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Abstract—The aim of this paper is to propose a new look

to MBID, examine some known approaches and provide a new

MC method for restoring blurred and noisy images. First the

direct image restoration problem is briefly revisited. Then a new

method based on inverse filtering for perfect image restoration

in the noiseless case is proposed. The noisy case is addressed by

introducing a regularization term into the objective function in

order to avoid noise amplification. Second, the filter identification

problem is considered in the MC context. A new robust solution

to estimate the degradation matrix filter is then derived and used

in conjunction with a total variation approach to restore the

original image. Simulation results and performance evaluations

using recent image quality metrics are provided to assess the

effectiveness of the proposed methods.

I. INTRODUCTION

Multichannel (MC) image processing is nowadays a rel-
atively active field of research. Preliminary results of mul-
tichannel deconvolution were first found in the signal case
then extended to the image. This development is due to the
increasing number of applications where several versions of
the captured image are available. In multichannel framework,
several images are observed from a single scene that passes
through different channels. Applications where multichannel
techniques could be used include, among others, polarimetric
[1], satellite [2], astronomical [3], [4] and microscopic [5]
imagery. When channels are frequency bands, we refer to
it as multi-spectral images. If the same scene is captured
at different time slots, we talk about image sequences. If
different representations of the same image are provided at
different resolutions, we also can treat this as a multichannel
representation. The main advantage we can draw from MC
processing for the deconvolution is to exploit the diversity
and redundancy of information in the different acquisitions.
Hence, it is worth to note that the set of the observed images
is considered as one entity.
Image deconvolution/restoration solutions can be divided into
two classes : stochastic and deterministic. Stochastic methods
consider observed images as random fields and estimate the
original image as the most probable realization of a cer-
tain random process. These methods are, mainly, the Linear
Minimum Mean Squares Error (LMMSE) [6], the Maximum
Likelihood (ML) [7] and the Maximum A Posteriori (MAP)
[8]. These methods have two major drawbacks: (i) they are

very sensitive to perturbations and modeling errors, (ii) strong
statistical hypothesis are made on the image and the noise
which are considered as uncorrelated homogeneous random
processes. On the other hand, deterministic methods do not
rely on such hypothesis and estimate the original image by
minimizing a norm of a certain residuum. These methods in-
clude among others: Constrained Least Square (CLS) methods
which incorporate a regularization term [9], the iterative blind
deconvolution technique [10] and the Non-negativity And
Support constraint – Recursive Inverse Filtering (NAS-RIF)
algorithm [11]. The latter methods are based on minimizing
a certain criterion under some constraints like non-negativity
of the original image, finite support of the convolution masks,
smoothness of the estimate, etc...
Blind MC image deconvolution can be performed in two
ways. One can first identify the point spread function (PSF)
of the degradation also called blur function and then restore
the image using this knowledge. This approach belongs to
the class of identification techniques [12]. When the original
image is directly restored, we refer to the solution as an
equalization or inverse filtering technique. In this article,
we deal with an equalization technique called the Mutually
Referenced Equalizers (MRE) where a regularization term
is incorporated is order to prevent from noise amplifica-
tion. Then, we consider another approach which belongs to
the class of channel identification techniques. We carry out
a comparative study in order to choose the most efficient
blind channel identification algorithm. We compared these
techniques in terms of estimation accuracy (restored image
quality), and identification accuracy (distance between the
real and the identified filters). Finally, we develop a joint
identification/restoration technique using the Total Variation
(TV) aiming at the restoration of the original image.
More precisely, our contributions consist in (i) a new blind
restoration method using the mutually referenced equalizers
technique in conjunction with a regularization method that
truncates the greatest singular values of the inverse filter
matrix; (ii) a new multichannel identification technique that
generalizes the Least Squares Smoothing (LSS) method [13]
from the 1D to the 2D case. This method is then compared
with other existing identification methods with respect to the
estimation accuracy and computational cost; (iii) a new robust
multichannel restoration method based on a total variation
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technique and (iv) a performance evaluation and comparative
study of the different blind restoration methods using some
objective image quality metrics.
The rest of the paper is organized as follows. Section II high-
lights the advantages of the multichannel processing approach.
Section III introduces the image acquisition model and states
the objectives of this work. In section IV, the regularized
MRE method is developed. Section V presents the generalized
LSS method and briefly reviews some other existing channel
identification algorithms for comparison purposes. In section
VI, we introduce our image restoration technique using the
total variation approach. Simulation results and performance
evaluation are provided in section VII. The last section is for
the conclusion and final remarks.

II. MOTIVATIONS FOR MC PROCESSING

The motivations behind the use of MC framework as com-
pared to the standard mono-channel one are first the increasing
number of applications in this field, but more importantly, the
potential diversity gain that may lead to significant improve-
ments in the restored image quality. Indeed, diversity combin-
ing techniques have been recently the focus of an intensive
research effort in different application fields including radar
processing [14], wireless communications [15] and image
processing [16]. It is shown in particular that, in the noiseless
case, the diversity combining techniques allow a perfect image
restoration [17]. This is illustrated by the example in figure 1
where we compare a blind mono-channel restoration technique
developed in [18], and based on the iterative Richardson-Lucy
scheme, with the multichannel one developed in section IV of
this article. Clearly, this example highlights the performance
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(b)
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Fig. 1. (a) Set of degraded images used for MC deconvolution and
altered by PSFs of size 7£ 7, (b)-(c) Restored image using a mono-channel
deconvolution technique, (d) Perfectly restored image in the noiseless case
using the multichannel deconvolution technique described in this article.

gain that can be obtained by MC processing. This gain is
due to the inherent diversity of multichannel systems where
multiple replica of the same signal/image are observed through
different (independent) channels. In that case, if a part of
the original information is lost (degraded) in one of the
observed images, it can be retrieved from the other observed
images upon certain diversity conditions. More precisely, this
is possible when the same image distortion does not occur on
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Fig. 2. Evolution of the restored image quality (using the PSF identification
method followed by TV-based restoration) versus the number of observed
images (PSFs) for different SNR values: Cameraman image.

all the observed images simultaneously. Mathematically, this
is expressed in the condition that the spectral transforms of
the PSFs do not share common zeros1. Indeed, a PSF’s zero
represents roughly a ”fading” around a particular frequency
point and hence common zeros represent the situation where
the same fading occurs on all channels simultaneously. In
the presence of noise, perfect reconstruction is not possible
but the diversity gain provides significant improvement in
the restored image quality. This is illustrated by figure 2
where we plot the restored image quality evaluated by the
objective measure proposed in [19] versus the number of
observed images (channels). In the mono-channel case, the
restoration method used is the one introduced in [18]. For
the MC case, we use the restoration method with the total
variation approach (section VI). One can observe that the gain
increases in terms of image restoration quality when using
the MC processing. Furthermore, this gain is obtained with a
relatively small number of independent PSFs (3 to 4 depending
on the SNR level) which limits the extra computational burden
of MC processing.

III. PROBLEM STATEMENT

A. Notations

It is assumed that a single image passes through K > 2

independent channels and hence K different noisy blurred
images are observed. Each channel corresponds to a degrading
filter. The notations used are:
- F the original image of size mf £ nf .
- G1, . . . ,GK the K output images each of size mg £ ng .
- H1, . . . ,HK the K point spread functions (PSFs) each
of size mh £ nh and h1, . . . ,hK their row-wise vectorized
versions. We denote by h = [hT

1 , . . . ,hT
K ]

T the vector of all
PSF parameters. To satisfy the diversity condition, the PSF
functions are assumed to have no common zeros, i.e. the

1Note that this condition can be met only if K > 2 different PSFs
(channels) are available.
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polynomials

Hk(z1, z2)
4
=

mh°1X

i=0

nh°1X

j=0

Hk(i, j)z

°i
1 z

°j
2 , k = 1, . . . ,K

are strongly co-prime.
- N1, . . . ,NK the additive noise in each channel.
For the seek of notational simplicity, we adopt here a ’causal’
representation of the considered filters so that the system
model can be written as: for k = 1 . . . K,

Gk(m, n) =

mh°1X

l1=0

nh°1X

l2=0

Hk(l1, l2)F(m°l1, n°l2)+Nk(m,n).

In the sequel, the images and impulse responses will be
processed in a vectorized, windowed form of size mw £ nw.
Hence, we denote by gk(m, n) the data vector corresponding
to a window of the k

th image where the last pixel is indexed
by (m,n), i.e. the right bottom pixel.

gk(m,n) = [Gk(m,n), . . . ,Gk(m,n° nw + 1), . . . ,

Gk(m°mw + 1, n° nw + 1)]

T
.

(1)
In order to exploit the diversity and the redundancy offered by

the multiple observations of F , we deal simultaneously with
all observed images by merging them into a single observation
vector:

g(m, n) = [gT
1 (m, n), . . . ,gT

K(m, n)]T = Hf(m, n) + n(m, n) (2)

where f(m,n) is an (mw +mh°1)(nw +nh°1)£1 vector
given by:

f(m,n) = [F(m,n), . . . ,F(m,n° nw ° nh + 1), . . . ,

F(m°mw °mh + 1, n° nw ° nh + 1)]

T

and H =

£
HT

1 , . . . ,HT
K

§T , Hk being the filter matrix associ-
ated to Hk given by :

Hi =

2

64

Hi(0) . . . Hi(mh ° 1) 0
. . .

. . .
0 Hi(0) . . . Hi(mh ° 1)

3

75 (3)

with mw blocks in the row direction and mw +mh°1 blocks
in the column direction and

Hi(n) =

2

64

Hi(n, 0) . . . Hi(n, nh ° 1) 0
. . .

. . .
0 Hi(n, 0) . . . Hi(n, nh ° 1)

3

75

(4)
of size nw £ (nw + nh ° 1).

B. Objectives

The ultimate goal is to restore the original image in a
satisfactory way even in ’severe’ observation conditions. In
practice, the original image as well as the degrading filters
are totally unknown. So that, our restoration procedure is
totally blind. To tackle this problem two types of solutions
are proposed. The direct image restoration technique [20] and
the indirect one, that first estimates the unknown PSFs and
then restores the original image in a non blind way (i.e. using
the previously estimated PSFs) [12].

1) Direct restoration: Our objective here is to directly
restore the original image using only its degraded observed
versions. More precisely, we search for a unique equalizer or
inverse filter which, applied to the set of observations, allows
us to restore the original image. We pay a particular attention
to the robustness against additive noise by including in the
estimation criterion of the inverse filter an additional term that
controls and limits the noise effect.

2) Restoration via PSF identification: Our objective here
is to, first identify the PSF function and then inverse it in
order to restore the original image. In the noisy case, the filter
response inversion leads to noise amplification and hence we
propose to add a regularization term in order to reduce this
undesired effect. For that, we use the Total Variation (TV)
constraint of the restored image as a regularization criterion.
In the following, we deal with the direct restoration approach
in section IV and with the indirect one in section VI. The PSF
estimation methods are considered in section V.

IV. REGULARIZED MUTUALLY REFERENCED EQUALIZERS
(R-MRE)

In this section, we introduce our first image restoration
method using the direct estimation of the inverse filters. These
filters are estimated by MRE method in [17]. We propose some
improvements in terms of computational cost and robustness
against additive noise as shown below.

A. MRE method: review and improvements

We search, here, for the restoration filter denoted E which,
applied to the K observed images, provides us with an esti-
mate of the original image. This E is a multichannel 2D filter
of size (Kme,Kne). This filter exists under the following
assumptions: (i) the PSFs have no common zeros (see [20] for
more details) and (ii) the filter matrix has full column-rank.
More precisely, it is proved in [17] that the channel matrix H
is left invertible if:

Kmene ∏ (mh + me ° 1)(nh + ne ° 1). (5)

When both conditions are satisfied, there exists a set of
equalizers E1, . . . , Ed each of them allowing us to restore the
original image with a specific spatial shift (md, nd). Note
that there exists an infinity of equalizers of different sizes
(an infinity of couple (me, ne)) that satisfy the condition in
equation (5). Hence, when (me, ne) is fixed, the original image
is estimated up to a certain constant factor and a certain spatial
shift. The principle of mutually referenced equalizers is as
follows: suppose we have computed two equalizers Ei and Ej

inducing the spatial shift (mi, ni) and (mj , nj) respectively:
KX

k=1

Ei,k § Gk(m,n) = ÆF(m°mi, n° ni), 8 (m,n) (6)

KX

k=1

Ej,k § Gk(m,n) = ÆF(m°mj , n° nj), 8 (m,n) (7)

where § denotes the 2D convolution, Æ is a given positive
scalar and Ei

4
=[Ei,1, . . . , Ei,K ], Ei,k being the 2D filter of size
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(me, ne) applied to the k

th observed image.
In the noiseless case, if we apply the equalizer Ei to G(m °
mj , n ° nj) and the equalizer Ej to G(m ° mi, n ° ni) we
obtain exactly the same windowed area of the original image:

KX

k=1

Ej,k § Gk(m°mi, n° ni) =
KX

k=1

Ei,k § Gk(m°mj , n° nj). (8)

In the original MRE method, it was shown that solving
equation (8) for all equalizers inducing a spatial shift in the
interval [0, . . . , me + mh ° 1] £ [0, . . . , ne + nh ° 1] leads to the
computation of a set of equalizers which perfectly restore the
original image in the noiseless case. This solution presents a
major drawback: it requires the computation of a large number
of equalizers (exactly (me + mh)(ne + nh) equalizers) and
hence it is computationally expensive. In [17] and [21] it is
shown that we can reduce the number of equalizers to be
estimated and, consequently, the computational cost of this
solution. More precisely, it was proved that only 2 extremal
equalizers E1, E2 corresponding to the extremal spatial shifts
(m1, n1) = (0, 0) and (m2, n2) = (me +mh°1, ne +nh°1)

are sufficient for perfect image restoration. In practice, these
shifts do not appear to perform good restoration quality due to
the artefacts appearing in the boundaries of the restored image.
Therefore, we propose to use a third equalizer corresponding
to the median shift (m3, n3) = (

ß
m2
2

®
,

ß
n2
2

®
) where d.e

denotes the integer part. Solving equation (8) for equalizers
E1, E2 and E3, consists in solving the following set of linear
equations:

KX

k=1

E2,k § Gk(m°m1, n° n1) =
KX

k=1

E1,k § Gk(m°m2, n° n2)

KX

k=1

E3,k § Gk(m°m2, n° n2) =
KX

k=1

E2,k § Gk(m°m3, n° n3).

KX

k=1

E1,k § Gk(m°m3, n° n3) =
KX

k=1

E3,k § Gk(m°m1, n° n1)

(9)
In practice, in order to take into account the additive noise,

this set of equations is solved in the least squares sense leading
to a quadratic form that can be written as follows:

JMRE(e) = eT QMREe (10)

where e = [eT
1 , eT

2 , eT
3 ]

T , ei = [eT
i,1, . . . , e

T
i,K ]

T and ei,k is
the row-wise vectorized version of Ei,k. The quadratic form
QMRE is given by:

QMRE =

2

4
R22 + R33 °R21 °R31
°R12 R11 + R33 °R32
°R13 °R23 R11 + R22

3

5

where Rij =
X

(m,n)

g(m°mi, n° ni)g
T (m°mj , n° nj), (i, j) 2

{1, 2, 3} and g is the vector defined in equation (2) with
(mw, nw) = (me, ne). QMRE matrix is singular and its rank
depends on the equalizer size (me, ne), therefore, JMRE(e)

criterion must be minimized under unit-norm constraint.

B. Regularized MRE method

In the noisy case, the MRE algorithm fails in restoring
efficiently the image. This is due to the ill-conditioned filter
matrix whose inversion leads to noise amplification. In order to
come through this difficulty, we propose, here, to combine the
MRE criterion in equation (10) with a regularization technique
inspired from [22] and adapted to the multichannel framework.
In fact, the noise amplification is due to the largest singular
values of the Inverse Filter Matrix (IFM). Therefore, our
regularization technique simply consists in the truncation of

the largest singular values of the IFM. This truncation is
realized through an adaptive thresholding technique which
is explained below. Now, to reduce the computational cost
of the desired eigenvalues, we exploit the Toeplitz structure
and the large dimension of the inverse filter matrix in such a
way to approximate it by a block circulant matrix [23] whose
eigenvalues can be computed by means of Fourier transform
[24].
In this work, we choose E3 among the MRE equalizers to
restore the original image as it provides the best restoration
performance compared to extremal shift equalizers E1 and E2

as mentioned previously. Let us write this equalizer as:

E3
4
=[E3,1, . . . , E3,K ] (11)

and let Ek be the IFM associated with E3,k and defined as in
equations (3) and (4). Since Ek is a large block Toeplitz matrix
with Toeplitz blocks, it can be approximated by a large block
circulant matrix ˜Ek with circulant blocks. This approximation
leads to the following estimation:

KX

k=1

˜Ekgk º f3 (12)

where f3 denotes the original image in vector form
shifted by (m3, n3): f3 = [F(mf ° m3, nf ° n3), . . . ,F(mf °
m3, 1), . . . ,F(1, 1)]T . gk denotes the k

th observed image in
vector form: gk = [Gk(mg, ng), . . . ,Gk(1, 1)]T . Let define ˜E
as a block circulant matrix with circulant blocks ˜Ek: Ẽ =2

6664

Ẽ1 Ẽ2 . . . ẼK

ẼK Ẽ1 . . . ẼK°1

...
Ẽ2 Ẽ3 . . . Ẽ1

3

7775
. Eq. (12) become: Ẽ

2

64

g1

...
gK

3

75 º
2

4
f3
?

?

3

5
.

As mentioned in section IV, we propose to truncate the
largest eigenvalues of ˜E to avoid noise amplification when
restoring the original image. A well known property of cir-
culant matrices is that their eigenvalues can be expressed as
a function of the elements of the first column. This property
can be extended to block circulant matrices by considering
the first column of each column block. Since ˜E is a block
circulant matrix with circulant blocks ˜Ek, it can be proved
[23] that its eigenvalues are given by:

u = [u1, . . . , uKn]

T
= Me (13)

where u is a vector containing the eigenvalues of ˜E, M is
a known sparse matrix and n is the number of pixels in the
restored image. In order to truncate the largest eigenvalues of
˜E, we apply a non-linear filter represented by a projection
matrix B. Let ˜u = Bu where B = diag(bi) and

bi =

Ω
1, if | ui |∑ ø

0, otherwise

(14)

ø is a predetermined threshold. Here, we choose

ø = c. max

i
(|ui|) (15)

where c is a chosen scalar in the range [0 1] whose value
depends on the image type. Let v = u°˜u be the error between
the original vector of eigenvalues and the truncated one, v =
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(I°B)u. The regularized MRE criterion can be then expressed
as:

Jreg(e) = JMRE(e) + µkvk2
= eT QMREe + µk(I°B)Mek2
= eT Qrege,

(16)

with

Qreg = QMRE + µMT
(I°B)M, and (17)

e = [e1, e2, e3]. (18)

In equation (18), µ represents a scalar factor that controls
the amount of regularization we would like to incorporate into
the MRE criterion. Note that Jreg is a non linear criterion
since B depends non linearly on e. However, once B is
fixed, Jreg becomes quadratic and it can be easily solved by
means of a classical minimization algorithm. Here, we use a
two step optimization procedure. First, we compute the MRE
equalizer eMRE that minimizes the MRE criterion without
regularization. Then the equalizer eMRE is used to fix the
thresholding matrix B. Once B fixed, the R-MRE criterion
Jreg becomes quadratic and, hence, can be minimized using a
classical optimization scheme. Note that the solution set of the
R-MRE criterion contains the desired filters but also, undesired
’blocking’ filters ¯E (denoted ¯e in vector form) that satisfy in
the noiseless case:

¯eT g(m,n) = 0 8(m,n). (19)

For example, the filter ¯E given by ¯E1 = °H2,
¯E2 = H1

and ¯Ek = 0, 8k = 3, . . . ,K, is a blocking filter as it satisfies
KX

k=1

¯Ek §Gk(m,n) = 0. Consequently, we search for a solution

that minimizes the criterion (16) and maximizes the restored
image energy. Indeed, a blocking filter output is given by noise
term only while the desired restoration filter would provide
us with an approximate version of the original image hat is
assumed to have a much larger energy than noise. To achieve
the previous objective, we simply constrain this energy to be
unitary, i.e, we solve criterion (16) under the following energy
constraint:

eT
reg(I3 ≠R11)ereg = 1 (20)

where ≠ denotes the matrix Kronecker product. This is equiv-
alent to minimizing the Rayleigh quotient:

min

eT
regQregereg

eT
reg(I3 ≠R11)ereg

(21)

which solution is given by the principal generalized eigenvec-
tor of ((I3 ≠R11),Qreg).

V. PSF BLIND IDENTIFICATION TECHNIQUES

The second approach to perform MBD consists in first
identifying the degradation filters and then inverting them in
order to restore the original image. In this section we are
interested in identifying the blur functions in each channel
that would be used later for image restoration by means of
TV°based regularization technique. More precisely, we first
carry out a comparative study of several existing determin-
istic techniques for multichannel blind image identification

identification techniques, namely, the subspace method (SS),
the minimum noise subspace method (MNS) and the cross-
relation (CR) method. These methods are quite similar in the
principle, in fact they compute some ’correlation’ and ’redun-
dance’ between the different acquisitions in order to retrieve
the degrading filters. Then, we propose a new identification
algorithm based on a smoothing least squares technique. In
this section, we present the principle and the algorithm of each
method before comparing their performance using computer
simulation experiments.

A. The subspace method (SS)
The SS method for image restoration was first introduced in

[25]. It exploits the fact that, in the noiseless case, all vectors
g(m,n) are in the subspace scanned by the column vectors
of H (the image data subspace). Hence, we can estimate the
column range space of H (Range(H)) from the observed
data. In practice, in order to take into account the additive
noise, we estimate Range(H) as the subspace Us spanned
by the principal eigenvectors of R11, the covariance matrix
of g. On the other hand, it is shown in [25], that Range(H)

characterizes uniquely the parameter vector h (up to a constant
factor)2. As a consequence, we can estimate the unknown
channel parameters h by fitting the range space of H to the
image data subspace measured from the observation. The best
fit is reached when H is preserved (unaltered) by orthogo-
nal projection onto Range(Us). This can be performed by
minimizing the least squares criterion:

HT (I°UsU
T
s )H = HT UnUT

nH =
∞∞∞UT

nH
∞∞∞
2

(22)

where Un = [u1, . . . ,udn ] represents the matrix of minor
(least) eigenvectors of R11 referred to as the noise subspace.
Note that U = [Us Un] is unitary and hence I °UsUT

s =

UnUT
n . As H is a linear function of h, the criterion in

equation (22) is a quadratic form of h that can be written
as:

∞∞∞UT
nH

∞∞∞
2

=
dnX

i=1

∞∞∞uT
i H

∞∞∞
2

= hT QSSh (23)

where QSS =
dnX

i=1

UiUT
i is obtained from Un by using the

relation uT
i H = hTUi where Ui is a function of ui that can be

obtained by straightforward algebraic manipulations. The latter
criterion is minimized under unit-norm constraint, i.e khk = 1,
to avoid the trivial solution h = 0, so that h corresponds to
the least eigenvector of QSS . The SS algorithm is summarized
in Table I.

B. Minimum Noise Subspace Method (MNS)

The MNS method is a simplified version of the SS one.
It is based on the same principle but it does not use all
the noise subspace but a minimum number of noise space
vectors. Indeed, it is shown in [26], that, instead of using the
dn noise vectors (dn >> 1), only (K ° 1) properly chosen
noise space vectors are sufficient to guarantee the uniqueness
of the solution of equation (23) (up to a scalar factor). To
estimate the noise space vectors, we consider K ° 1 image
pairs that form a tree structure. For each pair (i1, i2), we

2The constant factor is an inherent ambiguity in blind system identification
as the exchange of a scalar between H and f does not affect the observation,
i.e g = Hf = ÆH.( 1

Æ f).
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1. For mw ∏ mh and nw ∏ nh; construct a data matrix

D = [g(mw, nw), g(mw, nw + 1), . . . ,g(mg, ng)].

2. Compute the estimate of the auto-covariance matrix

R̂11 =
1

mgng
DDT

.

3. Compute the eigen-decomposition of R̂11 and extract the dn

eigenvectors that are in the noise subspace (dn = Kmwnw°(mh +
mw ° 1)(nh + nw ° 1)).
4. Construct QSS from Un and compute h as the eigenvector
corresponding to the smallest eigenvalue of QSS .

TABLE I
THE SS ALGORITHM.

estimate the least eigenvector of the covariance matrix of£
gT

i1(m,n), gT
i2(m,n)

T
§T which is zero padded (as shown

in Table II) to form a noise space vector. By doing so, we
avoid the computationally expensive eigen-decomposition of
R11 required in the SS method. Moreover, the (K ° 1) noise
space vectors can be computed in a parallel scheme if a parallel
architecture is available. These (K ° 1) noise space vectors,
v1, . . . ,vK°1, are then used in equation (23) to form the
LS criterion PK°1

i=1

∞∞vT
i H

∞∞2
= hT (

PK°1
i=1 ViVT

i )h = hT QMNSh

that is solved similarly to the SS method, under unit-norm
constraint. The MNS algorithm is summarized in Table II. In

1. Select K°1 distinct pairs that form a tree pattern from K observed
images.
2. For each pair i = (i1, i2), construct the data matrix and its
corresponding covariance matrix:

Di =

∑
gi1 (mw, nw) · · · gi1 (mg , ng)
gi2 (mw, nw) · · · gi2 (mg , ng)

∏

and R̂i = 1
mgng

DiD
T
i

3. Compute the least dominant eigenvector of R̂i :

v(i1,i2) =

∑
v(i1,i2)(1)
v(i1,i2)(2)

∏
.

4. Construct a zero-padded vector vi consisting of K blocks of size
mwnw each. Place v(i1,i2)(1) as its i

th
1 block, v(i1,i2)(2) in the

i

th
2 block and zeros elsewhere.

5. Construct QMNS =
K°1X

i=1

ViVT
i and compute h as the eigenvector

corresponding to the smallest eigenvalue of QMNS .

TABLE II
THE MNS ALGORITHM.

the original MNS method, some observed images are used
more than others, depending on the chosen set of image
couples. This might lead to poor estimation performance if
the system outputs that were chosen correspond to the ’worst
observed images’. This raises the problem of the best choice of
the appropriate set of outputs and motivates the development
of a Symmetric MNS method (SMNS). In SMNS technique
we guarantee a certain symmetry in the choice of the set of
observed image couples. For instance, for K = 4 channels,
we use the following channel couples: (1,2), (2,3), (3,4), (4,1).
This choice makes the SMNS method more robust than MNS
one in terms of estimation accuracy. Hence, SMNS algorithm
is the same as the MNS except for the fact that we use K

pairs of observed images: (1, 2), (2, 3), . . . , (K°1,K), (K, 1),

1. For all (m, n), compute ™(m, n).
2. Compute the quadratic form

QCR =
X

m,n

™T (m, n)™(m, n).

3. Compute h as the least dominant eigenvector of QCR.

TABLE III
THE CR ALGORITHM.

instead of an ad-hoc choice of (K ° 1) pairs forming a tree
structure.

C. Cross Relation method (CR)

The CR method was first introduced in [27]. It is based on
the commutativity of the convolution operator. In fact, in the
noiseless case, we observe that: Hi§Gj(m,n) = Hj§Gi(m,n).

Therefore,

[gi(m, n)

T
, ° gj(m,n)

T
]

∑
hj

hi

∏
= 0, 8(i, j).

We can write this relation for any pair of channels. We have
a total of K(K°1)

2 pairwise equations corresponding to:

™(m,n)h = 0, 8 (m,n) (24)

where

™(m, n) =

2

64

™1(m, n)
...

™K°1(m, n)

3

75

™k(m, n) =

2

664

0 . . . 0 gT
k+1 °gT

k 0
...

. . .
...

...
. . .

0 . . . 0 gT
K 0 °gT

k

3

775 .

Inversely, it is shown in [28] that equation (24) characterizes
uniquely -up to a constant factor- the unknown channel param-
eter vector h. Hence, the CR method consists in estimating h
by solving equation (24) in the LS sense:

min

h

X

m,n

k™(m,n)hk2 = hT QCRh.

Again, the solution of the above LS criterion under unit-norm
constraint of h, is given by the least eigenvector of QCR.
This method presents a real computational gain as it requires
only one eigenvector computation whereas the other methods
require two or more eigen-decompositions. Moreover, we can
further reduce the computational cost by choosing, as for the
MNS and SMNS methods, only (K ° 1) or K pairs of cross-
relations. The CR algorithm is summarized on Table III.

D. Least Squares Smoothing Method (LSS)
The LSS method is an estimation technique that exploits the

isomorphism between the input and the output spaces. LSS has
been introduced in [13] in the 1D case. We propose, here, to
generalize it for the first time to the 2D signals. Indeed, in the
noiseless case, one can write the data matrix as follows:

DLSS , [g(2mh + 1, 2nh + 1), . . . ,g(mg °mh, ng ° nh)](25)
= HF (26)

with,

F = [f(2mh + 1, 2nh + 1), . . . , f(mg °mh, ng ° nh)].
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Since H is full column rank, the row space of DLSS (output
space) coincides with the row space of F (input space). This
allows us to construct appropriate projection subspaces using
only observed data. More precisely, let Si be a row subspace
that contains all rows of F except the i

th one (referred to
as Fi,:). In order to construct Si, first, note that each column
of matrix F consists in nb = nh + nw ° 1 blocks containing
nc = mh+mw°1 elements each one. So that, each row index
r in matrix F can be written as r = knc + l, 0 ∑ k ∑ nb ° 1

and 1 ∑ l ∑ nc. Let i be the index of the row to be selected
: i = kinc + li. In order to extract the i

th row of matrix
F, we first eliminate the rows in all row blocks of F except
those in blocks ki, i.e. rows corresponding to blocks k in
the range [0, ki ° 1] and [ki + 1, nb ° 1]. In our work, we
consider i = (mh ° 1)nc + (nh ° 1), for which the previous
row vectors belong to the subspace generated by the rows of
Br

= [g(1, nh + 1), . . . ,g(mg ° 3mh, ng ° 2nh)] and Bc
=

[g(mh+1, 1), . . . ,g(mg°2mh, ng°3nh)] respectively. Then,
we eliminate the rows in the same block as row i, i.e. rows in
the k

th
i block corresponding to indices l in the range [1, li°1]

and [li +1, nc] (for i = (mh° 1)nc +(nh° 1), ki = mh° 1

and li = nh° 1). These rows live in the subspace spanned by
the row vectors of Fr

= [g(2mh + 1, nh + 1), . . . ,g(mg °
mh, ng ° 2nh)] and Fc

= [g(mh + 1, 2nh + 1), . . . ,g(mg °
2mh, ng ° nh)] respectively. Finally, Si is constructed from
the row space generated by S = [BrT

, BcT
, FrT

, FcT
]

T .
This subspace will be used to project the data matrix D. In
practice, to take into account additive noise, the desired row
space is estimated from the principal right singular vectors of
S. The projection error of DLSS onto this row space allows
us to extract the i

th column vector H:,i of H, i.e.

ELSS = DLSS °DLSS |Si = H:,iFi,:|Si ,

where ELSS is a rank one matrix with principal singular vector
equal to H:,i up to a scalar factor. By selecting a column vector
of H that contains all channel coefficients, one can estimate the
latter through the estimation of H:,i as the principal left singu-
lar eigenvector of ELSS . Note that many columns of H contain
all channel coefficients. Using equation (3), one can observe
that the column blocks in the range [mh°1, mw°1] contain
all block matrices Hi(k), k = 0, . . . , mh ° 1, i = 1, . . . , K.
Similarly, equation (4) shows that the column vectors of Hi(n)

in the range [nh ° 1, nw ° 1] contain all the coefficients
Hi(n, k), k = 0, . . . , nh°1. Consequently, the column index
i should be in the set {knb + l, k 2 [mh ° 1, . . . , nw °
1], l 2 [nh ° 1, . . . , nw ° 1]} (which justifies the choice of
i = (mh°1)nc +nh°1) . The LSS algorithm is summarized
in Table IV.

Remark: All the considered identification methods require
the a-priori knowledge of the PSF size, i.e mh and nh. A
main advantage of the LSS method is the possibility to relax
this constraint in a joint channel parameter and channel size
estimation framework. This implementation has already been
considered in [13] in the 1D case and can be used in the 2D
case as well.

1. Construct the data matrix:

DLSS = [g(2mh + 1, 2nh + 1), . . . ,g(mg °mh, ng ° nh)]

2. Construct the projection matrix (matrix from which the subspace
projection is computed):

S = [BrT
,BcT

,FrT
,FcT ]T

Br = [g(2mh + 1, nh + 1), . . . ,g(mg °mh, ng ° 2nh)]

Bc = [g(2mh + 1, 3nh + 1), . . . ,g(mg °mh, ng)]

Fr = [g(2mh + 1, nh + 1), . . . ,g(mg °mh, ng ° 2nh)]

Fc = [g(mh + 1, 2nh + 1), . . . ,g(mg ° 2mh, ng ° nh)]

3. Compute the projection matrix VTV where V is the matrix of
principal right singular vectors of S (V is of rank (mh + mw °
1)(nh + nw ° 1) + (mw + mh ° 2) + (nw + nh ° 2)).
4. Compute ELSS as the residue of orthogonal projection of DLSS
onto Range(V), i.e.

ELSS = (I° VTV)DLSS .

5. Compute H:,i (i = (mh ° 1)nc + (nh ° 1)) as the principal left
singular vector of ELSS .

TABLE IV
THE LSS ALGORITHM.

VI. IMAGE RESTORATION USING IDENTIFIED FILTERS

In this section, we are interested in a restoration technique
which consists in retrieving the original image using both the
set of observed images and the identified filters in section V.
We propose to generalize the Total Variation (TV) method, first
introduced in [29] in the monochannel case, to the multichan-
nel case and to use it to control the noise amplification during
the inverse filtering. To this end, we consider a regularized
least squares criterion T (f) given by:

T (f) =

1

2

KX

k=1

kHkf ° gkk22 + ∏JTV (f). (27)

∏ > 0 is a scalar parameter that controls the amount of
the desired regularization and hence measures the trade-off
between a good fit and the regularity of the solution. f denotes
the vectorized version of original image F . Hk is the filter
matrix associated to the k

th PSF estimate. gk is the k

th

observed image. JTV (f) is the well known TV of the original
image which is expressed in the continuous 2D domain as
[29]:

JTV (f) =

Z

≠f

krf(x, y)k2 dxdy =

Z

≠f

s

(
@f

@x

)2 + (
@f

@y

)2 dxdy.

(28)
where f represents a differentiable 2D function and ≠f

its spatial support. The minimization of the regularized least
squares criterion (27) necessitates the derivation of T (f) which
raises the problem of differentiability of JTV . In fact, kr.k2
is non-differentiable at zero point. Consequently, the TV term
is approximated as follows [29]:

JTV,Ø(f) =

Z

≠f

s

(

@f

@x

)

2
+ (

@f

@y

)

2
+ Ø

2
dxdy. (29)

where Ø is a small scalar parameter which allows to disturb
the gradient value around zero point in order to guarantee its
differentiability. In order to numerically estimate the derivative
of T (f), it is necessary to compute a discrete version of the TV
term. Then, classical numerical algorithms, such as gradient
descent optimization, could be used to solve criterion (27)
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and estimate ˆf the desired solution. The discrete gradient of
image f is expressed using derivative operators D

c and D

r

in the column direction (c) and the row one (r), respectively.
The expressions of the corresponding matrices Dc and Dr

depend on the approximation technique adopted to compute
the gradient [30]. These operators have the following matrix
representation: D(c)

= Imf ≠Dc and D(r)
= Dr≠Inf where

≠ represents the Kronecker product. Several approximations
can be used to compute this gradient. Here, we use the central
derivative in the central part of the image and we consider
the forward derivative on the image boundaries. Using these
operators, the TV term can be expressed in the discrete form
as:

JTV (f) =

mf nfX

s=1

√s =

mf nfX

s=1

p
(u

2
s + v

2
s + Ø

2
) (30)

where us = (D(c)f)s and vs = (D(r)f)s represent the s

th

element of vector D(c)f and D(r)f , respectively.
Let fi be an element of vector f , computing the derivative

of T (f) with respect to fi leads to:

@T (f)
@fi

=

KX

k=1

(HT
k (Hkf ° gk))i + ∏

mf nfX

s=1

@√s

@fi
(31)

where,
@√s

@fi
=

@√s

@us

@us

@fi
+

@√s

@vs

@vs

@fi
= D

(c)
s,i

@us

@fi
+ D

(r)
s,i

@vs

@fi
(32)

where D

(c)
s,i and D

(r)
s,i represent the (s, i)

th entries of matrices
D(c) and D(r), respectively. The estimate of the original image
ˆf satisfies:

@T (

ˆf)
@fi

= 0, 8i = 1, ..., mfnf . (33)

When using numerical algorithms in order to solve equation
(33), two difficulties are encountered: (i) the non-linearity of
terms @√s

@us
and @√s

@vs
, (ii) the non-regularity of the desired

solution. In fact, concerning point (ii), it is well know that
the grey levels of a digital image present some jumps and
steep gradients especially at edge locations. So, the solution
of equation (33) must satisfy such properties. Numerical
optimization algorithms such as Raphson-Newton suffer from
local minima convergence when used to optimize functions
with discontinuities. Consequently, we propose to cope with
these problems by using the primal dual Newton method that
is shown to have better convergence performance as compared
to standard Raphson-Newton technique (see details in [31]).
We introduce two vectors of extra variables, one for each
dimension, and each of them substituting the ”most non linear”
part of the system in the corresponding direction, namely:

w

(c)
s =

@√s

@us
=

us

√s
=

(D(c)f)s

√s
(34)

and

w

(r)
s =

@√s

@vs
=

vs

√s
=

(D(r)f)s

√s
. (35)

Let us define the vectors of extra variable as:

w(c) = [wc
1, w

c
2, . . . , w

c
mf nf

]T and w(r) = [wr
1 , w

r
2 , . . . , w

r
mf nf

]T .

For equation (34), we define a residual term ª(c)
(f ,w(c)

)

as: ª

(c)
s (f ,w(c)

) = √sw
(c)
s ° (D(c)f)s or equivalently:

ª(c)
(f ,w(c)

) = ™(f)w(c) °D(c)f where ™(f) = diag(√s).
A similar expression is obtained for the r°direction. Taking
into account equations (32), (34) and (35), one has to solve
the linear system

2

4
T

0
(f ,w(c)

,w(r)
)

ª(c)
(f ,w(c)

)

ª(r)
(f ,w(r)

)

3

5
=

2

4
0
0
0

3

5
. (36)

This system is globally ’more linear’ than the one in equation
(31). We compute the Jacobian of this system by means of
Taylor series expansion and linearization of the residual terms.
So, we can write the linearized system as:
2

6664

KX

k=1

HT
k Hk ∏D(c)T

∏D(r)T

£(c) ™(f) 0
£(r) 0 ™(f)

3

7775

2

4
±f

±w(c)

±w(r)

3

5 = °
2

4
T

0(f ,w(c)
,w(r))

ª(c)(f ,w(c))
ª(r)(f ,w(r))

3

5

(37)
where

£(c)
= W(c)W(r)D(r) ° [I°W(c)2

]D(c)
,

and
£(r)

= W(r)W(c)D(c) ° [I°W(r)2
]D(r)

.

Now, to solve this system only with respect to ±f we apply
block elimination to (37) leading to the computation of the

Schur complement of matrix
KX

k=1

HT
k Hk. This transformation

is possible as the block
∑
™(f) 0

0 ™(f)

∏
is invertible. We divide

the coefficient matrix © of system (37) into four sub-blocks:

©11 =

KX

k=1

HT
k Hk, ©12 =

£
∏D(c)

∏D(r)
§
,

©21 =

∑
£(c)

£(r)

∏
, ©22 =

∑
™(f) 0

0 ™(f)

∏
.

Let ©S denote the Schur complement of ©11 in ©:

©S = ©11 °©12©
°1
22 ©21

Let ©S
22 denote the difference between matrices ©S and ©11:

©S
22 = °∏D(c)T

™(f)°1£(c) ° ∏D(r)T
™(f)°1£(r)

. (38)

We note that if ©S
22 is symmetric then, the whole matrix ©S

is symmetric too. ©S
22 can be written as:

©S
22 = °∏D(c)T

™(f)°1£(c) ° ∏D(r)T
™(f)°1£(r)

= °∏D(c)T
™(f)°1[W(c)W(r)D(r) ° [I°W(c)2]D(c)]

°∏D(r)T
™(f)°1[W(r)W(c)D(c) ° [I°W(r)2]D(r)]

.

(39)
This expression shows that ©S

22 is a symmetric matrix since
W(c), W(r) and ™(f) are diagonal matrices. Consequently,
this transformation allows us to solve the system by means of
well known iterative methods such as the minimum residual
one ( Minres) [32], [33]. The Minres function attempts to
find a minimum norm residual solution x to the system of
linear equations Ax = b when matrix A is symmetric. This
condition fits the system that we are studying. In order to solve
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the considered system, one can multiply the two bottom row
blocks of © by ©12©°1

22 and then subtract from the top block
to obtain:

(©11 °©12©°1
22 ©21)±f = °T

0
(f)°©12©°1

22

"
ª(c)

ª(r)

#
.

After eliminating the variables ª(c) and ª(r) as they represent
small residuals, the transformed set of equations to solve to
find the descent direction becomes:

©S
±f = °T

0
(f). (40)

Therefore, the primal-dual Newton method used here consists
in finding an appropriate descent direction for the criterion
to be minimized. This solution guarantees the decrease of
the criterion with respect to all spatial direction when matrix

©S
=

KX

k=1

HT
k Hk + ©S

22 is positive (semi)-definite. The sum

of K matrices HT
k Hk is a positive semi-definite matrix. We

have to prove that this is also the case for ©S
22. Let x be

a non-zero vector, we introduce x(c)
= ™(f)°1/2D(c)x and

x(r)
= ™(f)°1/2D(r)x. According to equation (39), we can

write:
1
∏xT ©S

22x = x(c)T
[I°W(c)2]x(c) + x(r)T

[I°W(r)2]x(r)

°x(c)T
W(c)W(r)x(r) ° x(r)T

W(r)W(c)x(c)
.

(41)

Let denote y(c)
= W(c)x(c) and y(r)

= W(r)x(r). Equation
(41) can be re-written as:

1
∏xT ©S

22x =

∞∞x(c)
∞∞2

2
+

∞∞x(r)
∞∞2

2
° ∞∞y(c)

+ y(r)
∞∞2

2
.

(42)
Using Cauchy-Schwartz inequality, and the fact that all ele-
ments of diagonal matrices W(c) and W(r) are in the interval
[°1, 1], we can write:

∞∞∞y(c)
+ y(r)

∞∞∞
2

2
∑

∞∞∞x(c)
∞∞∞

2

2
+

∞∞∞x(r)
∞∞∞

2

2
. (43)

Given the inequality in equation (43) and the equation (42),
we conclude that for a given non-zero vector x, xT ©S

22x ∏ 0.
Thus, matrix ©S

22 is positive semi-definite and so is ©S . As
mentioned earlier, this property guarantees the convergence of
the iterative algorithm to the global minimum.

VII. SIMULATION RESULTS

In the following, we test the image restoration performance
using regularized MRE and TV-based algorithms. Experiments
were carried out for two different images: a portion of Parrot
image which has a lot of features and details to be preserved by
restoration and the cameraman one which has a homogeneous
background with a man in the middle. These images are
adequate to measure the ability of the developed algorithms to
restore the image details and edges as well as the homogeneous
area. In all experiments, the degraded images are altered by a
set of PSFs which simulate a camera motion, an averaging
action and a gaussian filtering with æ = 1 and æ = 1.5,
respectively. The number of observed images corresponding to
the number of independent PSFs is K = 4 and the PSFs’ size
is 5£5. The degraded images are corrupted by white gaussian
additive noise of power æ

2
n. The Signal to Noise Ratio (SNR)

is defined as SNR = 10log10(
kFk22
æ2

n
). For the plots on figures

9, 11 and 12, the statistics are evaluated over 100 Monte Carlo
runs.
We first propose a comparison between the regularized version
of the MRE algorithm and the non regularized one for a
set of degraded images with SNR = 21dB. The degraded
images are shown on figure 3. The image restoration results are
depicted on figure 4. This experiment confirms the inefficiency
of MRE algorithm in the noisy case. It demonstrates the
importance of the regularization to avoid the noise amplifi-
cation phenomenon associated with the image deconvolution
problem.

(a) (b)

Fig. 4. (a) MRE restored image (b) R-MRE restored one for observed images
on figure 3.

A. R-MRE versus TV-based algorithms

In this experiment, we compare the performance of the two
proposed algorithms for the restoration of the Parrot and the
Cameraman images, respectively. The R-MRE algorithm with
parameters µ = 0.5 for the regularization parameter (equation
(16)) and c = 10% for the relative threshold (equation (15))
has been applied to the degraded images shown on figure 3.
The result is compared with the one obtained by the TV-based
restoration approach using the channel estimate given by the
CR method. The regularization parameters are ∏ = 6 · 10

°3

and Ø = 10

°4. To highlight the performance gain due to
the MC processing, we also present in figure 5 the image
restored by the monochannel technique in [18] applied to
image (a) in figure 3. In this example, we note that the R-MRE
algorithm mitigates the noise effect but alters the details of the
original image, whereas the TV based method decreases the
noise effect while preserving the image texture details . The
mono-channel method is almost inefficient since the restored
image is similar to the degraded one. The same experiment
was conducted on Cameraman image. The set of Cameraman
degraded images is shown on figure 6 and the restoration
results on figure 7. The parameter values used for the R-
MRE algorithm are µ = 0.42 for the regularization parameter
and c = 10% for the relative threshold. Concerning the TV
regularization term, the regularization parameter is ∏ = 5·10

°3

and the disturbing scalar is Ø = 10

°4. We also display in
figure 8 a log-compressed version of the degraded and restored
images in order to highlight the restored image details. Note
that details like the cameraman hand is missing in the degraded
image whereas it is visible in the TV-based restored image.

The last part of this experiment is a comparative study of the
performance of R-MRE and TV-based algorithms versus the
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(a) (b) (c) (d)

Fig. 3. Blurred noisy observed images with PSFs (a) motion filter (b) average filter (c) gaussian filter with variance 1 (d) gaussian filter with variance 1.5
and SNR=21dB.

(a) (b) (c)

Fig. 5. Restored images using different algorithms (a) a regularized monochannel method (b) R-MRE algorithm (c) TV-based algorithm

(a) (b) (c) (d)

Fig. 6. Blurred noisy observed images with PSFs (a) motion filter (b) average filter (c) gaussian filter with variance 1 (d) gaussian filter with variance 1.5
and SNR=22dB.

(a) (b) (c)

Fig. 8. Log-compressed images for visual purposes corresponding to (a) one
degraded image (b) R-MRE restored image (c) TV-based restored image.

SNR values in the range [15 55]dB. To avoid manual choice of
the regularization parameters, we have chosen them according
to the following rule: c = 10%, Ø = 10

°4, µ =

104

SNR4

and ∏ =

55
SNR3 . Indeed, this ’ad hoc’ choice is to reduce

the weight of the regularization term when the SNR level
increases. Figure 9 shows the evolution of the restored image
quality with respect to the SNR. The objective quality of the
restored image is evaluated by means of a structural objective
image quality index namely the Structural Similarity Index
Measure (SSIM) introduced in [34]. For this experiment, some
remarks are done and several conclusions could be drawn.
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(b)

Fig. 9. Objective quality of the restored image by means of R°MRE and TV
regularization, respectively, versus SNR for (a) Parrot image, (b) Cameraman
image.

Remark 1: This experiment has been carried on two different
kinds of images. Parrot image has many details (Parrot face de-
tails). On the opposite, cameraman image has a homogeneous
background with a cameraman in the middle. It is expected that
the performance of both algorithms is different for each kind
of image. In order to see this difference, we fixed the whole
parameters the same way for both images. Namely, parameters
∏ and µ depend only on the SNR.
Remark 2: Concerning R-MRE algorithm, when the images are
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(a) (b) (c)

Fig. 7. Restored images using different algorithms (a) restored image using a regularized monochannel method applied to image (a) of figure 6 (b) R-MRE
restored image (c) TV-based restored image.

too noisy (low SNR) if the same ’big amount’ of regularization
is applied to restore Parrot and cameraman images, it seems
then predictable that the Parrot image have worse quality than
cameraman. In fact, in this case the regularization (large value
of µ) also ’destroys’ the details in Parrot image. This remark
explains the fact that for low SNRs, Parrot image similarity
index is in the interval [60% 70%] whereas cameraman image
similarity index is in the interval [70% 80%].
Remark 3: The performance of R-MRE and TV-based restora-
tion algorithms highly depends on the image nature, the
amount of noise and the parameters selection. In future work,
we will thoroughly evaluate the sensitivity of the latter with
respect to the choice of different parameters. But, in this stage
of the work, we could propose to use the algorithms depending
on the image nature and the SNR as depicted on figure 10.

Details in the
image

Low (not
many
details)

High (image 
with many details)

SNR
Low High

R-MRE TV-based 
restoration

TV-based restoration
 or

 R-MRE with small 
regularisation

 parameter

TV-based restoration 
or 

R-MRE with small
 regularization

 parameter

Fig. 10. The choice of restoration method with respect to SNR value and
image type.

B. Identification performance

Our objective here is the performance study of the blind
identification of the channel parameter vector h given the
blurred images g1, . . . ,gK . Indeed, channel estimation errors
may result in significant degradation of the restored image
quality. Hence, we disturb the channel vector h by adding ≤¢h
where ≤ is a varying positive scalar and ¢h a fixed random
vector of unit norm. Hence, ˆh = h + ≤¢h represents the blur
function used for image restoration by means of TV-based
method in VI. The restored image quality is measured using
the SSIM. Figure 11 illustrates the degradation of the restored
image quality due to channel identification disturbance. As we
can observe, this degradation becomes significant when the

channel estimation error (k ≤¢h k2) is larger than (°10dB).
In our work, we have used several methods to identify the PSF
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Fig. 11. Impact of the channel identification precision on the restored image
quality for (a) Parrot image, (b) Cameraman image.

coefficients. A comparison between these methods is given on
figure 12. We compare the channel estimation performance
of the considered methods for different SNR values. More
precisely, we plot the mean value of Normalized Mean Square
Error (NMSE) between the estimated and the actual PSF
vector parameter: 10log10(

khest°hk2
khk2 ) as a function of the

SNR for the SS, MNS, SMNS, CR and LSS methods. To
do so, we fix the original image, but we generate randomly
the K filters at each Monte Carlo run. Surprisingly, the CR
method (which is the less expensive one) outperforms the other
methods. This is due probably to the fact that all other methods
use the eigen-subspaces of large ill-conditioned matrices and
hence are very sensitive to noise effect.
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Fig. 12. Channel estimation MSE versus SNR: °0° SMNS,... SS, ..

MNS,° § ° CR,° LSS.
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C. Comparison to the state of the art

In this section we carry out a comparative study between the
methods proposed in this article and the iterative MBD method
in [10]. The first experiment is performed with the cameraman
degraded images on figure 6. The result is depicted on figure
13.

This figure shows that while the R-MRE methods removes
more noise it smooths image edges. TV based method and the
iterative one proposed in [10] have similar results. When we
compare the cameraman jacket on figures 13-(b) and 13-(c) we
can see that the TV-based method removes more noise from
the degraded images.

VIII. CONCLUSIONS AND FUTURE WORK

In this article, we focus on efficient techniques aiming at
restoring an original image using several degraded renditions
of it. This paper introduces two multichannel restoration tech-
niques with regularization. The first one is a direct restoration
technique based on regularized MRE algorithm. The MRE
algorithm ensures a perfect restoration of the original image
in the noiseless case, but is inefficient in presence of noise.
Hence, in the noisy case, the MRE algorithm was used jointly
with an appropriate regularization technique that improves
significantly its performance even at low and moderate SNRs.
The second restoration technique consists in the identification
of the degradation filters before their inversion. Several de-
terministic identification algorithms were tested including a
version of the LSS method that is generalized here from the
1D to the 2D case. The estimated PSFs are then exploited
to restore the original image using a least squares criterion
jointly with a Total Variation term that mitigates the noise
amplification effect. Efficient optimization with convergence
study of the TV-based criterion was considered. Simulation
comparisons of the two proposed restoration techniques are
provided for different SNR ranges and for different image
types using an objective image quality metric. In a future
work, several issues will be deepened. We will study the
sensitivity of the proposed methods towards the selection
of parameters. We will also use real-life images to further
evaluate the performance of the proposed methods.
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Fig. 13. Objective quality of the restored image by means of (a) R°MRE, (b) TV regularization, (c) iterative MBD method in [10] with 10 iterations.


