
Radial basis function network
In the field of mathematical modeling, a radial basis function network is an artificial neural network that
uses radial basis functions as activation functions. The output of the network is a linear combination of
radial basis functions of the inputs and neuron parameters. Radial basis function networks have many uses,
including function approximation, time series prediction, classification, and system control. They were first
formulated in a 1988 paper by Broomhead and Lowe, both researchers at the Royal Signals and Radar
Establishment.[1][2][3]

Network architecture
Normalized

Normalized architecture
Theoretical motivation for normalization

Local linear models

Training
Interpolation
Function approximation

Training the basis function centers
Pseudoinverse solution for the linear weights
Gradient descent training of the linear weights
Projection operator training of the linear weights

Examples
Logistic map
Function approximation

Unnormalized radial basis functions
Normalized radial basis functions

Time series prediction
Control of a chaotic time series

See also
References
Further reading

Radial basis function (RBF) networks typically have three layers: an input layer, a hidden layer with a non-
linear RBF activation function and a linear output layer. The input can be modeled as a vector of real
numbers . The output of the network is then a scalar function of the input vector, , and
is given by

Contents

Network architecture

https://en.wikipedia.org/wiki/Mathematical_modeling
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Radial_basis_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Function_approximation
https://en.wikipedia.org/wiki/Time_series_prediction
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Royal_Signals_and_Radar_Establishment

Figure 1: Architecture of a radial basis
function network. An input vector is used
as input to all radial basis functions, each
with different parameters. The output of
the network is a linear combination of the
outputs from radial basis functions.

Figure 2: Two unnormalized radial basis
functions in one input dimension. The
basis function centers are located at

 and .

where is the number of neurons in the hidden layer, is the
center vector for neuron , and is the weight of neuron in
the linear output neuron. Functions that depend only on the
distance from a center vector are radially symmetric about that
vector, hence the name radial basis function. In the basic form
all inputs are connected to each hidden neuron. The norm is
typically taken to be the Euclidean distance (although the
Mahalanobis distance appears to perform better with pattern
recognition[4][5]) and the radial basis function is commonly
taken to be Gaussian

.

The Gaussian basis functions are local to the center vector in the
sense that

i.e. changing parameters of one neuron has only a small effect for input values that are far away from the
center of that neuron.

Given certain mild conditions on the shape of the activation function, RBF networks are universal
approximators on a compact subset of .[6] This means that an RBF network with enough hidden neurons
can approximate any continuous function on a closed, bounded set with arbitrary precision.

The parameters , , and are determined in a manner that optimizes the fit between and the data.

In addition to the above unnormalized architecture, RBF
networks can be normalized. In this case the mapping is

Normalized

Normalized architecture

https://en.wikipedia.org/wiki/File:Radial_funktion_network.svg
https://en.wikipedia.org/wiki/File:Unnormalized_radial_basis_functions.svg
https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Mahalanobis_distance
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Universal_approximator
https://en.wikipedia.org/wiki/Compact_space

Figure 3: Two normalized radial basis
functions in one input dimension

(sigmoids). The basis function centers are
located at and .

Figure 4: Three normalized radial basis
functions in one input dimension. The
additional basis function has center at

Figure 5: Four normalized radial basis
functions in one input dimension. The

fourth basis function has center at .
Note that the first basis function (dark

blue) has become localized.

where

is known as a "normalized radial basis function".

There is theoretical justification for this architecture in the case
of stochastic data flow. Assume a stochastic kernel
approximation for the joint probability density

where the weights and are exemplars from the data and
we require the kernels to be normalized

and

.

The probability densities in the input and output spaces are

and

The expectation of y given an input is

where

is the conditional probability of y given . The conditional
probability is related to the joint probability through Bayes
theorem

which yields

Theoretical motivation for normalization

https://en.wikipedia.org/wiki/File:Normalized_radial_basis_functions.svg
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/File:3_Normalized_radial_basis_functions.svg
https://en.wikipedia.org/wiki/File:4_Normalized_radial_basis_functions.svg
https://en.wikipedia.org/wiki/Stochastic_kernel
https://en.wikipedia.org/wiki/Bayes_theorem

.

This becomes

when the integrations are performed.

It is sometimes convenient to expand the architecture to include local linear models. In that case the
architectures become, to first order,

and

in the unnormalized and normalized cases, respectively. Here are weights to be determined. Higher order
linear terms are also possible.

This result can be written

where

and

in the unnormalized case and

in the normalized case.

Local linear models

https://en.wikipedia.org/wiki/Local_linearity

Here is a Kronecker delta function defined as

.

RBF networks are typically trained from pairs of input and target values , by a two-
step algorithm.

In the first step, the center vectors of the RBF functions in the hidden layer are chosen. This step can be
performed in several ways; centers can be randomly sampled from some set of examples, or they can be
determined using k-means clustering. Note that this step is unsupervised.

The second step simply fits a linear model with coefficients to the hidden layer's outputs with respect to
some objective function. A common objective function, at least for regression/function estimation, is the
least squares function:

where

.

We have explicitly included the dependence on the weights. Minimization of the least squares objective
function by optimal choice of weights optimizes accuracy of fit.

There are occasions in which multiple objectives, such as smoothness as well as accuracy, must be
optimized. In that case it is useful to optimize a regularized objective function such as

where

and

where optimization of S maximizes smoothness and is known as a regularization parameter.

A third optional backpropagation step can be performed to fine-tune all of the RBF net's parameters.[3]

Training

Interpolation

https://en.wikipedia.org/wiki/Kronecker_delta_function
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Regularization_(machine_learning)
https://en.wikipedia.org/wiki/Backpropagation

RBF networks can be used to interpolate a function when the values of that function are known
on finite number of points: . Taking the known points to be the centers of the
radial basis functions and evaluating the values of the basis functions at the same points

 the weights can be solved from the equation

It can be shown that the interpolation matrix in the above equation is non-singular, if the points are
distinct, and thus the weights can be solved by simple linear algebra:

where .

If the purpose is not to perform strict interpolation but instead more general function approximation or
classification the optimization is somewhat more complex because there is no obvious choice for the centers.
The training is typically done in two phases first fixing the width and centers and then the weights. This can
be justified by considering the different nature of the non-linear hidden neurons versus the linear output
neuron.

Basis function centers can be randomly sampled among the input instances or obtained by Orthogonal Least
Square Learning Algorithm or found by clustering the samples and choosing the cluster means as the
centers.

The RBF widths are usually all fixed to same value which is proportional to the maximum distance between
the chosen centers.

After the centers have been fixed, the weights that minimize the error at the output can be computed with
a linear pseudoinverse solution:

,

where the entries of G are the values of the radial basis functions evaluated at the points :
.

The existence of this linear solution means that unlike multi-layer perceptron (MLP) networks, RBF
networks have an explicit minimizer (when the centers are fixed).

Function approximation

Training the basis function centers

Pseudoinverse solution for the linear weights

Gradient descent training of the linear weights

https://en.wikipedia.org/wiki/Function_approximation
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Data_clustering
https://en.wikipedia.org/wiki/Pseudoinverse

Another possible training algorithm is gradient descent. In gradient descent training, the weights are adjusted
at each time step by moving them in a direction opposite from the gradient of the objective function (thus
allowing the minimum of the objective function to be found),

where is a "learning parameter."

For the case of training the linear weights, , the algorithm becomes

in the unnormalized case and

in the normalized case.

For local-linear-architectures gradient-descent training is

For the case of training the linear weights, and , the algorithm becomes

in the unnormalized case and

in the normalized case and

in the local-linear case.

For one basis function, projection operator training reduces to Newton's method.

Projection operator training of the linear weights

Examples

Logistic map

https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Newton%27s_method

Figure 6: Logistic map time series. Repeated iteration of the
logistic map generates a chaotic time series. The values lie
between zero and one. Displayed here are the 100 training
points used to train the examples in this section. The
weights c are the first five points from this time series.

The basic properties of radial basis functions can
be illustrated with a simple mathematical map,
the logistic map, which maps the unit interval
onto itself. It can be used to generate a
convenient prototype data stream. The logistic
map can be used to explore function
approximation, time series prediction, and
control theory. The map originated from the
field of population dynamics and became the
prototype for chaotic time series. The map, in
the fully chaotic regime, is given by

where t is a time index. The value of x at time
t+1 is a parabolic function of x at time t. This
equation represents the underlying geometry of
the chaotic time series generated by the logistic
map.

Generation of the time series from this equation is the forward problem. The examples here illustrate the
inverse problem; identification of the underlying dynamics, or fundamental equation, of the logistic map
from exemplars of the time series. The goal is to find an estimate

for f.

The architecture is

where

.

Since the input is a scalar rather than a vector, the input dimension is one. We choose the number of basis
functions as N=5 and the size of the training set to be 100 exemplars generated by the chaotic time series.
The weight is taken to be a constant equal to 5. The weights are five exemplars from the time series.
The weights are trained with projection operator training:

Function approximation

Unnormalized radial basis functions

https://en.wikipedia.org/wiki/File:060731_logistic_map_time_series_2.png
https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Function_approximation
https://en.wikipedia.org/wiki/Time_series_prediction
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Population_dynamics
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Forward_problem
https://en.wikipedia.org/wiki/Inverse_problem
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Vector_(geometric)

Figure 7: Unnormalized basis functions. The Logistic map
(blue) and the approximation to the logistic map (red) after
one pass through the training set.

Figure 8: Normalized basis functions. The Logistic map
(blue) and the approximation to the logistic map (red) after
one pass through the training set. Note the improvement
over the unnormalized case.

where the learning rate is taken to be 0.3. The
training is performed with one pass through the
100 training points. The rms error is 0.15.

The normalized RBF architecture is

where

.

Again:

Normalized radial basis functions

https://en.wikipedia.org/wiki/File:060728b_unnormalized_basis_function_phi.png
https://en.wikipedia.org/wiki/File:Normalized_basis_functions.png
https://en.wikipedia.org/wiki/Learning_rate
https://en.wikipedia.org/wiki/Mean_squared_error

Figure 9: Normalized basis functions. The Logistic map
(blue) and the approximation to the logistic map (red) as a
function of time. Note that the approximation is good for
only a few time steps. This is a general characteristic of
chaotic time series.

.

Again, we choose the number of basis functions as five and the size of the training set to be 100 exemplars
generated by the chaotic time series. The weight is taken to be a constant equal to 6. The weights are
five exemplars from the time series. The weights are trained with projection operator training:

where the learning rate is again taken to be 0.3. The training is performed with one pass through the 100
training points. The rms error on a test set of 100 exemplars is 0.084, smaller than the unnormalized error.
Normalization yields accuracy improvement. Typically accuracy with normalized basis functions increases
even more over unnormalized functions as input dimensionality increases.

Once the underlying geometry of the time series
is estimated as in the previous examples, a
prediction for the time series can be made by
iteration:

.

A comparison of the actual and estimated time
series is displayed in the figure. The estimated
times series starts out at time zero with an exact
knowledge of x(0). It then uses the estimate of
the dynamics to update the time series estimate
for several time steps.

Note that the estimate is accurate for only a few time steps. This is a general characteristic of chaotic time
series. This is a property of the sensitive dependence on initial conditions common to chaotic time series. A
small initial error is amplified with time. A measure of the divergence of time series with nearly identical
initial conditions is known as the Lyapunov exponent.

We assume the output of the logistic map can be manipulated through a control parameter such
that

.

The goal is to choose the control parameter in such a way as to drive the time series to a desired output .
This can be done if we choose the control paramer to be

Time series prediction

Control of a chaotic time series

https://en.wikipedia.org/wiki/File:Chaotic_Time_Series_Prediction.svg
https://en.wikipedia.org/wiki/Learning_rate
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Lyapunov_exponent

Figure 10: Control of the logistic map. The system is
allowed to evolve naturally for 49 time steps. At time 50
control is turned on. The desired trajectory for the time
series is red. The system under control learns the
underlying dynamics and drives the time series to the
desired output. The architecture is the same as for the time
series prediction example.

where

is an approximation to the underlying natural dynamics of the system.

The learning algorithm is given by

where

.

Radial basis function kernel
instance-based learning
In Situ Adaptive Tabulation
Predictive analytics
Chaos theory
Hierarchical RBF
Cerebellar model articulation controller
Instantaneously trained neural networks

1. Broomhead, D. S.; Lowe, David (1988). Radial basis functions, multi-variable functional
interpolation and adaptive networks (http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA196234)
(Technical report). RSRE. 4148.

See also

References

https://en.wikipedia.org/wiki/File:060808_control_of_logistic_map.svg
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/In_Situ_Adaptive_Tabulation
https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Hierarchical_RBF
https://en.wikipedia.org/wiki/Cerebellar_model_articulation_controller
https://en.wikipedia.org/wiki/Instantaneously_trained_neural_networks
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA196234
https://en.wikipedia.org/wiki/Royal_Signals_and_Radar_Establishment

2. Broomhead, D. S.; Lowe, David (1988). "Multivariable functional interpolation and adaptive
networks" (https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-CS.pdf) (PDF).
Complex Systems. 2: 321–355.

3. Schwenker, Friedhelm; Kestler, Hans A.; Palm, Günther (2001). "Three learning phases for
radial-basis-function networks". Neural Networks. 14 (4–5): 439–458.
CiteSeerX 10.1.1.109.312 (https://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.109.312). doi:10.1016/s0893-6080(01)00027-2 (https://doi.org/10.1016%2Fs0893-6
080%2801%2900027-2). PMID 11411631 (https://pubmed.ncbi.nlm.nih.gov/11411631).

4. Beheim, Larbi; Zitouni, Adel; Belloir, Fabien (January 2004). "New RBF neural network
classifier with optimized hidden neurons number". CiteSeerX 10.1.1.497.5646 (https://citeseer
x.ist.psu.edu/viewdoc/summary?doi=10.1.1.497.5646).

5. Ibrikci, Turgay; Brandt, M.E.; Wang, Guanyu; Acikkar, Mustafa (23–26 October 2002).
Mahalanobis distance with radial basis function network on protein secondary structures (http
s://ieeexplore.ieee.org/document/1053230/?arnumber=1053230). Proceedings of the Second
Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering
Society (https://ieeexplore.ieee.org/servlet/opac?punumber=8844528). IEEE Xplore. 3.
Houston, TX, USA (published 6 January 2003). pp. 2184–2185.
doi:10.1109/IEMBS.2002.1053230 (https://doi.org/10.1109%2FIEMBS.2002.1053230).
ISBN 0-7803-7612-9. ISSN 1094-687X (https://www.worldcat.org/issn/1094-687X). Retrieved
25 May 2020.

6. Park, J.; I. W. Sandberg (Summer 1991). "Universal Approximation Using Radial-Basis-
Function Networks". Neural Computation. 3 (2): 246–257. doi:10.1162/neco.1991.3.2.246 (http
s://doi.org/10.1162%2Fneco.1991.3.2.246). PMID 31167308 (https://pubmed.ncbi.nlm.nih.gov/
31167308).

J. Moody and C. J. Darken, "Fast learning in networks of locally tuned processing units,"
Neural Computation, 1, 281-294 (1989). Also see Radial basis function networks according to
Moody and Darken (https://web.archive.org/web/20070302175857/http://www.ki.inf.tu-dresden.
de/~fritzke/FuzzyPaper/node5.html)
T. Poggio and F. Girosi, "Networks for approximation and learning (http://courses.cs.tamu.edu/r
gutier/cpsc636_s10/poggio1990rbf2.pdf)," Proc. IEEE 78(9), 1484-1487 (1990).
Roger D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake, K. Lee, P. S. Lewis, and S. Qian, ?
Function approximation and time series prediction with neural networks (http://ieeexplore.ieee.
org/xpl/freeabs_all.jsp?arnumber=137644),? Proceedings of the International Joint Conference
on Neural Networks, June 17–21, p. I-649 (1990).
Martin D. Buhmann (2003). Radial Basis Functions: Theory and Implementations. Cambridge
University. ISBN 0-521-63338-9.
Yee, Paul V. & Haykin, Simon (2001). Regularized Radial Basis Function Networks: Theory
and Applications. John Wiley. ISBN 0-471-35349-3.
John R. Davies, Stephen V. Coggeshall, Roger D. Jones, and Daniel Schutzer, "Intelligent
Security Systems," in Freedman, Roy S., Flein, Robert A., and Lederman, Jess, Editors
(1995). Artificial Intelligence in the Capital Markets. Chicago: Irwin. ISBN 1-55738-811-3.
Simon Haykin (1999). Neural Networks: A Comprehensive Foundation (2nd ed.). Upper Saddle
River, NJ: Prentice Hall. ISBN 0-13-908385-5.
S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal Least Squares Learning Algorithm for
Radial Basis Function Networks (https://eprints.soton.ac.uk/251135/1/00080341.pdf)", IEEE
Transactions on Neural Networks, Vol 2, No 2 (Mar) 1991.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Radial_basis_function_network&oldid=958705480"

Further reading

https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-CS.pdf
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.312
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fs0893-6080%2801%2900027-2
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/11411631
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.497.5646
https://ieeexplore.ieee.org/document/1053230/?arnumber=1053230
https://ieeexplore.ieee.org/servlet/opac?punumber=8844528
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FIEMBS.2002.1053230
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-7803-7612-9
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/1094-687X
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1162%2Fneco.1991.3.2.246
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/31167308
https://web.archive.org/web/20070302175857/http://www.ki.inf.tu-dresden.de/~fritzke/FuzzyPaper/node5.html
http://courses.cs.tamu.edu/rgutier/cpsc636_s10/poggio1990rbf2.pdf
https://en.wikipedia.org/wiki/Roger_Jones_(physicist_and_entrepreneur)
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=137644
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-521-63338-9
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-471-35349-3
https://en.wikipedia.org/wiki/Roger_Jones_(physicist_and_entrepreneur)
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-55738-811-3
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-13-908385-5
https://eprints.soton.ac.uk/251135/1/00080341.pdf
https://en.wikipedia.org/w/index.php?title=Radial_basis_function_network&oldid=958705480

This page was last edited on 25 May 2020, at 08:47 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

