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Lecture 8

Least-norm solutions of undetermined
equations

• least-norm solution of underdetermined equations

• minimum norm solutions via QR factorization

• derivation via Lagrange multipliers

• relation to regularized least-squares

• general norm minimization with equality constraints
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Underdetermined linear equations

we consider
y = Ax

where A ∈ Rm×n is fat (m < n), i.e.,

• there are more variables than equations

• x is underspecified, i.e., many choices of x lead to the same y

we’ll assume that A is full rank (m), so for each y ∈ Rm, there is a solution

set of all solutions has form

{ x | Ax = y } = { xp + z | z ∈ N (A) }

where xp is any (‘particular’) solution, i.e., Axp = y
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• z characterizes available choices in solution

• solution has dimN (A) = n − m ‘degrees of freedom’

• can choose z to satisfy other specs or optimize among solutions
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Least-norm solution

one particular solution is

xln = AT (AAT )−1y

(AAT is invertible since A full rank)

in fact, xln is the solution of y = Ax that minimizes ‖x‖

i.e., xln is solution of optimization problem

minimize ‖x‖
subject to Ax = y

(with variable x ∈ Rn)
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suppose Ax = y, so A(x − xln) = 0 and

(x − xln)
Txln = (x − xln)

TAT (AAT )−1y

= (A(x − xln))
T (AAT )−1y

= 0

i.e., (x − xln) ⊥ xln, so

‖x‖2 = ‖xln + x − xln‖
2 = ‖xln‖

2 + ‖x − xln‖
2 ≥ ‖xln‖

2

i.e., xln has smallest norm of any solution
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N (A) = { x | Ax = 0 }

xln

{ x | Ax = y }

• orthogonality condition: xln ⊥ N (A)

• projection interpretation: xln is projection of 0 on solution set
{ x | Ax = y }
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• A† = AT (AAT )−1 is called the pseudo-inverse of full rank, fat A

• AT (AAT )−1 is a right inverse of A

• I − AT (AAT )−1A gives projection onto N (A)

cf. analogous formulas for full rank, skinny matrix A:

• A† = (ATA)−1AT

• (ATA)−1AT is a left inverse of A

• A(ATA)−1AT gives projection onto R(A)
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Least-norm solution via QR factorization

find QR factorization of AT , i.e., AT = QR, with

• Q ∈ Rn×m, QTQ = Im

• R ∈ Rm×m upper triangular, nonsingular

then

• xln = AT (AAT )−1y = QR−Ty

• ‖xln‖ = ‖R−Ty‖
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Derivation via Lagrange multipliers

• least-norm solution solves optimization problem

minimize xTx
subject to Ax = y

• introduce Lagrange multipliers: L(x, λ) = xTx + λT (Ax − y)

• optimality conditions are

∇xL = 2x + ATλ = 0, ∇λL = Ax − y = 0

• from first condition, x = −ATλ/2

• substitute into second to get λ = −2(AAT )−1y

• hence x = AT (AAT )−1y
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Example: transferring mass unit distance

f

• unit mass at rest subject to forces xi for i − 1 < t ≤ i, i = 1, . . . , 10

• y1 is position at t = 10, y2 is velocity at t = 10

• y = Ax where A ∈ R2×10 (A is fat)

• find least norm force that transfers mass unit distance with zero final
velocity, i.e., y = (1, 0)
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Relation to regularized least-squares

• suppose A ∈ Rm×n is fat, full rank

• define J1 = ‖Ax − y‖2, J2 = ‖x‖2

• least-norm solution minimizes J2 with J1 = 0

• minimizer of weighted-sum objective J1 + µJ2 = ‖Ax − y‖2 + µ‖x‖2 is

xµ =
(

ATA + µI
)−1

ATy

• fact: xµ → xln as µ → 0, i.e., regularized solution converges to
least-norm solution as µ → 0

• in matrix terms: as µ → 0,

(

ATA + µI
)−1

AT → AT
(

AAT
)−1

(for full rank, fat A)
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General norm minimization with equality constraints

consider problem
minimize ‖Ax − b‖
subject to Cx = d

with variable x

• includes least-squares and least-norm problems as special cases

• equivalent to
minimize (1/2)‖Ax − b‖2

subject to Cx = d

• Lagrangian is

L(x, λ) = (1/2)‖Ax − b‖2 + λT (Cx − d)

= (1/2)xTATAx − bTAx + (1/2)bT b + λTCx − λTd
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• optimality conditions are

∇xL = ATAx − AT b + CTλ = 0, ∇λL = Cx − d = 0

• write in block matrix form as

[

ATA CT

C 0

] [

x
λ

]

=

[

AT b
d

]

• if the block matrix is invertible, we have

[

x
λ

]

=

[

ATA CT

C 0

]−1 [

AT b
d

]
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if ATA is invertible, we can derive a more explicit (and complicated)
formula for x

• from first block equation we get

x = (ATA)−1(AT b − CTλ)

• substitute into Cx = d to get

C(ATA)−1(AT b − CTλ) = d

so
λ =

(

C(ATA)−1CT
)−1 (

C(ATA)−1AT b − d
)

• recover x from equation above (not pretty)

x = (ATA)−1

(

AT b − CT
(

C(ATA)−1CT
)−1 (

C(ATA)−1AT b − d
)

)
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