
Radial basis function network
In the field of mathematical modeling, a radial basis function network is an artificial neural network that
uses radial basis functions as activation functions. The output of the network is a linear combination of
radial basis functions of the inputs and neuron parameters. Radial basis function networks have many uses,
including function approximation, time series prediction, classification, and system control. They were first
formulated in a 1988 paper by Broomhead and Lowe, both researchers at the Royal Signals and Radar
Establishment.[1][2][3]
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Radial basis function (RBF) networks typically have three layers: an input layer, a hidden layer with a non-
linear RBF activation function and a linear output layer. The input can be modeled as a vector of real
numbers . The output of the network is then a scalar function of the input vector, , and
is given by
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Figure 1: Architecture of a radial basis
function network. An input vector  is used
as input to all radial basis functions, each
with different parameters. The output of
the network is a linear combination of the
outputs from radial basis functions.

Figure 2: Two unnormalized radial basis
functions in one input dimension. The
basis function centers are located at 

 and .

where  is the number of neurons in the hidden layer,  is the
center vector for neuron , and  is the weight of neuron  in
the linear output neuron. Functions that depend only on the
distance from a center vector are radially symmetric about that
vector, hence the name radial basis function. In the basic form
all inputs are connected to each hidden neuron. The norm is
typically taken to be the Euclidean distance (although the
Mahalanobis distance appears to perform better with pattern
recognition[4][5]) and the radial basis function is commonly
taken to be Gaussian

.

The Gaussian basis functions are local to the center vector in the
sense that

i.e. changing parameters of one neuron has only a small effect for input values that are far away from the
center of that neuron.

Given certain mild conditions on the shape of the activation function, RBF networks are universal
approximators on a compact subset of .[6] This means that an RBF network with enough hidden neurons
can approximate any continuous function on a closed, bounded set with arbitrary precision.

The parameters , , and  are determined in a manner that optimizes the fit between  and the data.

In addition to the above unnormalized architecture, RBF
networks can be normalized. In this case the mapping is
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Figure 3: Two normalized radial basis
functions in one input dimension

(sigmoids). The basis function centers are
located at  and .

Figure 4: Three normalized radial basis
functions in one input dimension. The
additional basis function has center at 

Figure 5: Four normalized radial basis
functions in one input dimension. The

fourth basis function has center at .
Note that the first basis function (dark

blue) has become localized.

where

is known as a "normalized radial basis function".

There is theoretical justification for this architecture in the case
of stochastic data flow. Assume a stochastic kernel
approximation for the joint probability density

where the weights  and  are exemplars from the data and
we require the kernels to be normalized

and

.

The probability densities in the input and output spaces are

and

The expectation of y given an input  is

where

is the conditional probability of y given . The conditional
probability is related to the joint probability through Bayes
theorem

which yields

Theoretical motivation for normalization
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.

This becomes

when the integrations are performed.

It is sometimes convenient to expand the architecture to include local linear models. In that case the
architectures become, to first order,

and

in the unnormalized and normalized cases, respectively. Here  are weights to be determined. Higher order
linear terms are also possible.

This result can be written

where

and

in the unnormalized case and

in the normalized case.
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Here  is a Kronecker delta function defined as

.

RBF networks are typically trained from pairs of input and target values ,  by a two-
step algorithm.

In the first step, the center vectors  of the RBF functions in the hidden layer are chosen. This step can be
performed in several ways; centers can be randomly sampled from some set of examples, or they can be
determined using k-means clustering. Note that this step is unsupervised.

The second step simply fits a linear model with coefficients  to the hidden layer's outputs with respect to
some objective function. A common objective function, at least for regression/function estimation, is the
least squares function:

where

.

We have explicitly included the dependence on the weights. Minimization of the least squares objective
function by optimal choice of weights optimizes accuracy of fit.

There are occasions in which multiple objectives, such as smoothness as well as accuracy, must be
optimized. In that case it is useful to optimize a regularized objective function such as

where

and

where optimization of S maximizes smoothness and  is known as a regularization parameter.

A third optional backpropagation step can be performed to fine-tune all of the RBF net's parameters.[3]
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RBF networks can be used to interpolate a function  when the values of that function are known
on finite number of points: . Taking the known points  to be the centers of the
radial basis functions and evaluating the values of the basis functions at the same points 

 the weights can be solved from the equation

It can be shown that the interpolation matrix in the above equation is non-singular, if the points  are
distinct, and thus the weights  can be solved by simple linear algebra:

where .

If the purpose is not to perform strict interpolation but instead more general function approximation or
classification the optimization is somewhat more complex because there is no obvious choice for the centers.
The training is typically done in two phases first fixing the width and centers and then the weights. This can
be justified by considering the different nature of the non-linear hidden neurons versus the linear output
neuron.

Basis function centers can be randomly sampled among the input instances or obtained by Orthogonal Least
Square Learning Algorithm or found by clustering the samples and choosing the cluster means as the
centers.

The RBF widths are usually all fixed to same value which is proportional to the maximum distance between
the chosen centers.

After the centers  have been fixed, the weights that minimize the error at the output can be computed with
a linear pseudoinverse solution:

,

where the entries of G are the values of the radial basis functions evaluated at the points : 
.

The existence of this linear solution means that unlike multi-layer perceptron (MLP) networks, RBF
networks have an explicit minimizer (when the centers are fixed).

Function approximation

Training the basis function centers
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Another possible training algorithm is gradient descent. In gradient descent training, the weights are adjusted
at each time step by moving them in a direction opposite from the gradient of the objective function (thus
allowing the minimum of the objective function to be found),

where  is a "learning parameter."

For the case of training the linear weights, , the algorithm becomes

in the unnormalized case and

in the normalized case.

For local-linear-architectures gradient-descent training is

For the case of training the linear weights,  and , the algorithm becomes

in the unnormalized case and

in the normalized case and

in the local-linear case.

For one basis function, projection operator training reduces to Newton's method.

Projection operator training of the linear weights

Examples

Logistic map
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Figure 6: Logistic map time series. Repeated iteration of the
logistic map generates a chaotic time series. The values lie
between zero and one. Displayed here are the 100 training
points used to train the examples in this section. The
weights c are the first five points from this time series.

The basic properties of radial basis functions can
be illustrated with a simple mathematical map,
the logistic map, which maps the unit interval
onto itself. It can be used to generate a
convenient prototype data stream. The logistic
map can be used to explore function
approximation, time series prediction, and
control theory. The map originated from the
field of population dynamics and became the
prototype for chaotic time series. The map, in
the fully chaotic regime, is given by

where t is a time index. The value of x at time
t+1 is a parabolic function of x at time t. This
equation represents the underlying geometry of
the chaotic time series generated by the logistic
map.

Generation of the time series from this equation is the forward problem. The examples here illustrate the
inverse problem; identification of the underlying dynamics, or fundamental equation, of the logistic map
from exemplars of the time series. The goal is to find an estimate

for f.

The architecture is

where

.

Since the input is a scalar rather than a vector, the input dimension is one. We choose the number of basis
functions as N=5 and the size of the training set to be 100 exemplars generated by the chaotic time series.
The weight  is taken to be a constant equal to 5. The weights  are five exemplars from the time series.
The weights  are trained with projection operator training:

Function approximation

Unnormalized radial basis functions
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Figure 7: Unnormalized basis functions. The Logistic map
(blue) and the approximation to the logistic map (red) after
one pass through the training set.

Figure 8: Normalized basis functions. The Logistic map
(blue) and the approximation to the logistic map (red) after
one pass through the training set. Note the improvement
over the unnormalized case.

where the learning rate  is taken to be 0.3. The
training is performed with one pass through the
100 training points. The rms error is 0.15.

The normalized RBF architecture is

where

.

Again:

Normalized radial basis functions
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Figure 9: Normalized basis functions. The Logistic map
(blue) and the approximation to the logistic map (red) as a
function of time. Note that the approximation is good for
only a few time steps. This is a general characteristic of
chaotic time series.

.

Again, we choose the number of basis functions as five and the size of the training set to be 100 exemplars
generated by the chaotic time series. The weight  is taken to be a constant equal to 6. The weights  are
five exemplars from the time series. The weights  are trained with projection operator training:

where the learning rate  is again taken to be 0.3. The training is performed with one pass through the 100
training points. The rms error on a test set of 100 exemplars is 0.084, smaller than the unnormalized error.
Normalization yields accuracy improvement. Typically accuracy with normalized basis functions increases
even more over unnormalized functions as input dimensionality increases.

Once the underlying geometry of the time series
is estimated as in the previous examples, a
prediction for the time series can be made by
iteration:

.

A comparison of the actual and estimated time
series is displayed in the figure. The estimated
times series starts out at time zero with an exact
knowledge of x(0). It then uses the estimate of
the dynamics to update the time series estimate
for several time steps.

Note that the estimate is accurate for only a few time steps. This is a general characteristic of chaotic time
series. This is a property of the sensitive dependence on initial conditions common to chaotic time series. A
small initial error is amplified with time. A measure of the divergence of time series with nearly identical
initial conditions is known as the Lyapunov exponent.

We assume the output of the logistic map can be manipulated through a control parameter  such
that

.

The goal is to choose the control parameter in such a way as to drive the time series to a desired output .
This can be done if we choose the control paramer to be

Time series prediction

Control of a chaotic time series
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Figure 10: Control of the logistic map. The system is
allowed to evolve naturally for 49 time steps. At time 50
control is turned on. The desired trajectory for the time
series is red. The system under control learns the
underlying dynamics and drives the time series to the
desired output. The architecture is the same as for the time
series prediction example.

where

is an approximation to the underlying natural dynamics of the system.

The learning algorithm is given by

where

.
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