Lecture 8 Least-norm solutions of undetermined equations

- least-norm solution of underdetermined equations
- minimum norm solutions via $Q R$ factorization
- derivation via Lagrange multipliers
- relation to regularized least-squares
- general norm minimization with equality constraints

Underdetermined linear equations

we consider

$$
\begin{array}{r}
y=A x \\
\text { where } A \in \mathbf{R}^{m \times n} \text { is fat }(m<n) \text {, i.e., }
\end{array}
$$

- there are more variables than equations
- x is underspecified, i.e., many choices of x lead to the same y
we'll assume that A is full rank (m), so for each $y \in \mathbf{R}^{m}$, there is a solution set of all solutions has form

$$
\{x \mid A x=y\}=\left\{x_{p}+z \mid z \in \mathcal{N}(A)\right\}
$$

where x_{p} is any ('particular') solution, i.e., $A x_{p}=y$

- z characterizes available choices in solution
- solution has $\operatorname{dim} \mathcal{N}(A)=n-m$ 'degrees of freedom'
- can choose z to satisfy other specs or optimize among solutions

Least-norm solution

one particular solution is

$$
x_{\ln }=A^{T}\left(A A^{T}\right)^{-1} y
$$

($A A^{T}$ is invertible since A full rank)
in fact, $x_{\ln }$ is the solution of $y=A x$ that minimizes $\|x\|$
i.e., $x_{\ln }$ is solution of optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\| \\
\text { subject to } & A x=y
\end{array}
$$

(with variable $x \in \mathbf{R}^{n}$)
suppose $A x=y$, so $A\left(x-x_{\ln }\right)=0$ and

$$
\begin{aligned}
\left(x-x_{\ln }\right)^{T} x_{\ln } & =\left(x-x_{\ln }\right)^{T} A^{T}\left(A A^{T}\right)^{-1} y \\
& =\left(A\left(x-x_{\ln }\right)\right)^{T}\left(A A^{T}\right)^{-1} y \\
& =0
\end{aligned}
$$

i.e., $\left(x-x_{\ln }\right) \perp x_{\ln }$, so

$$
\|x\|^{2}=\left\|x_{\ln }+x-x_{\ln }\right\|^{2}=\left\|x_{\ln }\right\|^{2}+\left\|x-x_{\ln }\right\|^{2} \geq\left\|x_{\ln }\right\|^{2}
$$

i.e., $x_{\ln }$ has smallest norm of any solution

- orthogonality condition: $x_{\ln } \perp \mathcal{N}(A)$
- projection interpretation: $x_{\ln }$ is projection of 0 on solution set $\{x \mid A x=y\}$
- $A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}$ is called the pseudo-inverse of full rank, fat A
- $A^{T}\left(A A^{T}\right)^{-1}$ is a right inverse of A
- $I-A^{T}\left(A A^{T}\right)^{-1} A$ gives projection onto $\mathcal{N}(A)$
cf. analogous formulas for full rank, skinny matrix A :
- $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$
- $\left(A^{T} A\right)^{-1} A^{T}$ is a left inverse of A
- $A\left(A^{T} A\right)^{-1} A^{T}$ gives projection onto $\mathcal{R}(A)$

Least-norm solution via QR factorization

find $Q R$ factorization of A^{T}, i.e., $A^{T}=Q R$, with

- $Q \in \mathbf{R}^{n \times m}, Q^{T} Q=I_{m}$
- $R \in \mathbf{R}^{m \times m}$ upper triangular, nonsingular
then
- $x_{\ln }=A^{T}\left(A A^{T}\right)^{-1} y=Q R^{-T} y$
- $\left\|x_{\ln }\right\|=\left\|R^{-T} y\right\|$

Derivation via Lagrange multipliers

- least-norm solution solves optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=y
\end{array}
$$

- introduce Lagrange multipliers: $L(x, \lambda)=x^{T} x+\lambda^{T}(A x-y)$
- optimality conditions are

$$
\nabla_{x} L=2 x+A^{T} \lambda=0, \quad \nabla_{\lambda} L=A x-y=0
$$

- from first condition, $x=-A^{T} \lambda / 2$
- substitute into second to get $\lambda=-2\left(A A^{T}\right)^{-1} y$
- hence $x=A^{T}\left(A A^{T}\right)^{-1} y$

Example: transferring mass unit distance

- unit mass at rest subject to forces x_{i} for $i-1<t \leq i, i=1, \ldots, 10$
- y_{1} is position at $t=10, y_{2}$ is velocity at $t=10$
- $y=A x$ where $A \in \mathbf{R}^{2 \times 10}$ (A is fat)
- find least norm force that transfers mass unit distance with zero final velocity, i.e., $y=(1,0)$

Relation to regularized least-squares

- suppose $A \in \mathbf{R}^{m \times n}$ is fat, full rank
- define $J_{1}=\|A x-y\|^{2}, J_{2}=\|x\|^{2}$
- least-norm solution minimizes J_{2} with $J_{1}=0$
- minimizer of weighted-sum objective $J_{1}+\mu J_{2}=\|A x-y\|^{2}+\mu\|x\|^{2}$ is

$$
x_{\mu}=\left(A^{T} A+\mu I\right)^{-1} A^{T} y
$$

- fact: $x_{\mu} \rightarrow x_{\ln }$ as $\mu \rightarrow 0$, i.e., regularized solution converges to least-norm solution as $\mu \rightarrow 0$
- in matrix terms: as $\mu \rightarrow 0$,

$$
\left(A^{T} A+\mu I\right)^{-1} A^{T} \rightarrow A^{T}\left(A A^{T}\right)^{-1}
$$

(for full rank, fat A)

General norm minimization with equality constraints

consider problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\| \\
\text { subject to } & C x=d
\end{array}
$$

with variable x

- includes least-squares and least-norm problems as special cases
- equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2)\|A x-b\|^{2} \\
\text { subject to } & C x=d
\end{array}
$$

- Lagrangian is

$$
\begin{aligned}
L(x, \lambda) & =(1 / 2)\|A x-b\|^{2}+\lambda^{T}(C x-d) \\
& =(1 / 2) x^{T} A^{T} A x-b^{T} A x+(1 / 2) b^{T} b+\lambda^{T} C x-\lambda^{T} d
\end{aligned}
$$

- optimality conditions are

$$
\nabla_{x} L=A^{T} A x-A^{T} b+C^{T} \lambda=0, \quad \nabla_{\lambda} L=C x-d=0
$$

- write in block matrix form as

$$
\left[\begin{array}{cc}
A^{T} A & C^{T} \\
C & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
A^{T} b \\
d
\end{array}\right]
$$

- if the block matrix is invertible, we have

$$
\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]=\left[\begin{array}{cc}
A^{T} A & C^{T} \\
C & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
A^{T} b \\
d
\end{array}\right]
$$

if $A^{T} A$ is invertible, we can derive a more explicit (and complicated) formula for x

- from first block equation we get

$$
x=\left(A^{T} A\right)^{-1}\left(A^{T} b-C^{T} \lambda\right)
$$

- substitute into $C x=d$ to get

$$
C\left(A^{T} A\right)^{-1}\left(A^{T} b-C^{T} \lambda\right)=d
$$

so

$$
\lambda=\left(C\left(A^{T} A\right)^{-1} C^{T}\right)^{-1}\left(C\left(A^{T} A\right)^{-1} A^{T} b-d\right)
$$

- recover x from equation above (not pretty)

$$
x=\left(A^{T} A\right)^{-1}\left(A^{T} b-C^{T}\left(C\left(A^{T} A\right)^{-1} C^{T}\right)^{-1}\left(C\left(A^{T} A\right)^{-1} A^{T} b-d\right)\right)
$$

