content of section 4, Curse of dimensionality,
regularization and sparsity

4.1 Data preparation
4.2 Feature construction
4.3 Kernel trick
4.4 Curse of dimensionality and feature extraction
4.5 Principal Component Analysis
4.6 Supervised feature extraction
4.7 Regularization
4.8 Feature selection
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Reasons to do feature extraction?

Numerical complexity

As of now, time is generally not the main issue. However numerical
complexity can increase exponentially. We might choose to use the
increase numerical complexity for other task.

Hughes phenomenon

This is also called the curse of dimensionality.
If when inverting a matrix, you see the following warning, it could be an
indication to reduce the dimensionality.

warning: matrix singular to machine precision, rcond = 1.56642e-18

warning: called from
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Example of this phenomenon

The training set contains 10 samples. We use the L2-solver.
r
y ∼ U({0, 1}) and r

x|y=0 ∼ N (−1, 1)
r
x|y=1 ∼ N (1, 1)

Require: F dimension of feature space
Ensure: A1,A2,A3

1: for 500 experiments do
2: Draw Y and X
3: Learn w1 from X and Y
4: Learn w2 from X1TF and Y
5: Draw Yt and Xt

6: Compute A1 with Yt and w1-predictions.
7: Compute A2 with Yt and w2-predictions.
8: Draw x1 and x0
9: Draw noisy copies of x1 and x0 into X3, Y3.

10: Learn w3 from X3 and Y3

11: Compute A3 with Yt and w2-predictions.

12: Average A1,A2,A3.
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Simulations
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Feature extraction feature selection

Experiment
With feature extraction, we try to find linear combinations of existing
features that captures most information.

Experiment
With feature selection, we try to keep only the most informative
features.

Is a dataset of high dimension?

It is tempting to read this issue from the number of features in a given
dataset. However this may not be relevant.
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Goal

Have a reduced number of
features. It is also called
dimensionality reduction.

extraction as opposed to
selection, it means that all
features changed.

Feature values are changed?

Stored features values are modified.

The original feature values can be recovered with the inverse
transform (if we do not reduce the number of components).

Geometric interpretation: same points but different axis and different
coordinates.
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Conclusion of subsection 4, Curse of dimensionality and
feature extraction

To illustrate the need for feature extraction, we made three experiments.

• x are drawn with respect to y

• The obtained x are replaced by the mean.

• x1 and x0 are drawn and the remaining features are copies.

The first experiment shows the need for feature extraction. The third
experiment shows the need for feature selection.

A popular feature extraction technique

We will see in detail PCA (principal component analysis), an unsupervised
technique.
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Content of section 4, Curse of dimensionality,
regularization and sparsity

4.1 Data preparation
4.2 Feature construction
4.3 Kernel trick
4.4 Curse of dimensionality and feature extraction
4.5 Principal Component Analysis
4.6 Supervised feature extraction
4.7 Regularization
4.8 Feature selection
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Principal Component Analysis

Unsupervised technique

In 2D and 3D, features are rotated.

New features are ordered by order of importance.

We may keep only the most important.
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PCA: getting the transformation matrix P

Require: X centered
Ensure: P and D
1: Compute covariance matrix XTX
2: Compute the eigenvalue decomposition yielding V1 and D1

3: Find a permutation order to have decreasing eigenvalues
4: Apply the permutation order to transform V1 and D1 into P and D

[V1,D1]=eig(X’*X);

[~,ind]=sort(D1);

P=V1*eye(size(D))(ind,:);

D=D1*eye(size(D))(ind,:);
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PCA in a nutshell

Linear algebra
X → P,D

Matrix computations
P → PCAP

P,F1 → PCATP , PCAT

D,F1 → AT PCA

Analysis and synthesis

x →
∈P︷ ︸︸ ︷

PCAP(x) → x
Approximation

x →
∈P︷ ︸︸ ︷

PCAP(x)
F1→

∈P or ∈PF1︷ ︸︸ ︷
PCATP(x) → PCAT (x)

Accuracy of approximation
∥x− PCAT (x)∥

∥x∥
is on average equal to 1−AT PCA
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What we get with PCA I

Analysis

Given x, we transform into
PCAP(x) = xP

Components are statistically independent from each others

f ̸= f ′ ⇒
N∑

n=1

( PCAP(x))nf ( PCAP(x))nf ′ = 0

We can construct approximations by truncating the vector.

PCAT P(x) = xPdiag([
<−F1−>
1 . . . 1 , 0 . . . 0])
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What we get with PCA: II

Synthesis

Given PCAP(x), we get x
x = PCAP(x)P

T

Given the truncated vector PCAT P(x), we get a good approximation of x,
denoted PCAT (x)

PCAT (x) = PCAT P(x)P
T

We also have an orthogonality property
PCAT (x)� (x− PCAT (x)) = 0

The accuracy of the approximation is

AT PCA = 1−mean
x∈X

∥x− PCAT (x)∥2

∥x∥2
where ∥x∥2 = x�x = xxT

Perhaps in terms of accuracy, it would have made more sense to consider

1− ∥x− PCAT (x)∥
∥x∥

But then we loose an easy connection with variance.
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Accuracy as a function of F1 and D

PCA yields a diagonal matrix D
D = diag(λ1 . . . λF )

with λ1 ≥ λ2 ≥ . . . ≥ λF

F1 is the number of components not canceled in P
The accuracy is

AT PCA =

∑F1
f=1 λf∑F
f=1 λf

=
1

tr(D)

F1∑
f=1

λf
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Illustrating the notations in a toy example I

Exercise 23

We consider a tiny dataset with
x1 =

[
2
3

1
3

]
x2 =

[
1
3

2
3

]
1 Compute X and XTX

We assume that using a PCA-algorithm we found P and D

P =

√
2

2

[
1 1
1 −1

]
and D =

[
1 0
0 1

9

]
2 Write the analysis and synthesis equations and check that we have a

perfect reconstruction.
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Illustrating the notations in a toy example II

Exercise
3 Considering that we keep only one component, write the

approximation scheme.

4 Check the orthogonality property.

5 Compute ∥x∥2, ∥x− PCAT (x)∥2

6 Compute AT PCA

7 Check the X-signification of AT PCA
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Answer to exercise 23 I

x1 =
[
2
3

1
3

]
x2 =

[
1
3

2
3

]
1

X =

[ 2
3

1
3

1
3

2
3

]
= XT

XTX =
1

9

[
5 4

4 5

]
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Answer to exercise 23 II

2

x →
∈P︷ ︸︸ ︷

PCAP(x) → x
We denote eT1 , e

T
2 the column vectors of P

P = [eT1 e
T
2 ] with e1 =

√
2

2
[1 1], e2 =

√
2

2
[1 − 1]

For the analysis we get

PCAP(x) = xP = [xeT1 bxeT2 ] =

[√
2

2
(x1 + x2)

√
2

2
(x1 − x2)

]
Denoting the component of PCAP(x) as x

′
1, x

′
2, we get for the

synthesis

PCAP(x)P
T = [x ′1 x ′2]

[
e1
e2

]
=

[√
2

2
(x ′1 + x ′2)

√
2

2
(x ′1 − x ′2)

]
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Answer to exercise 23 III

To check PCAP(x)P
T = x, we check the first component√

2

2
(x ′1 + x ′2) =

√
2

2

(√
2

2
(x1 + x2) +

√
2

2
(x1 − x2)

)
= x1

then the second component√
2

2
(x ′1 − x ′2) =

√
2

2

(√
2

2
(x1 + x2)−

√
2

2
(x1 − x2)

)
= x2

3

x →
∈P︷ ︸︸ ︷

PCAP(x)
F1→

∈P or ∈PF1︷ ︸︸ ︷
PCATP(x) → PCAT (x)

We have shown previously

PCAP(x) =

[√
2

2
(x1 + x2)

√
2

2
(x1 − x2)

]
As we keep only the first component,

PCATP(x) =

√
2

2
(x1 + x2)
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Answer to exercise 23 IV

After synthesis, we get

PCAT (x) =

√
2

2
(x1 + x2)e1 =

[
x1 + x2

2

x1 + x2
2

]
4 The difference between x and its approximation PCAT (x) is

x− PCAT (x) =

[
x1 − x2

2

x2 − x1
2

]
The orthogonality property claims that (x− PCAT (x)) � PCAT (x) = 0[

x1 − x2
2

x2 − x1
2

]
�

[
x1 + x2

2

x1 + x2
2

]
= 0

5 The square norm of x is
∥x∥2 = x�x = x21 + x22

The square norm of x− PCAT (x) is

∥x− PCAT (x)∥2 =
(x1 − x2)

2

2
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Answer to exercise 23 V

6 Since D = diag([1 1
9 ]),

AT PCA =
1

1 + 1
9

=
9

10

7 The signification of AT PCA for x

1− ∥x− PCAT (x)∥2

∥x∥2
= 1−

(x1−x2)2

2

x21 + x22
= 1− 1

2

(x1 − x2)
2

x21 + x22
When x = x1, we get

1− 1

2

(23 − 1
3)

2(
2
3

)2
+
(
1
3

)2 = 1− 1

10

When x = x2, we get

1− 1

2

(13 − 2
3)

2(
1
3

)2
+
(
2
3

)2 = 1− 1

10

Hence

mean
x∈X

(
1− ∥x− PCAT (x)∥2

∥x∥2

)
= 1− 1

10
= AT PCA
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Insight into the use of XTX

A F -multivariate distribution is defined with a mean µ and a
covariance matrix Σ

fr
x
(x) =

1

(2π| det(Σ)|)F/2
e−

1
2
(x−µ)Σ−1(x−µT

Σ = E
[
(
r
x− µ)T (

r
x− µ)

]
Notation
r
x denotes a random row vector.
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Variance computations

Exercise 24

We consider two independant Gaussian random variable
r
z1 and

r
z2

centered and normalised.
r
z1 ∼ N (0, 1) and

r
z2 ∼ N (0, 1)

We define a random vector
r
x =

[
2

3

r
z1 +

1

3

r
z2,

1

3

r
z1 +

2

3

r
z2

]
1 Compute the covariance matrix using Σ = E

[
(
r
x− µ)T (

r
x− µ)

]
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Answer to exercise 24 I

r
x =

[
2

3

r
z1 +

1

3

r
z2,

1

3

r
z1 +

2

3

r
z2

]
1 Here µ = 0 so the covariance matrix is E [xTx].

xTx =

[
4
9(

r
z1)

2 + 1
9(

r
z2)

2 + 4
9

r
z1

r
z2

2
9(

r
z1)

2 + 2
9(

r
z2)

2 + 5
9

r
z1

r
z2

2
9(

r
z1)

2 + 2
9(

r
z2)

2 + 5
9

r
z1

r
z2

4
9(

r
z1)

2 + 1
9(

r
z2)

2 + 4
9

r
z1

r
z2

]
Because these are independant Gaussian distributions, we have

E
[
(
r
z l)

2
]
= E

[
(
r
z2)

2
]
= 1 and E

[
r
z l

r
z2
]
= 0

So we get

E
[
xTx

]
=

[
5
9

4
9

4
9

5
9

]
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Contours I

Exercise 25

We consider a centered multivariate normal distribution
r
x ∼ N (0,Σ) and Σ =

[
5
9

4
9

4
9

5
9

]
We want to find the locus of equal density probability of x.

1 Show that this locus fullfills

J =
1

2
xΣ−1xT

with a probability density of 9
2π e

−J

2 Check that

Σ−1 =

[
5 −4
−4 5

]
3 Defining x with coordinates: x = [x1 x2], show that they fullfill

2J = 5x21 − 8x1x2 + 5x22
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Contours II

Exercise
4 We now use polar coordinates x1 = r cos(θ) and x2 = r sin(θ). Show

that

r(θ) =

√
2J√

5− 4 sin(2θ)
and hence that a parametric description of the contour is{

x(θ) = r(θ) cos(θ)
y(theta) = r(θ) sin(θ)

5 Describe the contour and find its closest and farthest points.

6 Find a unit vector along the farthest point’s direction. We will see
that this is the first eigenvector and hence the first column of the
P-matrix.
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Simulations

Using the theoretical equations, By drawing 1000 points of
r
z1,

r
z2,

and computing x,
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Answer to exercise 25 I

fr
x
(x) =

1

2π| det(Σ)|
e−

1
2
xΣ−1xT

1 By defining J = 1
2xΣ

−1xT , we get

fr
x
(x) =

1

2π| det(Σ)|
e−J

2J = [x1 x2]

[
5 −4
−4 5

] [
x1
x2

]
2J =

5x1x1 + −4x1x2 +
−4x2x1 + 5x2x2

2J = 5x21 − 8x1x2 + 5x22
2 Because sin(2θ) = 2 sin(θ) cos(θ), and

det(Σ) = det

[
5
9

4
9

4
9

5
9

]
=

25− 16

81
=

1

9
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Answer to exercise 25 II

3

Σ ∗ Σ−1 =
1

9

[
25− 16 −20 + 20
−20 + 20 25− 16

]
4

2J = [x1 x2] Σ
−1 =

[
5 −4
−4 5

] [
x1
x2

]
2J = [5x1 − 4x2 − 4x1 + 5x2]

we get
2J = r2(5− 4 sin(2θ))

And finally

r =

√
2J

5− 4 sin(2θ)
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Answer to exercise 25 III

5 When θ ∈ [−π
4 ,

π
4 ], θ 7→ sin(2θ) is an increasing function,

θ 7→ − sin(2θ) is decreasing and r =
√

2J
5−4 sin(2θ) is increasing. The

closest point is when sin(2θ) is minimal that is θ = −π
4 or θ = 3π

4 .
The farthest point is when sin(2θ) is maximal that is θ = π

4 or
θ = −3π

4 . θ 7→ r(θ) ranges between those two extreme points.

6 The farthest point is obtained with θ = π
4 , that is with

x = cos(π4 ) =
√
2
2 and y = sin(π4 ) =

√
2
2 . The corresponding unit

vector is
[√

2
2

√
2
2

]
.

May 8, 2023 197 / 272



Trace and variance

Let x ∼ N (0,Σ)

var(
r
x) = E

[
r
x(

r
x)T
]
= tr(Σ)

An experiment

1: for i = 1 : 105 do
2: Draw randomly Σ of size 5×5.
3: Rescale Σ so that tr(Σ) = 1.
4: Draw x of size 1×5 following N (0,Σ).
5: Store xxT

6: Plot histogram of the stored values

The simulation shows:
xxT is very unlikely to be equal to tr(Σ),

the average of xxT is tr(Σ).
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Variance
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Mean adds to the variance

In the previous experience µ = 0. If not we have to replace x with
x− µ.

The mean’s square adds to the variance
E [

r
x(

r
x)T ] = var(

r
x) + E [

r
x]E [

r
x]T = tr(Σ) + µµT

In the previous experiment, when we draw x, its mean is non-zero.
This non-zero mean is a significant contribution to the measured xxT

as (x−mean(x))(x−mean(x))T would be on average much smaller!
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Accuracy of the approximation

Let
r
x ∼ N (0,Σ) and PCAT

(
r
x
)
its F1-component PCA-approximation.

E
[
∥ r
x− PCAT (

r
x)∥2

]
= (1−AT ,PCA(Σ,F1)) tr(Σ)

E

[
∥r
x−PCAT (

r
x)∥2

∥x∥2

]
= 1−AT ,PCA(Σ,F1)

An experiment

1: for i = 1 : 105 do
2: Draw randomly Σ of size 5×5.
3: Rescale Σ so that tr(Σ) = 1.
4: With F1 = 1, compute A(i) := AT ,PCA

5: Draw x of size 1×5 following N (0,Σ).
6: Compute and store a(i) := ∥x− PCAT (x)∥2
7: Compute and store b(i) :=

(
∥x− PCAT (x)∥2

)
/∥x∥2

8: Plot histogram of a(i)
1−A(i) and of b(i)

1−A(i)
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Variance 2

∥x− PCAT (x)∥2

1−AT ,PCA

∥x− PCAT (x)∥2

∥x∥2(1−AT ,PCA)
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Probability distribution of the square root of the relative
error

∥x− PCAT (x)∥
∥x∥
√
1−AT ,PCA
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Frobenius norm and variance

∥ ∥2F has a definition using trace.
∥X∥2 = tr(XTX)

∥ ∥F is a matrix norm (one among many).

∥X∥F =

√∑
n,f

x2nf

It has a link with the eigenvalue decomposition problem of XTX

∥X∥2F = tr(D) =
F∑

f=1

λf

It has a link with Σ and variance.
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XTX and xxT why?

Here X is obtained by stacking row vectors xn
X is also the concatenation of column vectors Xf .

xxT is a scalar (∥x∥2).
xTx is a F×F matrix.
1

xxT
xTx is a projector along x.

XTX is also a F×F matrix.

XTX =
N∑

n=1

xTn xn

XTX is an estimate of the
covariance matrix.

XTX = [Xf Xf ′ ]f ,f ′

XXT is a N×N matrix with
components [xnxn′ ]n,n′ .

∥X∥2F = tr(XTX) = tr(XXT )
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A PCA algorithm I

Projector along axis e

P(x) = xeTe
When applied to a matrix it renders a matrix whos rows are the projected
rows

P(X) = XeTe

Direction explaining best the variance

We look for e such that P(X) is maximal in some sense.
ê = argmax

e, ∥e∥=1
∥P(X)∥F = argmax

e, ∥e∥=1
eXTXeT

This could be obtained for instance with simulated annealing.m

X=[2/3 1/3; 1/3 2/3];

J=@(e)(-e*X’*X*e’)/(e*e’);

e=simulated_annealing(J,size(X,2),’silent’);

e=(e(:)./sqrt(e(:)’*e(:)))’;
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A PCA algorithm II

Require: X
Ensure: P and D
1: X′ := X
2: for f = 1 : F do
3: Compute ef
4: Project X′ := X′ − P(X′)
5: Update (X′)TX′

6: P := [eT1 . . . eTF ]
T

7: D := PTXTXP

Note that with exercise 25 we used this idea to find e1.
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PCA and eigenvalue decomposition

PCA can be regarded as the eigenvalue decomposition of XTX.
XTX = PDPT

with PTP = IF and D is a F×F diagonal matrix. This is the idea used in
the proposed Matlab/Octave implementation in frame 177.

Eigenvalue decomposition of XTX

Because XTX is symmetric, it exists.

D = diag([λ1 . . . λF ]) with λf as eigen values.

λf are solutions of the polynomial of degree F
det(XTX− λIF ) = 0

P = [eT1 . . . eTF ] with ef as eigen vectors.

XTXeTf = λf e
T
f with ef e

T
f = 1.

We only need to sort in decreasing order the eigenvalues.
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Example of eigenvalued decomposition

Exercise 26

We consider a covariance matrix

Σ =
1

9

[
5 4
4 5

]
We are trying to solve the eigenvalue problem.

1 Write the second order polynomial yielding the eigenvalues and find
them.

2 Find the eigenvectors and write the equation.
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Answer to exercise 26 I

1

f (λ) = det(Σ− λI2) =

∣∣∣∣ 5
9 − λ 4

9
4
9

5
9 − λ

∣∣∣∣ = (59 − λ
)2 − (49)2

f (λ) =
(
5
9 − λ− 4

9

) (
5
9 − λ+ 4

9

)
Hence f (λ) = 0 ⇔ λ = 1 or λ = 1

9

2 We see that if x = [1 1],
xΣ = [1 1] = x

So e1 = [1 1]
√
2
2 is the first eigenvector.

We see that if x = [1 − 1],

xΣ = [
1

9

1

9
] = x

So e2 = [1 − 1]
√
2
2 is the second eigenvector.

ΣP = Σ[eT1 e
T
2 ] = [eT1

1

9
eT2 ] = PD
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PCA and singular value decomposition

Definition of SVD

X = UΣDV
T

where ΣD is N×F and diagonal, UUT = IN , VV
T = IF

XTX = PDPT = VΣT
DU

TUΣDV
T = VΣT

DΣDV
T

So we have
V = P and (ΣD)ff =

√
(D)ff
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Whitening the process
Deterministic Statistic

We assume X = [xT1 . . . xTN ]
T

XTX = PDPT

with PPT = I and D diagonal.
The whitened vector is

x 7→ z = xPD−1/2

The covariance matrix of
Z = [zT1 . . . zTN ]

T is

ZTZ = D−1/2PTXTXPD−1

= D−1/2PT (PDPT )PD−1/2

= IF

We assume X = [xT1 . . . xTN ]
T

ΣD = PDPT

with PPT = I and D diagonal.
The whitened vector is

z = xPD−1/2

Components of z, zf are indepen-
dent centered normalized Gaussians.
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whitening vs normalization

x 7→ z = xPD−1/2

with
XTX = PDPT

We get independent normalized
Gaussian random variables

r
zf ∼ N (0, 1)

and a white covariance matrix
ZTZ = I

x 7→ x′ = xdiag(XTX)−1/2

We get unitary random components

∀f , var(
r

x ′f ) = 1
And unitary column vectors

∥X ′
f ∥ = 1

The diagonal of the covariance ma-
trix is equal to one.

∀f ,
(
(X′)TX′

)
ff
= 1
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Solving the eigenvalue problem on a toy example

Exercise 27

We consider the same centered multivariate normal distribution as defined
in exercise 25.

r
x ∼ N (0,Σ) and Σ =

[
5
9

4
9

4
9

5
9

]
We assume that using a PCA-algorithm we found P and D

P =

√
2

2

[
1 1
1 −1

]
and D =

[
1 0
0 1

9

]
1 Write the equations of the whitening process transforming

r
x into

r

z′.

We now assume as in exercise 24 that actually
r
x comes from two centered

normalized Gaussian random variable
r
z1 and

r
z2.

r
x1 =

2

3

r
z1 +

1

3

r
z2 and

r
x2 =

1

3

r
z1 +

2

3

r
z2

2 Check that
r
z is indeed white.
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Answer to exercise 27 I

P =

√
2

2

[
1 1
1 −1

]
and D =

[
1 0
0 1

9

]
1 Whitening means that z′ = xPD−1/2

z ′1 =
√
2
2 (x1 + x2)

z ′2 =
3
√
2

2 (x1 − x2)

2 We now combine these equations with

x1 =
2

3
z1 +

1

3
z2 and x2 =

1

3
z1 +

2

3
z2

And we get

z ′1 =
√
2
2 (z1 + z2)

z ′2 =
√
2
2 (z1 − z2)

which is clearly white as
var(z ′1) = var(z ′2) = 1 and E [z ′1z

′
2] = 0
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Correlation matrix

We get correlations when we first normalize then compute covariances.

corrX = cov normX
with normX = Xdiag(XTX)−1/2

and covX = XTX
Its components are estimated with

corrX =

 ∑N
n=1 xnf xnf ′√∑N

n=1 x
2
nf

√∑N
n=1 x

2
nf ′


ff ′

=
( covX)ff ′√

( covX)ff
√
( covX)f ′f ′

Its components are between −1 and 1
−1 ≤ ( corr(X))ff ′ ≤ 1

Its diagonal is equal to one.

Here correlation is not concerned with neighboring pixels

It may have to do with neighboring bandwidths.
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Example of correlation matrix

Exercise 28

We consider the tiny dataset of exercise 23with
x1 =

[
2
3

1
3

]
x2 =

[
1
3

2
3

]
1 Compute the correlation matrix.

May 8, 2023 217 / 272



Answer to exercise 28 I

X =
1

3

[
2 1
1 2

]
1

cov(X) = XTX =
1

9

[
5 4
4 5

]
cov(X) =

[
1 4

5

4
5 1

]
because

4

5
=

4
9√
5
9

√
5
9
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Conclusion of subsection 5, Principal Component Analysis

PCA is very popular.

Linear algebra: Eigenvalue decomposition problem and singular value
decomposition problem.

Transformations: analysis/synthesis and whitening

Uncorrelated and variance explanation

Trace of the covariance matrix, Frobenius norm and approximation

PCA is unsupervised

The important information may not be obvious. A supervised technique?
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Content of section 4, Curse of dimensionality,
regularization and sparsity

4.1 Data preparation
4.2 Feature construction
4.3 Kernel trick
4.4 Curse of dimensionality and feature extraction
4.5 Principal Component Analysis
4.6 Supervised feature extraction
4.7 Regularization
4.8 Feature selection
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Transforming PCA into a supervised feature extraction
technique

To have zero mean, we consider ỹ instead of y . We are going to rotate x
into x′ and the question is what for?

Not the cross-covariance matrix

We want to maximize the covariance between
r
x and

r
y . It is tempting to

consider

cov(
r
x

r

ỹ) = [E (
r
x1

r

ỹ) . . .E (
r
xF

r

ỹ)]

We have seen before in some conditions that E [∥ r
x∥2] = tr(XTX)

PCA with a modification on the covariance matrix

Let Ỹ = diag(Ỹ )

E [∥ r
x

r

ỹ∥2] = tr
(
(ỸX)T (ỸX)

)
= tr

(
XT ỸT ỸX

)
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How to find the eigenvectors?

The first eigenvector e defines a projector on X
X′ = XeTe

We get the optimization problem

e = argmax
e

tr
(
(X′)T ỸT ỸX′

)
= argmax

e
eXT ỸT ỸXeT

subjected to ∥e∥ = 1.

The new PCA supervised-methodology

We replace XTX with XTỸỸX.
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Conclusion of subsection 6, Supervised feature extraction

1 PCA is the most popular dimensional reduction technique.

2 PCA can be adapted by computing the covariance matrix using
diag(Ỹ )X instead of X.

3 We have also seen in frame 113 that using LDA we get a new
supervised feature.

4 Other techniques make use of labels to select the appropriate number
of features.

A different linear classifier

The probabilistic framework yields a different linear classifier. It yields a
new feature: the linear hyperplane separating predictions.
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Content of section 4, Curse of dimensionality,
regularization and sparsity

4.1 Data preparation
4.2 Feature construction
4.3 Kernel trick
4.4 Curse of dimensionality and feature extraction
4.5 Principal Component Analysis
4.6 Supervised feature extraction
4.7 Regularization
4.8 Feature selection
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What it is

About the previous examples of regularization

We had to inverse an ill-conditioned matrix and to achieve this we add λI
with λ could be very small.

Definition of the condition of a matrix

Given a square matrix A we call the condition number of a matrix

κ(A) =
max(σ(A))

min(σ(A))
where σ(A) is the set diagonal components of D in a singular value
decomposion.

A = UDV ′
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Smoothing and conditioning?

Exercise 29

1 What is doing this code?

function fig_cond()

N=10; F=10; cd=zeros(3); X=randn(N,F);

for m=1:4

Xn=X; X=smooth(X’)’;

for n=1:3

Xn=smooth(Xn); cd(m,n)=cond(Xn);

end

end

disp(num2str(round(cd))),

end

function X2=smooth(X1)

N=size(X1,2); X2=[X1(:,1) (X1(:,1:N-1)+X1(:,2:N))/2];

end
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Output of an experiment

smoothing along features−→
↓ smoothing along samples

109 1001 7055

240 1651 9359

2257 13293 59172

17129 96773 395674
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Answer to exercise 29 I

Random vectors stacked in X.
r
x ∼ N (0, diag(1F ))

When drawn, the condition number is okay because,
(XTX)mn ≈ Nδ(m = n)

The smoothing along the features

S(X) =
[
Xn1,

Xn1 + Xn2

2
, . . .

Xn,F−1 + XnF

2

]
The smoothing along the samples

S(XT )T

Border effect

When there are N columns, we can output only N − 1 values depending
each on two values, if the operations are the same.
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Answer to exercise 29 II

Coding the smoothing effect

The computation is operations on a sliding window.
(S(X))nf = Xnf w0 + Xnf+1w1

with w0 = w1 = 0.5.

How can we compute the composition?

x ′n = xnw0 + xn+1w1

x ′′n = x ′nw0 + x ′n+1w1

The important property is invariance with respect to a right shift. We see
that

[w0 w1] ∗ [w0 w1] = [w2
0 2w0w1 w2

1 ]
This is actually the same as polynomial multiplication.
(w0 + xw1)(w0 + xw1) = w2

0 + 2w0w1x + w2
1 x

2
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What are the practical consequences?

Because of sensitivity to correlations

The training set consists of samples drawn randomly in the
hyperspectral image. They are not close to each others.

It is generally a good idea to do dimensionality reduction to reduce
correlations among bandwiths.

However using test samples very close to training samples is an issue.
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Modified loss function

L2-regularization consists in adding

Lr2(S , f v ) =
1

2

N∑
n=1

(b − a�xn − ỹn)
2 + λ(b2 + ∥a∥2)

with λ > 0 a cost parameter.
This is called the ridge OLS.
OLS stands for Ordinary Least Square.

Exercise 30

Solve analytically the new optimization problem with the regularized
L2-loss function.
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Answer to exercise 30 I

2Lr (S , f v ) =

(
∆

XwT

)T (∆

XwT

)
−
(

∆

XwT

)T

Ỹ

−Ỹ T

(
∆

XwT

)
+ Ỹ T Ỹ + λwwT

2L(S , f v ) = w(
∆

X
T ∆

X+ λI)wT − 2w
∆

X
T

Ỹ + Ỹ T Ỹ
And after derivation with respect to w, we get

wT =

(
∆

X
T ∆

X+ λI

)−1
∆

X
T

Ỹ
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An experiment showing increased performance with
L2-regularization

Require: λ
Ensure: mean(A)
1: for 100 experiments do
2: Draw a probabilistic problem
3: Draw 10 labeled samples
4: Compute w (ridge OLS)
5: Draw 10 labeled samples
6: Predict 10 labels
7: Measure accuracy

8: Compute average accuracy
r
µ0,

r
µ1 ∼ N (0, 4I10) and

r

Σ1 ∼ U([0, 1]10),
r

Σ2 = 0.5(
r

Σ+ (
r

Σ)T )
r

X
|
r
Y=0

∼ N (µ0,Σ2) and
r

X
|
r
Y=1

∼ N (µ1,Σ2)
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Regularization regarded as the choice of an increased prior I

Exercise 31

We consider a regression problem, that is we want to predict values
instead of labels. The values are represented by Y . For the sake of
simplicity, we consider here only one feature, so the data matrix X is here
a column vector X . a is a scalar, a.

Y = aX + η
a and η are here regarded as a random variable and vector.

r
a ∼ N (0, σa) and

r
η ∼ N (0, σηIN)

1 Write the likelihood of Y given X and a.

2 Write the posterior probability a given X and Y as a function of the
likelihood and a prior.
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Regularization regarded as the choice of an increased prior
II

Exercise
3 Show that â maximizing the posterior probability is defined as

â = argmin
a

(Y − aX )T (Y − aX ) +
σ2
η

σ2
a

a2
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Answer to exercise 31 I

1 Denoting the likelihood of Y given X and a

f r
Y |X ,a

(X ,Y , a) =
1

√
2π

N | det(σ2
ηIN)|N/2

e−
1
2
(Y−aX )T (σ2

ηIN)
−1

(Y−aX )

σ2
ηIN is a diagonal matrix whose inverse and determinant are

1

σ2
η

IN and σ2N
η

This covariance matrix being diagonal we also get the independence
among the different components.

f r
Y |X ,a

(X ,Y , a) =
1

(2π)N/2σN
η

e
− 1

2σN
η
(Y−aX )T (Y−aX )

May 8, 2023 236 / 272



Answer to exercise 31 II

2 The Bayesian formula is sometimes written as

P(A|B) = P(B|A)P(A)
P(B|A)P(A) + P(B|¬A)P(¬A)

Here this actually means

f r
a|

r
Y ,X

(X ,Y , a) =
f r
Y | ra,X

(X ,Y , a)f r
a
(a)∫ +∞

−∞ f r
Y | ra,X

(X ,Y , a)f r
a
(a) da

3 Because the denominator depends only of X and Y , it is possible to
denote its logarithm −Z (X ,Y ) and hence to get

ln f r
a|

r
Y ,X

(X ,Y , a) = Z (X ,Y ) + ln f r
Y | ra,X

(X ,Y , a) + ln f r
a
(a)

There exists a quantity κ not depending on X and Y such that
ln f r

a|
r
Y ,X

(X ,Y , a) = Z (X ,Y ) + κ− 1
2σ2

η
(Y − aX )T (Y − aX )− 1

2σ2
a
a2

= Z (X ,Y ) + κ− 1
σ2
η

(
(Y − aX )T (Y − aX ) +

σ2
η

σ2
a
a2
)
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Probability distribution of the learned parameters
Prior modeling Choice of the prior

wT =

(
∆

X
T ∆

X

)−1
∆

X
T

Y

⇒ wf ∼ L(0, 0.2) or wf ∼ N (0, 0.4)
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Probability distributions of noise
Modeling the noise Choice of likelihood

(btw, I did not use here Ỹ )

η = Y − Xw with wT =

(
∆

X
T ∆

X

)−1
∆

X
T

Y

⇒ ∥η∥ ∼ N (0, 0.04) and λ ∼ σ2
η

σ2
w
≈ 10−2
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Two kinds of regularization for OLS

LASSO

Least absolute shrinkage and selection operator
It is a Laplacian approximation of the parameter prior.

Lr1(S , f v ) =
1

2

N∑
n=1

(b − a�xn − ỹn)
2 + λ(|b|+ ∥a∥)

Ridge OLS

It is a Gaussian approximation of the parameter prior. This regularization
is also called the Tikhonov regularization.

Lr2(S , f v ) =
1

2

N∑
n=1

(b − a�xn − ỹn)
2 + λ(b2 + ∥a∥2)
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Conclusion of subsection 7, Regularization

1 We first saw a practical classification ill-posed.

2 In the example it results from correlated samples.

3 In an image, training sets and training sets are generally drawn from
randomly sampled pixels to avoid such correlations. But practically,
this could be an issue for a given application.

4 A Bayesian interpretation of this regularization is given.

5 On an experimental example, it yields two regularization techniques
Ridge and LASSO.

Feature selection technique

These regularization techniques yield two feature selection technique.
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Content of section 4, Curse of dimensionality,
regularization and sparsity

4.1 Data preparation
4.2 Feature construction
4.3 Kernel trick
4.4 Curse of dimensionality and feature extraction
4.5 Principal Component Analysis
4.6 Supervised feature extraction
4.7 Regularization
4.8 Feature selection
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Feature selection

Exercise 32

We consider again exercise 7 and the proposed solution in exercise 9 where

∆

X = [X1], w = [−a b] and wT =

(
∆

X
T ∆

X

)−1
∆

X
T

Ỹ

with
fa,b(x) = δ(a�x ≤ b)

1 Let us suppose that the first component of all samples in S2 is
constant, why would this be a problem in these equations. Suggest an
experiment studying this question.

2 What should we think of this situation?

3 What could we do?
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Answer to exercise 32 I

1 When first components of all samples have roughly the same value,

the first column and the last column of
∆
x are proportional and the

matrix
∆

X
T ∆

X becomes more and more ill-conditioned.
In this experiment, the first col-

umn of
∆

X is replaced with ones
added to a random number drawn
from a centered Gaussian distri-
bution with σ as standard devi-
ation. Each point in this graph
indicates vertically the maximum

value of the

(
∆

X
T ∆

X

)−1

and hori-

zontally 1
σ .

Require: σ
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Answer to exercise 32 II

Ensure: c value of the greatest component

1: Define X and
∆

X
2: Draw 3 random values from a Gaussian distribution with mean 1

and standard deviation σ.

3: Replace in
∆

X the first column with these values.

4: Compute

(
∆

X
T ∆

X

)−1

.

5: Let c be the greatest value of

(
∆

X
T ∆

X

)−1

.
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Answer to exercise 32 III

2 If first components of all samples have exactly the same value, say 2,
then

δ(b − [a1, a2]�x ≥ 0) = δ(0− [a1 −
b

2
, a2]�x ≥ 0)

= δ(b − 2a1 − [0, a2]�x ≥ 0)
This identity adds to the general property when b > 0,
δ(b − [a1, a2]�x ≥ 0) = δ(1− [a1b ,

a2
b ]�x ≥ 0)

3 To cope with this problem, we can just remove this non-informative
first component. This is feature selection. (Other ideas could be used
too).
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Goal in selecting features

Given a dataset (and some information), we would like to select a subset
of features.

What for?

Less features decreases the numerical complexity and we may get
increased accuracy for a given algorithm. This could be a way to test the
efficiency of selecting features.
Another important reason is to yield more understandable predictive
models.

Why wouldn’t we prefer feature selection rather than feature
extraction

To get a more understandable model.
Features could be independent and feature extraction introduces
dependency.
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Image published by Thenkabail in 2013
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Image published by Thenkabail in 2013
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General methodology

There are many feature subsets

F = 10,F1 = 5 ⇒
(

10
5

)
= 252

prod(1:10)/prod(1:5)/prod(1:5)

Starting point
Fit=1 = F (Backward
selection, more popular)
or F = 0 (Forward selection)

Which feature to select

Stopping criteria
Use of validation set.

Require: F
Ensure: F ′

1: repeat
2: Apply a 1-feature selection

technique.
3: Update F
4: until Stopping criteria
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Two 1-feature selection techniques

Assuming we have decided to remove a feature, which one are we
choosing?

The less decrease in accuracy

Ridge:
f̂ = argmin

f
|wf |

for a given λ.

LASSO:
λ̂ = argmin

λ
{λ| ∃f |ŵf = 0}
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Lasso experiment

µ0 = 0 µ1 = [1, 0.9 . . . 0.1], Σ = I10
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L1 minimization ⇒ features are cancelled
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Conclusion of subsection 8, Feature selection

1 Classifying is not only a question of having the best accuracy.
Explaining what happens if interesting too.

2 And for hyperspectral images, there is a literature and some specific
indexes (NDVI) and many other vegetation indexes.

3 We have discussed the backward and forward feature selection in
combination with Ridge regression.

4 We have seen the LASSO feature selection technique.

Spatial context

How these techniques can be applied in a more general context.
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Table of Contents

1. Classification of hyperspectral images

2. Learning regarded as an optimization Problem

3. Predicting the learning performances and probabilistic framework

4. Curse of dimensionality, regularization and sparsity

5. Spatial context
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Content of section 5, Spatial context

5.1 Spatial context
5.2 Texture descriptors
5.3 Noise estimation
5.4 Spatial prior
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Different goals Xie 2015

1 Texture (=preprocessing)

2 Measuring the noise
(=preprocessing)

3 Prior on the classification map
(=post-processing)

4 Mixture of end-vectors

5 Use of Digital Elevation Map
(DEM)
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Content of section 5, Spatial context

5.1 Spatial context
5.2 Texture descriptors
5.3 Noise estimation
5.4 Spatial prior
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Rich literature from image processing

What is a texture?

There is no absolute definition. It
rather means that we understand
the content as a texture.
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No perfect tool
How to group the texture descriptors?

Is the technique sensitive to

a global increase in intensity?

an image rotation?

a rescaling of the image?

a quantification of the image?

Is the technique equivalent to?

Nonlinear processing, filtering
and nonlinear processing?

Histogram and a diversity
index on the histogram?
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Proposed techniques I

Let Vmn be the neighborhood of m, n and V ′
mn the same neighborhood

without the last column.
Vmn = {m′, n′|max(|m′ −m|, |n′ − n|) ≤ 2}

1 Horizontal filter

f ′mn =
1

5

m+2∑
m′=m−2

fm′n

2 Variance
f ′mn =

∑
Vmn

(fm′n′ − µmn)
2

with µmn = 1
25

∑
Vmn

fm′n′

3 Diversity index

f ′mn =
∑
g

h(g)2 where h(g) is the estimated probability distribution
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Proposed techniques II

4 Correlation

f ′mn =

∑
V ′
mn

fm′n′fm′−1n′√∑
V ′
mn

f 2m′n′

√∑
Vmn

f 2m′n′

5 Mean

f ′mn =
1

25

∑
Vmn

fm′n′

Exercise 33

Considering a noisy image of a chessboard with only one feature.

1 Which technique has which property?
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Application to a chessboard
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Feature used in the kmeans algorithm in the next slide
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Pixel value

Diversity

Horizontal filtering

Correlation

Variance

Mean
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Content of section 5, Spatial context

5.1 Spatial context
5.2 Texture descriptors
5.3 Noise estimation
5.4 Spatial prior
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An example
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Explaining the experiment

ymn = Chess Board

r
xmn ∼ N (ymn, 0.2 + ymn)

noisemn =
√∑

Vmn

(fm′n′ − µmn)2

µmn = 1
25

∑
Vmn

fm′n′
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An application of noise estimation

The noise measurement is here a measurement specific to the feature. Let
us denote these measurements as z and Z for the corresponding dataset. z
and Z are of the same size than x and X.

A noise-aware PCA algorithm

ê = argmax
e, eZTZeT=1

eXTXeT

This is actually a linear algebra problem called generalized eigenvalue
problem. An algorithm is to find

ê = argmax
e,

eXTXeT − λeZTZeT

with λ chosen to fit the constraint.

May 8, 2023 269 / 272



Content of section 5, Spatial context

5.1 Spatial context
5.2 Texture descriptors
5.3 Noise estimation
5.4 Spatial prior
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Conditional random Markov field

Assumption

It is likely that the neighboring pixels belong to the same class.

Neighborhood = four closest pixels (generally). Here it is denoted
V ′′
mn.

Conditional probability with respect to neighbors is a Gaussian of the
difference.

Markov property = independence with respect to non-neighbors
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An example

Problem at stake
ymn = chess Board and

r
xmn ∼ N (ymn, 2)

Equations

P(Y |X ) ∝
∏
mn

f1(xmn|ymn) f2(ymn|yV ′′(mn))

where

f1(xmn|ymn) ∝ e
− 1

2σ2
1
(xmn−µ0)2δ(yn=0)− 1

2σ2
1
(xmn−µ1)2δ(yn=1)

f2(ymn|yV ′′
mn
) ∝ e

− 1

2σ2
2

∑
m′n′∈V ′′ (ymn−ym′n′ )

2

Finally we get a new global function to minimize
J =

∑
mn(xmn − µ0)

2δ(yn = 0) + (xmn − µ1)
2δ(yn = 1)+

λ
∑

m′n′∈V ′′
mn

(ymn − ym′n′)
2

And this time the simulated annealing is clearly not powerful enough.

May 8, 2023 272 / 272


	Classification of hyperspectral images
	Learning regarded as an optimization Problem
	Decision stump and linear classifier
	Accuracy and loss functions
	Optimization problem
	Simulated annealing
	Method of least squares
	Unsupervised classification regarded as an optimization problem

	Predicting the learning performances and probabilistic framework
	Training, testing and validation sets
	Confusion matrix
	Inference on an example
	Linear discriminant analysis
	Predicting the true probabilities
	Prior and Bayes formula

	Curse of dimensionality, regularization and sparsity
	Data preparation
	Feature construction
	Kernel trick
	Curse of dimensionality and feature extraction
	Principal Component Analysis
	Supervised feature extraction
	Regularization
	Feature selection

	Spatial context
	Spatial context
	Texture descriptors
	Noise estimation
	Spatial prior


