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ABSTRACT

As the aging population is growing, new challenges are arising to
provide a safe living environment with remote medical monitoring
to allow elderly people to stay at home. This paper is concerned with
the monitoring of medication intake. A new technique is proposed
for background suppression designed to achieve indoor monitoring
for a given video capture device, including low-cost commercially
available cameras or webcams with low capturing resolution. The
true background image is supposed to be found in the test video se-
quence, as it is thought to be possible in this application.

The background suppression process can be thought of as a qual-
ity measure with reference; the reference being the background im-
age. Instead of taking into account findings on human visual system
(HVS), the proposed technique is actually based on measurements
of noise output from video capture device.

Experimental results are presented, comparing foreground de-
tection by the proposed technique, two published background sup-
pression algorithms, and three well-known quality measures.

Index Terms— background suppression, medication intake
monitoring, noise-robustness, quality measure, multiscale morphol-
ogy.

1. INTRODUCTION

As the aging population is increasing in the developed countries and
as the cost of hospitalization is high, new challenges are ermerging to
provide a safe environment with remote medical monitoring to allow
elders to stay at home. Many dread the idea of living in a rest home
and would probably favor using new technologies. In several coun-
tries, a number of demonstration projects and demonstration smart
houses are being developed and tested [1]. An important research
exists on technological devices [2], microphones [3, 4] and/or cam-
eras [5] for activity recognition of fall detection, pointing gesture
recognition [6] and medical intake.

This paper is concerned with medication intake monitoring as
in [7, 8, 9] and in [10] with a stereo-camera. These different tech-
niques are generally composed of four steps. The first step may be a
background suppression, more often this step is a skin segmentation.
There may be a preprocessing (lighting correction and gaussian fil-
tering).The second step aims at detecting and tracking some of the
following entities: mouth, face, hand, glass (usually opaque) and
medication bottle. The third step handles occlusions between these
entities. The last step detects activity through analysis of sequences
of occlusion. These techniques have been tested on video captures
whose foreground is composed of entities that seem to have a reso-
lution ranging from 8 pix/cm to 20 pix/cm. These video captures

seem to have little or no visible distortion.
This paper focuses on background suppression which remains a

challenging computer vision problem: [11, 12] are robust to gradual
and sudden illumination change; [11, 13] are robust to small move-
ments of parts of the background (for instance waving trees); [14]
considers a background model image that includes texture elements;
[15] is region-based and works with low resolution; [16] has an im-
proved update mechanism for the background image; [17] assumes
that the true background image is available.

In Section 2, we present our experimental setup which provides
video captures of low resolution and show a hand made ground truth.
In section 3, experimental results of two published algorithms are
shown and compared to the ground truth. In section 4, we show that
with this experimental setup, background suppression process can be
thought of as a quality measure with reference. Our new technique
is presented in section 5, it uses morphology operations. Section 6
presents the experimental results. Finally, we conclude this paper in
Section 7.

2. THE PROPOSED EXPERIMENTAL SETUP

The experiment takes place in a room with a camera set in a corner
near ceiling. Illumination remains unchanged throughout the exper-
iment. This illumination is electric light of low intensity resulting
in underexposed video. For the comfort of the reader, all images
extracted from these underexposed videos have undergone a gamma
correction (γ = 1/2). In the first part of the video capture there is
no actor and the glass is placed elsewhere. In the second part, (the
camera has not moved), the actor is sitting on the bed. A pill lies on
a white plate and a glass of water is standing nearby. The actor takes
the pill, drinks the glass of water and puts the glass back. The true
background is available, it is obtained by averaging the frames of the
first part of the video capture. The test video showing the actor tak-
ing medicine is extracted from the second part of the video capture.
Figure 1 is extracted from the test video, it shows the experimental
setting. A shadow cast by the actor can be seen in the middle of the
image showing the importance of illumination change. A hand-made
ground truth is also drawn on this figure. The small blob on the left
of the image indicates the disappearance of the glass.

The camera used is a Kodak Easyshare M1063 providing video
streams of 480 × 640 pixels at 15 frames per second. Because the
camera is far from the scene, objects appear on the video with a
reduced number of pixels: 4 pix/cm. Figure 2 is a close-up view
of the glass, in which, the individual pixels can easily be observed.
Figure 3 is a close-up view of the yellow painted wall, in which
fluctuations in colour can be seen. Namely there is a red coloration
on the center of the image slightly on the right.



Fig. 1. Frame of the test-video: the actor sitting on the bed stretches
his arm to take the glass of water. The white/green line delineates
the ground truth.

Fig. 2. Glass-close-up view of figure 1

Fig. 3. Close-up view of figure 1 showing the yellow wall in the
upper left corner.

With this specific experimental setup, background image is no
longer an output of the background suppression technique, but an
input. Background suppression technique can be thought of as pixel-
classifier into foreground/background, where classification depends
on the colour of a pixel and its differences from the colour of the
corresponding pixel in the background image. Is there a difference
because of the camera’s noise, or because an entity has appeared on
the scene at that specific time and location?

3. RESULTS OF TWO BACKGROUND SUPPRESSION
ALGORITHMS FOR COMPARISON

Background suppression techniques described in the literature seem
to be unfit for our experimental setup. Two algorithms have
been tested on our datasets, they did not provide adequate fore-
ground/background classification.

Fig. 4. Black points: foreground layer detected by the ViBe algo-
rithm, [16]. Thick grey/ green curve: hand made ground truth. Only
the left lower part of the image is shown here.

ViBe, described in [16], operates mainly on a pixel level: back-
ground is modeled as a set of colors and foreground/background
classification depends on the similarity of the pixel’s colour with
a subset of the set of colours. When it is found similar, the back-
ground’s model is updated in a random fashion, one of the colours
defining the background’s model is replaced by the pixel’s colour.
Figure 4 shows the results obtained: only a small part of the true
foreground has been detected: part of the face, the left shoulder, parts
of the knees and the upper part of the ankles. Part of the left shadow
has also been mistakenly detected, showing lack of robustness with
respect to change of illumination. By modifying parameters used
by ViBe, a larger foreground layer was detected, however it was at
the expense of an increase number of noisy pixels detected as fore-
ground. An other attempt was to insert the true background image
as a first part of the video, it did not improve the results. The diffi-
culties seem to arise from the very slow movements of the actor and
the quick fluctuations of noise.

An application of gradient field transformation to background
suppression is proposed in [17]. The true background is assumed to
be available and its edges are suppressed from all frame of the test
video, leaving an estimate of the foreground robust to time varying
illumination. This method is able to deal with homogeneous regions
as it propagates information from edges during the integration of the



modified gradient field.

Fig. 5. Foreground layer recovered with the algorithm described in
[17]: bright or dark colours indicate the foreground, greyish colours
indicate the background.

Figure 5 shows the results obtained: the foreground layer de-
tected includes the upper part, the lower part and the hands of the
actor, and also, a region above the left shoulder and an even larger
region of the bedspread. Robustness with respect to illumination did
not work properly: the shadow cast by the actor has been replaced
by an increased illumination above the left shoulder of the actor, per-
haps because a global change of illumination was expected. It is true
that the bedspread has moved as the actor sat on the bed, however
the algorithm shows a too high sensitivity with respect to such small
movements.

In keeping with this viewpoint, we propose to see background
suppression process as a quality measure with reference.

4. BACKGROUND SUPPRESSION PROCESS CAN BE
THOUGHT OF AS A QUALITY MEASURE WITH

REFERENCE

In the last three decades, an important research field concerns the
development of quality measures that model how people perceive
image and video quality. Evaluation of these quality measures is
based on statistical experiments involving a large database of dis-
torted test images/videos and involving a large number of viewers
whose opinions on the test images/videos are collected into a Mean
Opinion Score (MOS). A good quality measure should correlate well
with the MOS. To this purpose many quality measures are based on
Human Visual System (HVS).

Quality measures can be classified according to the availability
of a reference image/video, with which the distorted image is to be
compared. With reference image/video quality means that a com-
plete reference image/video is assumed to be known. Such quality
measures are usually implemented in two stages. In the first stage
a visibility map is locally evaluated, indicating to what extent the
local differences between the test image/video and the reference im-
age/video are visible. In the second stage, all this visibility map is
collapsed into a single quality value. No-reference quality measure
implies that the reference image/video is not available. Reduced-
reference image/video quality measures implies that the reference

image/video is only partially available in the form of a set of ex-
tracted features. The latters come available as side information to
help evaluate the quality of the distorted image. Reviews on image
and video quality measures can be found in [18, 19].

With these definitions and as the background image is available,
background suppression process can be thought of as a video quality
measure with reference, where the reference is the true background
image and the visibility map indicates the foreground detected.

By comparing the background image and each frame of the
test video, any viewer would be able to figure out, with high pre-
cision, the contours of the foreground. Hence quality measures,
fully-compliant with HVS, would provide high-quality detection of
the foreground. Unfortunately complexity of HVS makes it difficult
to design an HVS-inspired quality measure providing, in all circum-
stances, adequate foreground/background separation. Three quality
measures are tested.

Fig. 6. Black/blue curve : contours of the PSNR-derived visibility
map thresholded at 15 grey levels. Light grey/cyan curve: contours
of the visibility map of the Visible Difference Predictor (VDP), [20].
Thick/green curve : hand made ground truth.

The most commonly used quality measure is Peak Signal to
Noise Ratio (PSNR), it is expressed in terms of the logarithmic deci-
bel scale and defined as the root mean of the square differences be-
tween the grey-level values of pixels in two images. Although not
mentioned in literature, a visibility map can be derived from PSNR
[18]. It can be defined as absolute value of differences between
the two images, which then could be collapsed into the correct sin-
gle value of PSNR by computing an L2-norm. Figure 6 shows in
black/blue the contour of the thresholded PSNR-derived visibility
map between the true background and a frame of the test video.

The second quality measure tested is the Structural SIMilarity
(SSIM) index [21]. Figure 7 shows the contours of the thresholded
visibility map of SSIM between the true background image and a
frame of the test video. The detected foreground is the actor, its
shadow on the right and the ghost of the glass that has disappeared,
see figure 1. Closer look reveals that contours are not correctly
positioned. Mathematical and statistical proximity of PSNR and
SSIM [22] suggests that a different PSNR-derived map of visibility
might yield also interesting results in detecting foreground.



Fig. 7. Thin dark/magenta curve: contours of the thresholded vis-
ibility map of the Structural SIMilarity (SSIM) index, [21]. Thick
grey/green curve: hand made ground truth.

The third quality measure tested is the Visible Difference Pre-
dictor [20]. Figure 6 shows in light grey/cyan the contours of the
thresholded visibility map of VDP between the true background im-
age and a frame of the test video. The detected foreground is much
less precise, it covers the actor and comprises only a small part of its
shadow showing some robustness to change of illumination.

We propose a new technique which is based on the specific cam-
era used in the experimentation.

5. THE PROPOSED TECHNIQUE

We propose a camera-based background suppression technique. It
uses a large set of morphological operations on thresholded images
as in a multiscale morphological approach. Morphological opera-
tions have already been used in the field of background suppres-
sion [12], medication intake monitoring [7] and recognition [23].
Their usage here is motivated by their high spatial resolution regard-
less of their lack of frequency selectivity. Indeed camera’s noise is
usually assumed to be a white random process [24] whereas HVS is
known to exhibit frequency selectivity [18].

The basic idea is that a pixel is labeled as foreground when-
ever an indication is found showing that this pixel and some of its
neighbours could not have a colour that different from the one of
the corresponding pixel in the background image. Such indications
are found by conducting a large number of tests. Actually this idea
is quite similar to the use of contrast sensitivity function (CSF) in
HVS-inspired quality measures. Such functions are determined by
finding the threshold at which a very low-contrast sinusoı̈dal grat-
ing stops looking like a uniform image. Our sensitivity function is
determined by finding thresholds on flat patches in such a way that
higher colour fluctuations are most unlikely to occur.

We first focus on the test video and consider the differences
between each frame Imnt and the background image I∗mn. The
three colour components of the differences are collapsed into one
component for each pixel by use of the euclidean norm on colour
components‖‖. Using colourspaces may improve the robustness
with respect to change of illumination, but not to noise. Noise is

more evenly distributed in a classical R,G,B space, than in a more
HVS-consistent colourspace if only because the noise is produced in
the camera electronics and then linearly uncorrelated. The proposed
resulting difference is

Dmnt = ‖Imnt − I∗mn‖ (1)

We propose different kinds of structured elements. Rectan-
gles Bkl of size (k, l) ∈ {1..15} × {1..15} are first considered.
These rectangles are rotated by θq ∈ {0, π10 ,

π
5
, 3π
10
, 2π

5
} and are de-

noted rθq (Bkl). We extend these structured elements to successive
frames and denote them byBkls and rθq (Bkls). Note that no spatio-
temporal rotations are considered here. When used in morphological
operations, these structured elements can be thought of as neigh-
bourhoods of pixels. Namely pixels of coordinates (m1, n1, t1)
and (m2, n2, t2) will, at some point, be considered together by the
structured element rθq (Bkls) if they satisfy the following conditions{

|(m2 −m1) cos θ + (n2 − n1) sin θ| ≤ k
|(m1 −m2) sin θ + (n2 − n1) cos θ| ≤ l
|t1 − t2| ≤ s

(2)

Precise definitions of morphological operations can be found in [25].
Erosion of set A by structured element B, A 	 B, is the set of all
pixels x that remain in A when moved by all associated translations
of set B. Dilation of set A by structured element B, A ⊕ B, is
the set of all pixels y that are translations of elements of A by B.
Opening of set A by structured element B, A � B, is achieved by
first eroding set A by B, then dilating the resulting set by B. As for
neighbourhoods, the output of opening by a structured element does
not depend on the location of the center of this structured element.

For each structured elements, we define a threshold ηkls and a
set of thresholded pixels Tkls:

Tkls = {(m,n, t) |Dmnt ≥ ηkls } (3)

Threshold values are assumed to be independant of how structured
elements are rotated, and hence ηkls and Tkls do not depend on q.
The union of all groups of neighbouring pixels that exceed threshold
ηkls is Tηkls�rq (Bkls) .Hence the estimated foreground is defined
as

F =
⋃
klsq

[
Tηklsq � rq (Bklsq)

]
(4)

Two training videos were used here to learn noise characteris-
tics of the camera and to set thresholds ηkls. During approximately
one minute, two fixed scenes have been shot with the original un-
moved camera. Figure 8 represents a frame of one of the two training
videos. In this figure colour fluctuations can be seen on the bottom
of the white door which is, actually, uniform. Thresholds ηkls used
in (3) are determined for each structured elementBkls as the highest
minimum bound reached by values ofDmnt on neighbouring pixels.

ηkls = max
mnt

[Dmnt 	Bkls] (5)

where Dmnt 	 Bkls is the flat eroding of single-valued function D
by set Bkls. Dmnt 	 Bkls is defined as the minimum D-value in
the spatio-temporal region located at (m,n, t) and of the same size
as Bkls.



Fig. 8. Frame of one of the two training video showing colour fluc-
tuations caused by the camera’s noise.

6. RESULTS

The proposed technique is computationally expensive. It is im-
plemented in Matlab on a 32-bit single core computer running at
2.66GHz with 4GO memory. Setting the threshold values ηkls
upon the two training videos takes six hours and separating fore-
ground/background takes five minutes per frame which is 5000
times slower than real time.

Figure 9 shows threshold values ηkls for different kinds of struc-
tured elements as a function of the number of pixels contained in
structured elements Bkls. The high values of the graph confirm the
difficulties highlighted in section 1. Measured in Dmnt, the differ-
ence between the colour of a pixel and the corresponding pixel in the
average image may reach an equivalent of 250 units out of a range
of 442 units. As for neighbourhoods of size 8× 8, the minimal dif-
ference between the colour of a pixel member of a neighbourhood
and the colour of the corresponding pixel may still reach, at some
specific time and location, nearly 50 units.

Fig. 9. Threshold values ηkls for different kinds of structured ele-
ments as a function of the number of pixels contained in structured
elements Bkls.

Figure 10 shows the contours of the foreground detected by the
proposed technique using threshold values shown in figure 9. It is
very similar to the foreground detected by SSIM in figure 7. This
detected foreground is incomplete as hair and face remain sepa-
rated, only part of the arm is found, the disappearance of the glass

Fig. 10. Thin dark/red curve: contours of the foreground detected by
the proposed technique. Thick grey/green curve: hand made ground
truth.

is missed. It comprises a large part of the shadow. However it is
interesting to note that edges with no shadows, (i.e. located on left
and on top of the actor) are precisely delineated. The two first obser-
vations are due to insufficient extracted information, to use of high
thresholds preventing any false foreground detection but allowing
false background detection, and to lack of robustness with respect to
change of illumination. The third observation may support the use of
morphological filters as opposed to linear filters. Indeed proximity
of the colour of a pixel with the colour of the corresponding pixel
in the true background image avoids classifying as foreground any
neighbourhood comprising this pixel.

7. CONCLUSION

The proposed experimental setup involves a low cost camera posi-
tioned further away from the person taking medicine and the avail-
ability of the true background image. Two background suppression
algorithm have failed to produce adequate foreground/background
classification, mainly because these algorithm are not designed for
that specific experimental setup. Background suppression process
can be thought of as a quality measure with reference. Among the
three quality measures tested, SSIM provides fairly accurate fore-
ground/background separation but no invariance to change of illu-
mination. The proposed technique is a set of morphological oper-
ations on thresholded images. It uses thresholded values computed
on two training videos shooting two fixed scenes. At the expense of
a large amount of computations it detects a similar foreground with
contours better delineated.

Reducing the computation burden is the main challenge. Es-
tablishing sufficient conditions for a pixel or a neighbourhood to
be classified as background may enable to give an iterative struc-
ture to this algorithm and hopefully reduce significantly the average
computation burden. Many other improvements may stem from the
proposed ideas. Invariance to change of illumination may be con-
structed by modifying the computation of D in (1) and by reducing
the weight of the luminance component. Reduced false detection of
background may be obtained by reducing the chosen thresholds at
the expense of an increase in false detection of foreground. Greater
precision may be reached by better controlling the spatio-temporal
behaviour of colour components.
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