Lecture 8 Least-norm solutions of undetermined equations

- least-norm solution of underdetermined equations
- minimum norm solutions via QR factorization
- derivation via Lagrange multipliers
- relation to regularized least-squares
- general norm minimization with equality constraints

Underdetermined linear equations

we consider

$$y = Ax$$

where $A \in \mathbf{R}^{m \times n}$ is fat (m < n), *i.e.*,

- there are more variables than equations
- x is underspecified, *i.e.*, many choices of x lead to the same y

we'll assume that A is full rank (m), so for each $y \in \mathbf{R}^m$, there is a solution set of all solutions has form

$$\{ x \mid Ax = y \} = \{ x_p + z \mid z \in \mathcal{N}(A) \}$$

where x_p is any ('particular') solution, *i.e.*, $Ax_p = y$

Least-norm solutions of undetermined equations

- z characterizes available choices in solution
- solution has $\dim \mathcal{N}(A) = n m$ 'degrees of freedom'
- can choose z to satisfy other specs or optimize among solutions

Least-norm solution

one particular solution is

$$x_{\ln} = A^T (AA^T)^{-1} y$$

 $(AA^T \text{ is invertible since } A \text{ full rank})$

in fact, x_{\ln} is the solution of y = Ax that minimizes ||x||

i.e., x_{\ln} is solution of optimization problem

 $\begin{array}{ll} \text{minimize} & \|x\| \\ \text{subject to} & Ax = y \end{array}$

(with variable $x \in \mathbf{R}^n$)

suppose Ax = y, so $A(x - x_{\ln}) = 0$ and

$$(x - x_{\ln})^T x_{\ln} = (x - x_{\ln})^T A^T (AA^T)^{-1} y$$

= $(A(x - x_{\ln}))^T (AA^T)^{-1} y$
= 0

i.e., $(x-x_{
m ln})\perp x_{
m ln}$, so

$$||x||^{2} = ||x_{\ln} + x - x_{\ln}||^{2} = ||x_{\ln}||^{2} + ||x - x_{\ln}||^{2} \ge ||x_{\ln}||^{2}$$

i.e., x_{\ln} has smallest norm of any solution

- orthogonality condition: $x_{\ln} \perp \mathcal{N}(A)$
- projection interpretation: x_{\ln} is projection of 0 on solution set { $x \mid Ax = y$ }

- $A^{\dagger} = A^T (AA^T)^{-1}$ is called the *pseudo-inverse* of full rank, fat A
- $A^T (AA^T)^{-1}$ is a *right inverse* of A
- $I A^T (AA^T)^{-1}A$ gives projection onto $\mathcal{N}(A)$

cf. analogous formulas for full rank, skinny matrix A:

- $A^{\dagger} = (A^T A)^{-1} A^T$
- $(A^T A)^{-1} A^T$ is a *left inverse* of A
- $A(A^TA)^{-1}A^T$ gives projection onto $\mathcal{R}(A)$

Least-norm solution via QR factorization

find QR factorization of A^T , *i.e.*, $A^T = QR$, with

•
$$Q \in \mathbf{R}^{n \times m}$$
, $Q^T Q = I_m$

• $R \in \mathbf{R}^{m \times m}$ upper triangular, nonsingular

then

•
$$x_{\ln} = A^T (AA^T)^{-1} y = QR^{-T} y$$

•
$$||x_{\ln}|| = ||R^{-T}y||$$

Derivation via Lagrange multipliers

• least-norm solution solves optimization problem

$$\begin{array}{ll} \text{minimize} & x^T x\\ \text{subject to} & Ax = y \end{array}$$

- introduce Lagrange multipliers: $L(x, \lambda) = x^T x + \lambda^T (Ax y)$
- optimality conditions are

$$\nabla_x L = 2x + A^T \lambda = 0, \qquad \nabla_\lambda L = Ax - y = 0$$

- from first condition, $x = -A^T \lambda/2$
- substitute into second to get $\lambda = -2(AA^T)^{-1}y$
- hence $x = A^T (AA^T)^{-1} y$

Example: transferring mass unit distance

- unit mass at rest subject to forces x_i for $i 1 < t \le i$, $i = 1, \ldots, 10$
- y_1 is position at t = 10, y_2 is velocity at t = 10

•
$$y = Ax$$
 where $A \in \mathbf{R}^{2 \times 10}$ (A is fat)

• find least norm force that transfers mass unit distance with zero final velocity, $i.e.,\ y=(1,0)$

Relation to regularized least-squares

- suppose $A \in \mathbf{R}^{m \times n}$ is fat, full rank
- define $J_1 = ||Ax y||^2$, $J_2 = ||x||^2$
- least-norm solution minimizes J_2 with $J_1 = 0$
- minimizer of weighted-sum objective $J_1 + \mu J_2 = ||Ax y||^2 + \mu ||x||^2$ is

$$x_{\mu} = \left(A^T A + \mu I\right)^{-1} A^T y$$

- fact: $x_{\mu} \rightarrow x_{\ln}$ as $\mu \rightarrow 0$, *i.e.*, regularized solution converges to least-norm solution as $\mu \rightarrow 0$
- in matrix terms: as $\mu \to 0$,

$$\left(A^T A + \mu I\right)^{-1} A^T \to A^T \left(A A^T\right)^{-1}$$

(for full rank, fat A)

General norm minimization with equality constraints

consider problem

minimize ||Ax - b||subject to Cx = d

with variable x

- includes least-squares and least-norm problems as special cases
- equivalent to

minimize $(1/2) ||Ax - b||^2$ subject to Cx = d

• Lagrangian is

$$L(x,\lambda) = (1/2) ||Ax - b||^2 + \lambda^T (Cx - d)$$

= (1/2)x^TA^TAx - b^TAx + (1/2)b^Tb + \lambda^T Cx - \lambda^T d

• optimality conditions are

$$\nabla_x L = A^T A x - A^T b + C^T \lambda = 0, \qquad \nabla_\lambda L = C x - d = 0$$

• write in block matrix form as

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

• if the block matrix is invertible, we have

$$\begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix}^{-1} \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

if $A^T A$ is invertible, we can derive a more explicit (and complicated) formula for x

• from first block equation we get

$$x = (A^T A)^{-1} (A^T b - C^T \lambda)$$

• substitute into Cx = d to get

$$C(A^T A)^{-1}(A^T b - C^T \lambda) = d$$

SO

$$\lambda = \left(C(A^T A)^{-1} C^T \right)^{-1} \left(C(A^T A)^{-1} A^T b - d \right)$$

• recover x from equation above (not pretty)

$$x = (A^{T}A)^{-1} \left(A^{T}b - C^{T} \left(C(A^{T}A)^{-1}C^{T} \right)^{-1} \left(C(A^{T}A)^{-1}A^{T}b - d \right) \right)$$