
Figure 1: Training a Tree

Content 6
Extending splitting to the multiclass context

Training decision trees
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• Gini index of the dataset
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• Information Gain of a split Sp at a node p (or mutual information)

IG = H(Yp)−H(Yp|Sp) ≥ 0 (3)

where Sp is the random variable associated to a split and Yp is the random variable associated to the class distribution at node p.

• Random variable associated to a split
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1(sxn,f < sλ) and P (S = 0) = 1− P (S = 1) (4)

• Conditional Entropy

H(Yp|Sp) = P (Sp = 1)H(Yp|Sp = 1) + P (Sp = 0)H(Yp|Sp = 0) (5)
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• Confusion matrix of a split
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where sn = 1(sxn,f < sλ)
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• Gini Gain of a split at node p
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GGp can be negative.
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