
Ensemble learning
In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better
predictive performance than could be obtained from any of the constituent learning algorithms alone.[1][2][3]

Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble
consists of only a concrete finite set of alternative models, but typically allows for much more flexible
structure to exist among those alternatives.
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Supervised learning algorithms perform the task of searching through a hypothesis space to find a suitable
hypothesis that will make good predictions with a particular problem.[4] Even if the hypothesis space
contains hypotheses that are very well-suited for a particular problem, it may be very difficult to find a good
one. Ensembles combine multiple hypotheses to form a (hopefully) better hypothesis. The term ensemble is
usually reserved for methods that generate multiple hypotheses using the same base learner. The broader
term of multiple classifier systems also covers hybridization of hypotheses that are not induced by the same
base learner.

Evaluating the prediction of an ensemble typically requires more computation than evaluating the prediction
of a single model, so ensembles may be thought of as a way to compensate for poor learning algorithms by
performing a lot of extra computation. Fast algorithms such as decision trees are commonly used in
ensemble methods (for example, random forests), although slower algorithms can benefit from ensemble
techniques as well.

By analogy, ensemble techniques have been used also in unsupervised learning scenarios, for example in
consensus clustering or in anomaly detection.

An ensemble is itself a supervised learning algorithm, because it can be trained and then used to make
predictions. The trained ensemble, therefore, represents a single hypothesis. This hypothesis, however, is not
necessarily contained within the hypothesis space of the models from which it is built. Thus, ensembles can
be shown to have more flexibility in the functions they can represent. This flexibility can, in theory, enable
them to over-fit the training data more than a single model would, but in practice, some ensemble techniques
(especially bagging) tend to reduce problems related to over-fitting of the training data.

Empirically, ensembles tend to yield better results when there is a significant diversity among the
models.[5][6] Many ensemble methods, therefore, seek to promote diversity among the models they
combine.[7][8] Although perhaps non-intuitive, more random algorithms (like random decision trees) can be
used to produce a stronger ensemble than very deliberate algorithms (like entropy-reducing decision
trees).[9] Using a variety of strong learning algorithms, however, has been shown to be more effective than
using techniques that attempt to dumb-down the models in order to promote diversity.[10]

While the number of component classifiers of an ensemble has a great impact on the accuracy of prediction,
there is a limited number of studies addressing this problem. A priori determining of ensemble size and the
volume and velocity of big data streams make this even more crucial for online ensemble classifiers. Mostly
statistical tests were used for determining the proper number of components. More recently, a theoretical
framework suggested that there is an ideal number of component classifiers for an ensemble such that
having more or less than this number of classifiers would deteriorate the accuracy. It is called "the law of
diminishing returns in ensemble construction." Their theoretical framework shows that using the same
number of independent component classifiers as class labels gives the highest accuracy.[11][12]
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The Bayes optimal classifier is a classification technique. It is an ensemble of all the hypotheses in the
hypothesis space. On average, no other ensemble can outperform it.[13] The naive Bayes optimal classifier is
a version of this that assumes that the data is conditionally independent on the class and makes the
computation more feasible. Each hypothesis is given a vote proportional to the likelihood that the training
dataset would be sampled from a system if that hypothesis were true. To facilitate training data of finite size,
the vote of each hypothesis is also multiplied by the prior probability of that hypothesis. The Bayes optimal
classifier can be expressed with the following equation:

where  is the predicted class,  is the set of all possible classes,  is the hypothesis space,  refers to a
probability, and  is the training data. As an ensemble, the Bayes optimal classifier represents a hypothesis
that is not necessarily in . The hypothesis represented by the Bayes optimal classifier, however, is the
optimal hypothesis in ensemble space (the space of all possible ensembles consisting only of hypotheses in 

).

This formula can be restated using Bayes' theorem, which says that the posterior is proportional to the
likelihood times the prior:

hence,

Bootstrap aggregating, often abbreviated as bagging, involves having each model in the ensemble vote with
equal weight. In order to promote model variance, bagging trains each model in the ensemble using a
randomly drawn subset of the training set. As an example, the random forest algorithm combines random
decision trees with bagging to achieve very high classification accuracy.[14]

Boosting involves incrementally building an ensemble by training each new model instance to emphasize
the training instances that previous models mis-classified. In some cases, boosting has been shown to yield
better accuracy than bagging, but it also tends to be more likely to over-fit the training data. By far, the most
common implementation of boosting is Adaboost, although some newer algorithms are reported to achieve
better results.

Bayesian model averaging (BMA) is an ensemble technique that seeks to approximate the Bayes optimal
classifier by sampling hypotheses from the hypothesis space, and combining them using Bayes' law.[15]

Unlike the Bayes optimal classifier, Bayesian model averaging (BMA) can be practically implemented.
Hypotheses are typically sampled using a Monte Carlo sampling technique such as MCMC. For example,
Gibbs sampling may be used to draw hypotheses that are representative of the distribution . It has
been shown that under certain circumstances, when hypotheses are drawn in this manner and averaged
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according to Bayes' law, this technique has an expected error that is bounded to be at most twice the
expected error of the Bayes optimal classifier.[16] Despite the theoretical correctness of this technique, early
work showed experimental results suggesting that the method promoted over-fitting and performed worse
compared to simpler ensemble techniques such as bagging;[17] however, these conclusions appear to be
based on a misunderstanding of the purpose of Bayesian model averaging vs. model combination.[18]

Additionally, there have been considerable advances in theory and practice of BMA. Recent rigorous proofs
demonstrate the accuracy of BMA in variable selection and estimation in high-dimensional settings,[19] and
provide empirical evidence highlighting the role of sparsity-enforcing priors within the BMA in alleviating
overfitting.[20]

Bayesian model combination (BMC) is an algorithmic correction to Bayesian model averaging (BMA).
Instead of sampling each model in the ensemble individually, it samples from the space of possible
ensembles (with model weightings drawn randomly from a Dirichlet distribution having uniform
parameters). This modification overcomes the tendency of BMA to converge toward giving all of the weight
to a single model. Although BMC is somewhat more computationally expensive than BMA, it tends to yield
dramatically better results. The results from BMC have been shown to be better on average (with statistical
significance) than BMA, and bagging.[21]

The use of Bayes' law to compute model weights necessitates computing the probability of the data given
each model. Typically, none of the models in the ensemble are exactly the distribution from which the
training data were generated, so all of them correctly receive a value close to zero for this term. This would
work well if the ensemble were big enough to sample the entire model-space, but such is rarely possible.
Consequently, each pattern in the training data will cause the ensemble weight to shift toward the model in
the ensemble that is closest to the distribution of the training data. It essentially reduces to an unnecessarily
complex method for doing model selection.

The possible weightings for an ensemble can be visualized as lying on a simplex. At each vertex of the
simplex, all of the weight is given to a single model in the ensemble. BMA converges toward the vertex that
is closest to the distribution of the training data. By contrast, BMC converges toward the point where this
distribution projects onto the simplex. In other words, instead of selecting the one model that is closest to the
generating distribution, it seeks the combination of models that is closest to the generating distribution.

The results from BMA can often be approximated by using cross-validation to select the best model from a
bucket of models. Likewise, the results from BMC may be approximated by using cross-validation to select
the best ensemble combination from a random sampling of possible weightings.

A "bucket of models" is an ensemble technique in which a model selection algorithm is used to choose the
best model for each problem. When tested with only one problem, a bucket of models can produce no better
results than the best model in the set, but when evaluated across many problems, it will typically produce
much better results, on average, than any model in the set.

The most common approach used for model-selection is cross-validation selection (sometimes called a
"bake-off contest"). It is described with the following pseudo-code:

For each model m in the bucket: 
    Do c times: (where 'c' is some constant) 
        Randomly divide the training dataset into two datasets: A, and B. 
        Train m with A 
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        Test m with B 
Select the model that obtains the highest average score 

Cross-Validation Selection can be summed up as: "try them all with the training set, and pick the one that
works best".[22]

Gating is a generalization of Cross-Validation Selection. It involves training another learning model to
decide which of the models in the bucket is best-suited to solve the problem. Often, a perceptron is used for
the gating model. It can be used to pick the "best" model, or it can be used to give a linear weight to the
predictions from each model in the bucket.

When a bucket of models is used with a large set of problems, it may be desirable to avoid training some of
the models that take a long time to train. Landmark learning is a meta-learning approach that seeks to solve
this problem. It involves training only the fast (but imprecise) algorithms in the bucket, and then using the
performance of these algorithms to help determine which slow (but accurate) algorithm is most likely to do
best.[23]

Stacking (sometimes called stacked generalization) involves training a learning algorithm to combine the
predictions of several other learning algorithms. First, all of the other algorithms are trained using the
available data, then a combiner algorithm is trained to make a final prediction using all the predictions of the
other algorithms as additional inputs. If an arbitrary combiner algorithm is used, then stacking can
theoretically represent any of the ensemble techniques described in this article, although, in practice, a
logistic regression model is often used as the combiner.

Stacking typically yields performance better than any single one of the trained models.[24] It has been
successfully used on both supervised learning tasks (regression,[25] classification and distance learning [26])
and unsupervised learning (density estimation).[27] It has also been used to estimate bagging's error
rate.[3][28] It has been reported to out-perform Bayesian model-averaging.[29] The two top-performers in the
Netflix competition utilized blending, which may be considered to be a form of stacking.[30]

R: at least three packages offer Bayesian model averaging tools,[31] including the BMS (an
acronym for Bayesian Model Selection) package,[32] the BAS (an acronym for Bayesian
Adaptive Sampling) package,[33] and the BMA package.[34]

Python: Scikit-learn, a package for machine learning in Python offers packages for ensemble
learning including packages for bagging and averaging methods.
MATLAB: classification ensembles are implemented in Statistics and Machine Learning
Toolbox.[35]

In the recent years, due to the growing computational power which allows training large ensemble learning
in a reasonable time frame, the number of its applications has grown increasingly.[36] Some of the
applications of ensemble classifiers include:
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Land cover mapping is one of the major applications of Earth observation satellite sensors, using remote
sensing and geospatial data, to identify the materials and objects which are located on the surface of target
areas. Generally, the classes of target materials include roads, buildings, rivers, lakes, and vegetation.[37]

Some different ensemble learning approaches based on artificial neural networks,[38] kernel principal
component analysis (KPCA),[39] decision trees with boosting,[40] random forest[37] and automatic design of
multiple classifier systems,[41] are proposed to efficiently identify land cover objects.

Change detection is an image analysis problem, consisting of the identification of places where the land
cover has changed over time. Change detection is widely used in fields such as urban growth, forest and
vegetation dynamics, land use and disaster monitoring.[42] The earliest applications of ensemble classifiers
in change detection are designed with the majority voting,[43] Bayesian average and the maximum posterior
probability.[44]

Distributed denial of service is one of the most threatening cyber-attacks that may happen to an internet
service provider.[36] By combining the output of single classifiers, ensemble classifiers reduce the total error
of detecting and discriminating such attacks from legitimate flash crowds.[45]

Classification of malware codes such as computer viruses, computer worms, trojans, ransomware and
spywares with the usage of machine learning techniques, is inspired by the document categorization
problem.[46] Ensemble learning systems have shown a proper efficacy in this area.[47][48]

An intrusion detection system monitors computer network or computer systems to identify intruder codes
like an anomaly detection process. Ensemble learning successfully aids such monitoring systems to reduce
their total error.[49][50]

Face recognition, which recently has become one of the most popular research areas of pattern recognition,
copes with identification or verification of a person by his/her digital images.[51]

Hierarchical ensembles based on Gabor Fisher classifier and independent component analysis preprocessing
techniques are some of the earliest ensembles employed in this field.[52][53][54]
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While speech recognition is mainly based on deep learning because most of the industry players in this field
like Google, Microsoft and IBM reveal that the core technology of their speech recognition is based on this
approach, speech-based emotion recognition can also have a satisfactory performance with ensemble
learning.[55][56]

It is also being successfully used in facial emotion recognition.[57][58][59]

Fraud detection deals with the identification of bank fraud, such as money laundering, credit card fraud and
telecommunication fraud, which have vast domains of research and applications of machine learning.
Because ensemble learning improves the robustness of the normal behavior modelling, it has been proposed
as an efficient technique to detect such fraudulent cases and activities in banking and credit card
systems.[60][61]

The accuracy of prediction of business failure is a very crucial issue in financial decision-making. Therefore,
different ensemble classifiers are proposed to predict financial crises and financial distress.[62] Also, in the
trade-based manipulation problem, where traders attempt to manipulate stock prices by buying and selling
activities, ensemble classifiers are required to analyze the changes in the stock market data and detect
suspicious symptom of stock price manipulation.[62]

Ensemble classifiers have been successfully applied in neuroscience, proteomics and medical diagnosis like
in neuro-cognitive disorder (i.e. Alzheimer or myotonic dystrophy) detection based on MRI
datasets.[63][64][65]
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