
Decision tree learning
Decision tree learning is one of the predictive modelling approaches used in statistics, data mining and machine
learning. It uses a decision tree (as a predictive model) to go from observations about an item (represented in the
branches) to conclusions about the item's target value (represented in the leaves). Tree models where the target
variable can take a discrete set of values are called classification trees; in these tree structures, leaves represent
class labels and branches represent conjunctions of features that lead to those class labels. Decision trees where the
target variable can take continuous values (typically real numbers) are called regression trees. Decision trees are
among the most popular machine learning algorithms given their intelligibility and simplicity.[1][2]

In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making.
In data mining, a decision tree describes data (but the resulting classification tree can be an input for decision
making). This page deals with decision trees in data mining.
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Decision tree learning is a method commonly used in data mining.[3] The goal is to create a model that predicts the
value of a target variable based on several input variables.

A decision tree is a simple representation for classifying examples. For this section, assume that all of the input
features have finite discrete domains, and there is a single target feature called the "classification". Each element of
the domain of the classification is called a class. A decision tree or a classification tree is a tree in which each
internal (non-leaf) node is labeled with an input feature. The arcs coming from a node labeled with an input feature
are labeled with each of the possible values of the target feature or the arc leads to a subordinate decision node on a
different input feature. Each leaf of the tree is labeled with a class or a probability distribution over the classes,
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A tree showing survival of
passengers on the Titanic ("sibsp" is
the number of spouses or siblings
aboard). The figures under the
leaves show the probability of
survival and the percentage of
observations in the leaf.
Summarizing: Your chances of
survival were good if you were (i) a
female or (ii) a male younger than
9.5 years with strictly less than 3
siblings.

e tree which estimates the probability of kyphosis after surgery, given the age of the patient and the vertebra at which surgery
d. The same tree is shown in three different ways. Left The colored leaves show the probability of kyphosis after surgery, and
e of patients in the leaf. Middle The tree as a perspective plot. Right Aerial view of the middle plot. The probability of kyphosis
ry is higher in the darker areas. (Note: The treatment of kyphosis has advanced considerably since this rather small set of data
ted.)

signifying that the data set has been classified by the tree into either a
specific class, or into a particular probability distribution (which, if the
decision tree is well-constructed, is skewed towards certain subsets of
classes).

A tree is built by splitting the source set, constituting the root node of the
tree, into subsets—which constitute the successor children. The splitting is
based on a set of splitting rules based on classification features.[4] This
process is repeated on each derived subset in a recursive manner called
recursive partitioning. The recursion is completed when the subset at a node
has all the same values of the target variable, or when splitting no longer
adds value to the predictions. This process of top-down induction of
decision trees (TDIDT)[5] is an example of a greedy algorithm, and it is by
far the most common strategy for learning decision trees from data.

In data mining, decision trees can be described also as the combination of
mathematical and computational techniques to aid the description,
categorization and generalization of a given set of data.

Data comes in records of the form:

The dependent variable, , is the target variable that we are trying to
understand, classify or generalize. The vector  is composed of the
features,  etc., that are used for that task.

Decision trees used in data mining are of two main types:

Classification tree analysis is when the predicted outcome is the class (discrete) to which the data
belongs.
Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the
price of a house, or a patient's length of stay in a hospital).

The term Classification And Regression Tree (CART) analysis is an umbrella term used to refer to both of the
above procedures, first introduced by Breiman et al. in 1984.[6] Trees used for regression and trees used for
classification have some similarities - but also some differences, such as the procedure used to determine where to
split.[6]
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Some techniques, often called ensemble methods, construct more than one decision tree:

Boosted trees Incrementally building an ensemble by training each new instance to emphasize the
training instances previously mis-modeled. A typical example is AdaBoost. These can be used for
regression-type and classification-type problems.[7][8]

Bootstrap aggregated (or bagged) decision trees, an early ensemble method, builds multiple
decision trees by repeatedly resampling training data with replacement, and voting the trees for a
consensus prediction.[9]

A random forest classifier is a specific type of bootstrap aggregating
Rotation forest – in which every decision tree is trained by first applying principal component
analysis (PCA) on a random subset of the input features.[10]

A special case of a decision tree is a decision list,[11] which is a one-sided decision tree, so that every internal node
has exactly 1 leaf node and exactly 1 internal node as a child (except for the bottommost node, whose only child is
a single leaf node). While less expressive, decision lists are arguably easier to understand than general decision
trees due to their added sparsity, permit non-greedy learning methods[12] and monotonic constraints to be
imposed.[13]

Notable decision tree algorithms include:

ID3 (Iterative Dichotomiser 3)
C4.5 (successor of ID3)
CART (Classification And Regression Tree)[6]

Chi-square automatic interaction detection (CHAID). Performs multi-level splits when computing
classification trees.[14]

MARS: extends decision trees to handle numerical data better.
Conditional Inference Trees. Statistics-based approach that uses non-parametric tests as splitting
criteria, corrected for multiple testing to avoid overfitting. This approach results in unbiased predictor
selection and does not require pruning.[15][16]

ID3 and CART were invented independently at around the same time (between 1970 and 1980), yet follow a
similar approach for learning a decision tree from training tuples.

It has also been proposed to leverage concepts of fuzzy set theory for the definition of a special version of decision
tree, known as Fuzzy Decision Tree (FDT).[17] In this type of fuzzy classification, generally an input vector  is
associated with multiple classes, each with a different confidence value. Boosted ensembles of FDTs have been
recently investigated as well, and they have shown performances comparable to those of other very efficient fuzzy
classifiers.[18]

Algorithms for constructing decision trees usually work top-down, by choosing a variable at each step that best
splits the set of items.[19] Different algorithms use different metrics for measuring "best". These generally measure
the homogeneity of the target variable within the subsets. Some examples are given below. These metrics are
applied to each candidate subset, and the resulting values are combined (e.g., averaged) to provide a measure of the
quality of the split.

Used by the CART (classification and regression tree) algorithm for classification trees, Gini impurity is a measure
of how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled
according to the distribution of labels in the subset. The Gini impurity can be computed by summing the probability
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 of an item with label  being chosen times the probability  of a mistake in categorizing that

item. It reaches its minimum (zero) when all cases in the node fall into a single target category.

The Gini impurity is also an information theoretic measure and corresponds to Tsallis Entropy with deformation
coefficient , which in Physics is associated with the lack of information in out-of-equlibrium, non-extensive,
dissipative and quantum systems. For the limit  one recovers the usual Boltzmann-Gibbs or Shannon
entropy. In this sense, the Gini impurity is but a variation of the usual entropy measure for decision trees.

To compute Gini impurity for a set of items with  classes, suppose , and let  be the fraction of
items labeled with class  in the set.

Used by the ID3, C4.5 and C5.0 tree-generation algorithms. Information gain is based on the concept of entropy
and information content from information theory.

Entropy is defined as below

where are fractions that add up to 1 and represent the percentage of each class present in the child node
that results from a split in the tree.[20]

Averaging over the possible values of ,

That is, the expected information gain is the mutual information, meaning that on average, the reduction in the
entropy of T is the mutual information.

Information gain is used to decide which feature to split on at each step in building the tree. Simplicity is best, so
we want to keep our tree small. To do so, at each step we should choose the split that results in the purest daughter
nodes. A commonly used measure of purity is called information which is measured in bits. For each node of the
tree, the information value "represents the expected amount of information that would be needed to specify whether
a new instance should be classified yes or no, given that the example reached that node".[20]
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Consider an example data set with four attributes: outlook (sunny, overcast, rainy), temperature (hot, mild, cool),
humidity (high, normal), and windy (true, false), with a binary (yes or no) target variable, play, and 14 data points.
To construct a decision tree on this data, we need to compare the information gain of each of four trees, each split
on one of the four features. The split with the highest information gain will be taken as the first split and the
process will continue until all children nodes are pure, or until the information gain is 0.

The split using the feature windy results in two children nodes, one for a windy value of true and one for a windy
value of false. In this data set, there are six data points with a true windy value, three of which have a play (where
play is the target variable) value of yes and three with a play value of no. The eight remaining data points with a
windy value of false contain two no's and six yes's. The information of the windy=true node is calculated using the
entropy equation above. Since there is an equal number of yes's and no's in this node, we have

For the node where windy=false there were eight data points, six yes's and two no's. Thus we have

To find the information of the split, we take the weighted average of these two numbers based on how many
observations fell into which node.

To find the information gain of the split using windy, we must first calculate the information in the data before the
split. The original data contained nine yes's and five no's.

Now we can calculate the information gain achieved by splitting on the windy feature.

To build the tree, the information gain of each possible first split would need to be calculated. The best first split is
the one that provides the most information gain. This process is repeated for each impure node until the tree is
complete. This example is adapted from the example appearing in Witten et al.[20]

Introduced in CART,[6] variance reduction is often employed in cases where the target variable is continuous
(regression tree), meaning that use of many other metrics would first require discretization before being applied.
The variance reduction of a node N is defined as the total reduction of the variance of the target variable x due to
the split at this node:

where , , and  are the set of presplit sample indices, set of sample indices for which the split test is true, and
set of sample indices for which the split test is false, respectively. Each of the above summands are indeed variance
estimates, though, written in a form without directly referring to the mean.

Variance reduction
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Amongst other data mining methods, decision trees have various advantages:

Simple to understand and interpret. People are able to understand decision tree models after a
brief explanation. Trees can also be displayed graphically in a way that is easy for non-experts to
interpret.[21]

Able to handle both numerical and categorical data.[21] Other techniques are usually specialized
in analyzing datasets that have only one type of variable. (For example, relation rules can be used
only with nominal variables while neural networks can be used only with numerical variables or
categoricals converted to 0-1 values.) Early decision trees were only capable of handling categorical
variables, but more recent versions, such as C4.5, do not have this limitation.[2]

Requires little data preparation. Other techniques often require data normalization. Since trees can
handle qualitative predictors, there is no need to create dummy variables.[21]

Uses a white box or open-box[2] model. If a given situation is observable in a model the
explanation for the condition is easily explained by boolean logic. By contrast, in a black box model,
the explanation for the results is typically difficult to understand, for example with an artificial neural
network.
Possible to validate a model using statistical tests. That makes it possible to account for the
reliability of the model.
Non-statistical approach that makes no assumptions of the training data or prediction residuals; e.g.,
no distributional, independence, or constant variance assumptions
Performs well with large datasets. Large amounts of data can be analyzed using standard
computing resources in reasonable time.
Mirrors human decision making more closely than other approaches.[21] This could be useful
when modeling human decisions/behavior.
Robust against co-linearity, particularly boosting
In built feature selection. Additional irrelevant feature will be less used so that they can be removed
on subsequent runs. The hierarchy of attributes in a decision tree reflects the importance of
attributes.[22] It means that the features on top are the most informative.[23]

Decision trees can approximate any Boolean function eq. XOR.[24]

Trees can be very non-robust. A small change in the training data can result in a large change in the
tree and consequently the final predictions.[21]

The problem of learning an optimal decision tree is known to be NP-complete under several aspects
of optimality and even for simple concepts.[25][26] Consequently, practical decision-tree learning
algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are
made at each node. Such algorithms cannot guarantee to return the globally optimal decision tree. To
reduce the greedy effect of local optimality, some methods such as the dual information distance
(DID) tree were proposed.[27]

Decision-tree learners can create over-complex trees that do not generalize well from the training
data. (This is known as overfitting.[28]) Mechanisms such as pruning are necessary to avoid this
problem (with the exception of some algorithms such as the Conditional Inference approach, that
does not require pruning).[15][16]

For data including categorical variables with different numbers of levels, information gain in decision
trees is biased in favor of attributes with more levels.[29] However, the issue of biased predictor
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selection is avoided by the Conditional Inference approach,[15] a two-stage approach,[30] or adaptive
leave-one-out feature selection.[31]

Many data mining software packages provide implementations of one or more decision tree algorithms.

Examples include Salford Systems CART (which licensed the proprietary code of the original CART authors),[6]

IBM SPSS Modeler, RapidMiner, SAS Enterprise Miner, Matlab, R (an open-source software environment for
statistical computing, which includes several CART implementations such as rpart, party and randomForest
packages), Weka (a free and open-source data-mining suite, contains many decision tree algorithms), Orange,
KNIME, Microsoft SQL Server [1] (https://technet.microsoft.com/en-us/library/cc645868.aspx), and scikit-learn (a
free and open-source machine learning library for the Python programming language).

In a decision tree, all paths from the root node to the leaf node proceed by way of conjunction, or AND. In a
decision graph, it is possible to use disjunctions (ORs) to join two more paths together using minimum message
length (MML).[32] Decision graphs have been further extended to allow for previously unstated new attributes to be
learnt dynamically and used at different places within the graph.[33] The more general coding scheme results in
better predictive accuracy and log-loss probabilistic scoring. In general, decision graphs infer models with fewer
leaves than decision trees.

Evolutionary algorithms have been used to avoid local optimal decisions and search the decision tree space with
little a priori bias.[34][35]

It is also possible for a tree to be sampled using MCMC.[36]

The tree can be searched for in a bottom-up fashion.[37]

Decision tree pruning
Binary decision diagram
CHAID
CART
ID3 algorithm
C4.5 algorithm
Decision stumps, used in e.g. AdaBoosting

Decision list
Incremental decision tree
Alternating decision tree
Structured data analysis (statistics)
Logistic model tree
Hierarchical clustering

1. Wu, Xindong; Kumar, Vipin; Ross Quinlan, J.; Ghosh, Joydeep; Yang, Qiang; Motoda, Hiroshi;
McLachlan, Geoffrey J.; Ng, Angus; Liu, Bing; Yu, Philip S.; Zhou, Zhi-Hua (2008-01-01). "Top 10
algorithms in data mining" (https://doi.org/10.1007/s10115-007-0114-2). Knowledge and Information
Systems. 14 (1): 1–37. doi:10.1007/s10115-007-0114-2 (https://doi.org/10.1007%2Fs10115-007-011
4-2). ISSN 0219-3116 (https://www.worldcat.org/issn/0219-3116).
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