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ABSTRACT 

Image quality assessment is becoming increasingly used 
in many applications. In most of the existing image 
quality assessment approaches, the main objective is to 
develop measures that are consistent with the subjective 
evaluation. Therefore, the performance of a given image 
quality metric is evaluated against the MOS determined 
from a series of subjective tests performed on a database. 
A plethora of image quality metrics has been developed. 
However, a few studies have been reported on the 
analysis and comparison of these metrics. This study 
attempts to provide a new framework for analysing and 
comparing some of the most common image quality 
metrics. Three quality representative metrics of the most 
known approaches have been chosen for this study. The 
Peak Signal to Noise Ratio (PSNR), the Visible 
Differences Predictor (VDP) and the Mean Structural 
SIMilarity index (SSIM). The two latter are found to be 
consistent with Weber’s law. However, subjective testing 
in literature and computations derived from uniform color 
spaces such as CIE-L*a*b* suggest a different 
photometric invariance law. In this paper, we establish 
this photometric invariance law and show through 
numerical simulations how to check whether a given 
quality metric is compliant with this law. 

Index terms: Image Fidelity, Quality Measure, 
Uniform Colour Space, Weber’s Law, Gamma 
Correction. 
 

1. INTRODUCTION 

 
Image quality assessment is becoming increasingly 
prevalent nowadays in many applications. In most of the 
existing approaches the interaction with the observers 
seems to be the only way to assess the performance of the 
results. Many objective image quality metrics have been 
proposed in the last decades. However, due to the wide 
variety of picture types and applications, image quality 
assessment could not be fully automatic and subjective 
approaches are still predominant. The image quality 
measures in the literature can be classified into two 
categories: subjective and objective. The subjective 
evaluation is the most accepted and reliable method.  
However, the subjective tests should be done in a well 
defined environment and experimental setting 
standardized by the ITU [8]. However, it is time-

consuming, complex and useless in real-time application.  
This motivates the development of objective image 
quality assessment methods that aim at predicting the 
perceived image quality. Objective image quality 
assessment methods could be classified into three classes: 
Full-reference (FR), No-Reference (NR) and Reduced-
Reference (RR) methods. For FR methods the image 
quality metric is derived from a direct comparison 
between the original image and the distorted image. In 
NR methods an estimate of the image quality is computed 
from the observed image without referring to the original 
signal. RR methods could be used when some features or 
a set of local or global information extracted from the 
original and the processed images are available. In the last 
three decades, a significant amount of research effort has 
been directed towards the development of FR quality 
assessment methods inspired from the Human Visual 
System (HVS). 
 Many psycho-visual experiments have been 
performed in order to better understand the visual 
perception mechanisms [14]. The objective efficiency of 
any HVS-inspired methods is evaluated in terms of 
correlation with subjective tests ([3], [13], [11]).  The 
intent of this paper is to propose a new approach for 
analysing and comparing IQMs using some photometric 
properties based on the perceptually uniform color space. 
This approach is introduced and illustrated on three 
representative image quality metrics, namely PSNR, VDP 
and SSIM. The Peak Signal to Noise Ratio (PSNR) is the 
simplest and most used quality metric. The Visible 
Differences Predictor (VDP) is a representative example 
of models based on Human Visual System, [5]. The Mean 
Structural SIMilarity index (SSIM) is simple to 
implement and has attracted considerable attention in the 
literature, see [15] for applications on image and video 
processing and [6] for a statistical and mathematical 
assessment. It is worth to notice that the proposed 
approach could be extended to any FR image quality 
metric. The intent of this work is not to provide a 
complete study on all the known IQM’s but rather to open 
a new direction for image quality analysis and 
comparison. Section 2 describes Weber’s law and the 
three quality metrics considered in this study. Section 3 
discusses the relationship between Weber’s law and 
uniform color spaces. Section 4 states a photometric 
invariance law and shows numerical simulations that 
assess whether a given quality metric is compliant with 
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this photometric invariance law. The last section is 
devoted to concluding remarks and conclusion. 
 

2. THE THREE QUALITY METRICS STUDIED 

 

Three image quality metrics are considered in this study.  

 

2.1. Peak Signal to Noise Ratio (PSNR) 

 

The Peak Signal to Noise Ratio (PSNR) is the simplest 
and widely used metric. It is given by: 
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where R
mng  and D

mng stand for the pixel intensity in the 
reference and distorted image, respectively ranging from  
0 to maxg . It is found that this metric is invariant under 
some additive changes, we shall refer to such property as 
additive invariance. 

 

 

2.2 Visible Differences Predictor (VDP) 

 

 

The second image quality metric used here, is the Visible 
Differences Predictor (VDP). It is considered as one of 
the most representative of HVS-inspired image quality 
metrics. Let us recall some relevant quantities and notions 
related to this metric. One of the most important 
perceptual notion is the contrast. There are many 
definitions and there is no unified theory for defining this 
measure. Michelson contrast is one of the most known 
and is defined as: 
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where maxL and meanL refer respectively to the maximum 
and mean luminance of a sinusoidal stimulus pattern. 
Note that for a given image this contrast measure provides 
a unique and global value.  

Another property exploited in the VDP is related 
to the nonlinear response of the HVS. In VDP it is 
expressed as a nonlinear point transform relating the 
visual sensitivity R to the luminance L. For digital images 
it is defined as a pixel-wise transform. For pixel (m,n), the 
visual response is related to the luminance by: 
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  where 1c =12.6cd.m-2 and b=0.63. 

Another HVS property used in VDP and related to the 
visual acuity is the Contrast Sensitivity Function. The 
original and distorted mages are then filtered by the CSF.  

A Cortex transformation is then applied. It is a filter 
bank with 6 orientations and 5 spatial frequencies with 
equal log bandwidth. The lower-frequency channel has no 
orientation. For each subband (k,l) and for both images, 
the contrast  nmCkl ,  is given by 

 
K

kl
kl B

nmB
nmC

,
],[   (4) 

where  nmBkl ,  is the value of the filtered image and 

KB is either the output of the lower-frequency channel 
(and hence a function of location m,n) or the spatial 
average of the image. This contrast is slightly different 
from Weber’s contrast in that it is a function of pixel 
coordinate and subband, it is computed separately for the 
reference image and for the distorted image. It remains 
consistent with Weber’s law. Indeed the reference and the 
distorted image have close background luminance and a 
just-noticeable luminance change is still proportional to 
that background luminance.  

Subband thresholds are computed to model the 
masking effect. These thresholds may alter slightly the 
consistency with Weber’s law.  
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where  DRi ,  refers either to the Reference image or the 

Distorted image and QQ WkWk 
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Q=0.70, b=4 and  1,65.0s , (this parameter decreases 
with increased learning). These subband thresholds are 
used in the psychometric function which produces a 
probability-of-detection map.  
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2.3. Structural SIMilarity  Index (SSIM) 
 
The Structural SIMilarity (SSIM) Index is based on the 
assumption that the human visual system is highly 
adapted to extract structural information from the viewing 
field. It follows that a measure of structural information 
change can provide a good approximation to perceived 
image distortion.  

Local statistics R
j , D

j , R
j , D

j  and DR
j

,  are 
computed within local 88  square window, which move 



pixel-by-pixel over the entire reference and distorted 
image. 
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where mnw is either identity or an 1111 circular 
symmetric Gaussian weighting function with standard 
deviation of 1.5 samples, normalized to unit sum.  

The mean luminance distortion, the contrast distortion 
and the structural distortion are given by 
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where  2max11 gKC  ,  2max22 gKC  , usually 
1K =0.01, 

03.02 K  and for simplification 223 CC  . The three 
distortion measurements are collapsed into an index 


M

jjjjj SSIM
M

MSSIMsclSSIM 1  (9) 

where 1   for simplification. 
SSIM is designed so as to be consistent with Weber’s 

law, see [16] and note that the constants 1C , 2C  and 

3C may alter this property. 
 

 

 

3. DISCUSSION ON WEBER’S CONTRAST 

 

3.1 Psycho-visual tests 

 

There has been extensive work into psycho-visual tests on 
Weber’s contrast with sinusoidal gratings of different 
frequencies [3], but far less with different luminance 
backgrounds.   

Figure 4 is reproduced from [9], it shows contrast 
sensitivity curves for gratings of different frequencies, 
orientations and luminance backgrounds, it tells us that if 
the average luminance of an image is 10 times higher, the 
contrast threshold is 2.25 times lower (65/29 147/65  
2.25). Very similar results can be found in [1] and [17].  

In [7], Weber’s contrast is replaced with a power-law 

contrast model.  

WBB CLLLC 3/13/13/1

3
1

  (10) 

This contrast is consistent with data shown on figure 4: 
when 

BL is 10 times higher and 
WC  is 2.25 times lower,  

 
Figure 4: Contrast sensitivity curves for different gratings, 

reproduced from [9]. 

C is only 0.96 times lower, almost constant. As mentioned 
in [7], it is because this contrast inherits the uniform 
perceptual properties of the Lab system, that it is well 
suited.  

 

3.2 Deriving contrast threshold from uniform colour 
spaces 

 

CIE 1976 (L* a* b*) colour space is defined as 
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where X,Y,Z are the tristimulus values that specify the 
colour of a sample and nX , nY nZ  specify the 
illuminant; and  
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two colours look different if their Euclidean distance E   
is greater than 2: 
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By restricting to grey inputs and to luminance not too 
low, definition of CIE 1976 (L* a* b*) is modified into 
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Substituting 1Y = L  and 2Y = L + L  into (15) and 

denoting nY  as fLRe , we can approximate the new 

expression by its Taylor series at 0

L
L . 
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These formulas are now applied not only to uniform 
regions but also to textures and edges, L is the average 
luminance. Calling L the background luminance enables 
us to derive Weber’s contrast threshold from (16). 
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3.3 Gamma Correction 

 

Gamma correction was initially a relationship between the 
input voltage and the output luminance L of a cathode ray 
tube [4].  Today the main purpose of gamma correction in 
video, desktop graphics is to code luminance into a 
perceptually uniform domain [12]. Gamma correction is 
defined as 













max
max g

gLL  (18) 

where ]4.2,2.2[ . The largest source of variation in 
  is caused by varying settings of the black level control 
of monitors [12]. Substituting L with L + L and g  with 

gg  into (18), we can approximate (18)  by its Taylor 

series at 0

L
L

. 
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Substituting (18) into (19) yields 

g
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Expressing g as a function of L using (18)  and calling L 
the background luminance yields a slightly different 
Weber’s contrast threshold: 
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Figure 5: Weber’s contrast WC  as a function of 

background luminance L  

Figure 5 shows curves of Weber’s contrast with respect to 
background luminance for (17) and (21), we see that these 
curves are very close.  

 

4. A NEW PHOTOMETRIC INVARIANCE LAW 

 

 

We propose a photometric invariance law.  

Definition  

A quality metric is said to follow the photometric 
invariant law if, for any image 

mnL , for any local 
distortion of small intensity 

mnL , and for all ]1,0( , 
there exists  near 1/3 such that   1'  and 
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PSNR is additive invariant and is expected to be 

almost consistent with the photometric invariance law, 
that is with =1/=0.42 (21). By design, VDP and SSIM 
are consistent with Weber’s law and hence the parameter 
 extracted is expected to be zero. 
 



5. NUMERICAL SIMULATIONS 
 
We have performed numerical simulations with two test 
images using the following methodology. 

Methodology 

(1) Choose a reference image (one or several 
images). 

(2) Choose different additive distortions at different 
locations with intensity close to visible threshold. 

(3) Compute the reference value  
 mnmnmn LLLQR  ,  

(4) Choose a set of  k  uniformly distributed in 

]1,0( , and for each k , find k' such that 
 mnkmnkmnk LLLQR  ',   

(5) Compute   by linear regression of  kln  with 

 k'ln  . 

(6) Check that the extracted parameter,   do not 
depend on steps 1 and 2.  

The first reference image is issued from Brodatz texture 
(figure 6), [2]. The other reference image is the Barbara 
image (figure 7). The distorted images were generated by 
embedding three different types of local distortions (see 
figure 6) into the two test images:  

-a luminance increase on a region having the shape 
of a square, 
-a luminance increase on a region having the shape 
of a triangle, 
-a luminance increase nearby a luminance decrease 

This was achieved at different locations and with 
intensities around just-noticeable distortion. 
 

 
Figure 6: first test image and distortions used in the 

numerical simulations 
 

 
Figure 7: second test image  

  
Figure 8: locations of embedded distortions 

Note that in the fourth step a dichotomy algorithm is used 
as the mapping  mnmnmn LLLQ ','    is monotonic. 

Results of numerical simulations1 are shown on 
figure 9 and 10. They confirm the additive invariance of 
PSNR and Weber’s law-like behaviour of VDP and SSIM 
with null constants. The masking effect may explain the 
slightly negative parameter  found for VDP. Simulations 
have also shown that SSIM with constants set to their 
default values is neither really consistent with Weber’s 
law, nor with the photometric invariance law. 

  

  

Figure 9: Relationship between  and ’ for the three 
quality metrics PSNR, VDP and SSIM. 

                                                
1 We are grateful to Abdelhalim Mayache for implementing 
VDP in Matlab. 

PSNR:=0.42  VDP:=-0.04  

SSIM: ]42.0,0[   SSIM  0iC : 0   



 
Figure 10: Parameter   extracted as a function of the 
intensity of the distortion measured in grey levels for 

PSNR, VDP and SSIM. 

 

5. CONCLUSION 

 

VDP and SSIM were designed to be consistent with 
Weber’s law. However this law is not confirmed by 
psycho-visual testing. A new photometric invariance law 
inherited from uniform colour spaces is proposed and 
numerical simulations confirm the expectations. 

Further work is necessary, to show how quality metric 
can be modified so as to be consistent with this 
photometric invariance law, and to investigate the 
effectiveness of the modified quality metrics.  
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