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Abstract

Perceptual approaches have been widely used in many areas of visual informa-
tion processing. This paper presents an overview of perceptual based approaches
for image enhancement, segmentation and coding. The paper also provides a
brief review of image quality assessment (IQA) methods, which are used to eval-
uate the performance of visual information processing techniques. The intent of
this paper is not to review all the relevant works that have appeared in the lit-
erature, but rather to focus on few topics that have been extensively researched
and developed over the past few decades. The goal is to present a perspective as
broad as possible on this actively evolving domain due to relevant advances in
vision research and signal processing. Therefore, for each topic, we identify the
main contributions of perceptual approaches and their limitations, and outline
how perceptual vision has in�uenced current state-of-the-art techniques in image
enhancement, segmentation, coding and visual information quality assessment.

Keywords: Human Visual System, Image Quality, Contrast, Perceptual
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1. Introduction

The extensive use of digital visual media in our everyday life and their in-
herent presence around us, necessitates for the development of smarter and
more e�cient methods for modeling, analysis, processing and communication
of visual information. Machine vision techniques progressed so much and were
able to perform tasks that one could only dream of a few years ago; thanks
to smarter algorithms, a huge increase in processing power, storage capabilities
and communication bandwidth available in today's computers and networks.
Nevertheless, these techniques fall short of our expectation when compared to
the ease with which the human visual system (HVS) deals with complex scene
analysis, processing and abstraction. Therefore, we are witnessing a growing
interest in HVS inspired approaches for digital visual information modeling,
analysis, processing and communication. The salient characteristics of the HVS
can be exploited in the design of novel methods for image processing and ma-
chine vision. For example, the perceptual irrelevancy and visual masking e�ects
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can be exploited to improve image compression and �ltering algorithms. On the
other hand, the understanding of processing and coding visual information by
the HVS may help one to develop new perceptual approaches that may overcome
the limitations of existing signal processing based methods.

The HVS is a complex system dominated by a retinotopic organization, par-
allel processing, feedforward, feedback and lateral connections. This article,
however, does not concern the structural or functional organization of the HVS.
The focus is rather on the perceptual aspects of human vision. Section 2 in-
troduces the main perceptual characteristics that have been largely exploited
in the �eld of image processing. It brie�y describes the concept of contrast,
visual masking, contrast sensitivity function, and frequency selective channels.
Section 3 presents an overview of image enhancement methods, including de-
noising techniques, contrast enhancement methods and artifact reduction ap-
proaches. Section 4 describes perceptual image segmentation algorithms and
classi�es them into region-based, edge-based and perceptual grouping based
approaches. The improvement of image coding methods based on perceptual
approaches is tackled in Section 5, focusing on perceptual lossy compression.
Section 6 is dedicated to some important issues regarding quality assessment of
visual information. The paper ends with some concluding remarks presented in
section 7.

2. Perceptual Characteristics of the Human visual system

Over many decades, the understanding of the human visual system (HVS)
has attracted the curiosity of many researchers working in image processing and
machine vision. Very often, however, the models used in computer vision and
image processing are simpli�cations derived from psycho-physical experiments.
In the following subsections, we describe the basic human vision characteris-
tics that have been largely exploited in di�erent image processing tasks such
as contrast enhancement, visual masking, contrast sensitivity function (CSF),
and frequency and orientation selectivity. Biological interpretation of the mech-
anisms underlying the di�erent visual phenomena considered in this article is
beyond the scope of this article. For a more comprehensive treatment of visual
perception the reader is referred to [1] and [2].

2.1. Image Contrast

Contrast is one of the most important factors to consider for image analysis
and processing. However, the de�nition of contrast is still controversial and
there is no consensus on how to de�ne and measure objectively the perceptual
contrast. For optical images, contrast refers to the ability of the human vi-
sual system to detect the luminance di�erence between two or more stimuli.
The contrast depends on many physical and psycho-visual factors [2]. Many
experiments and studies have been conducted in search for an objective con-
trast measure that is consistent with the perceptual sensitivity of the HVS.
Weber (1834) was the �rst to investigate the visual discrimination ability of the
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HVS. Many years later, Fechner (1861) formulated more explicitly the empirical
law of Weber and proposed methods for measuring the discrimination ability
of the HVS based on the notion of Just Noticeable Di�erences (JNDs). The
�rst physical measure of contrast was then expressed as the relative variation
of luminance. Another measure of global contrast was proposed by Michelson
in 1927 [3]. This measure was introduced to quantify the visibility of optical
fringes. While this contrast de�nition has no link with the HVS, it has been
widely used in many studies, including psycho-visual experiments such as the
measurement of contrast sensitivity function [4]. In 1944, Moon and Spencer
considered the case of a target on a non-uniform surround and proposed a more
realistic measure of contrast [5].

All these seminal experiments contributed much to our knowledge of how
the HVS perceives global contrast in some limited environment. However, for
natural and complex images local contrast measures need to be de�ned to ac-
count for non-stationarity and local structures of the signal. Since the early
pioneering works of Weber and Fechner, many studies have been conducted and
several measures of local contrast have been proposed, which aim to mimic the
key psychophysical characteristics of the HVS [6]-[9]. Peli was the �rst to in-
troduce frequency in the measurement of contrast in both complex and natural
images. Following Peli 's reasoning, Winkler and Vandergheynst proposed an
isotropic contrast measure based on directional wavelet decomposition [8] to ac-
count for the energy responses of both in-phase and quadrature components. It
has been shown that this new contrast measure overcomes some limitations of
Peli 's de�nition. The anisotropy selectivity of the HVS was taken into account
in de�ning a band-limited local contrast in [10]. These studies highlighted the
need for de�ning a contrast where both the directional and frequency selectiv-
ity are taken into account. Many other contrast measures inspired by Peli 's
approach have been proposed [8]-[11]. However, the extension of contrast mea-
surement to color images has attracted less attention. One of the di�culties
is related to the fact that the color contrast is linked to color constancy phe-
nomenon [12], which is not well understood. A color contrast analysis based on
a model of the in�uence of color perception and the interactions between local
and global spatial structures of the image was presented in [13]. In [14], a mul-
tilevel approach based on Rizzi 's method was proposed to measure perceptual
contrast in color images.

Although the contributions of the chromatic channels and spatial informa-
tion have been considered in the computation of local contrast, to the best of
our knowledge, there is no comprehensive model that allows the prediction of
global contrast from the local contrast measures; though, some attempts have
been made to derive such models [11], [14]-[16]. The basic idea of these ap-
proaches is to compute a local contrast at various spatial frequencies and then
derive the global contrast by using a weighting process. However, there is no
�nding from the HVS or underlying visual model to support such operation.
The study performed in [16] revealed also the di�culty in predicting the global
impression of contrast in natural images.
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2.2. Visual Masking

Visual masking refers to the inability of the HVS to detect one stimulus, the
target, in the presence of another, the mask. It is a perceptual phenomenon
that has been studied extensively since it was �rst observed in the 1960's. The
visibility of the target depends on many factors, in particular frequency, ori-
entation and contrast of both the mask and the target. The modeling of this
phenomenon has been carried out on some simple stimuli such as sinusoidal pat-
terns. Legge and Foley performed extensive experiments on some simple visual
scenarios [17]. They studied the threshold contrast necessary to detect the tar-
get when varying the contrast and frequency of the mask. They established an
empirical power law relating the target threshold contrast to the mask contrast.
Other more elaborated masking models have also been proposed [18]-[20]. A
comparative study of some masking models can be found in [20]. For a more
extensive discussion on this important phenomenon, the reader is referred to
[17]-[20].

2.3. Contrast sensitivity function

The contrast sensitivity of the HVS does not depend only on the relative
luminance between the background and the stimulus, but also on many other
factors, such as spatial frequency, size, color, and orientation of stimulus. The
contrast frequency sensitivity of the HVS was investigated by Robson and Camp-
bell, among others, in the early 1960's [21],[22]. It was found that the HVS acts
roughly as a band-pass �lter. It was also observed that while the temporal and
spatial sensitivities are independent at high frequencies, they are inseparable at
low frequencies. The early studies concentrated mainly on luminance contrast
sensitivity. The study of the chromatic CSF (CCSF), on the other hand, is more
complex; few studies have been devoted to it, which revealed that the CCSF
is rather di�erent from the achromatic CSF [24]. Some practical methods for
measuring the CCSF have also been proposed [23].

2.4. Frequency and orientation selectivity

Since the pioneering work of Hubel and Wiesel [25], many studies have been
devoted to the understanding of the functional architecture of the primary visual
cortex of mammalians [26]-[28]. These studies and other �ndings revealed the
existence of neurons that are sensitive to orientation, size and spatial frequency.
It is now acknowledge that the HVS possesses both orientation selectivity and
spatial-frequency selectivity. To mimic this multi-channel characteristic of the
HVS, some transforms have been proposed for image analysis and coding [29]-
[31]. In particular, the cortex transform introduced by Watson was found to be
e�ective in many applications such as image coding, image quality assessment
and texture analysis [32]-[34].

2.5. Information processing in Visual System

The human visual organs use retina in the eye to collect and process visual
information. The vast number of interconnected neurons in retina transforms
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visual stimuli into nerve impulses representing both static and dynamic tempo-
ral imagery [108]. The retina samples visual imagery at more than 126 million
spatial locations using a layer of photoreceptors comprising of rods and cones
[107]. Rod and cone are synapsed by bipolar and horizontal cells due to the
lateral inhibition characteristic of the photoreceptor connections. This causes
contrast enhancement in the visual imagery. The next layer in the retina com-
prised of Amacrine cells modulates the outputs of the bipolar and horizontal
cells. Finally, the Ganglion cells connect the retinal output to the optic nerve.
Ganglion cells are also responsible for motion anticipation [104]. Early works
suggest that the retina approximates the Laplacian edge detector and adaptive
low-pass �ltering resulting in noise reduction [105].

There are three primary visual pathways such as P, M and K-koniocellular
that terminate at the striate visual cortex (V1), and process information in
parallel. Each of these areas in primary visual cortex (V's) maintains one pro-
cessed and topographically correct image map of information that falls on the
retina. There appears to be some cross-talk among the channels at various cor-
tical levels. According to the concept of columnar organization, the neighboring
neurons in the visual cortex have similar orientation tunings and consequently
form an orientation column [106]. It has been known that the initial phases of
neuron responses encode the location of visual stimuli whereas the later phases
encode the stimulus orientations. Temporal edge location and its orientation
at the neuronal level in the primary visual cortex may be used for the parallel-
sequential image processing tasks such as segmentation under control of visual
attention.

3. Image enhancement

Image enhancement is probably one of the most extensively studied problems
in image processing. There are many factors that a�ect the quality of the
acquired, transmitted or reconstructed image. Some factors are directly related
to the image acquisition process, such as the illumination, whereas others are
related to the physical properties of the sensor and the observed scene. The
perceptual image quality is also a�ected by the common limitations of coding
and transmission technologies. In this section, we brie�y describe perceptual
image enhancement in its broadest sense, with a focus on three of the most
widely studied problems: image denoising, contrast enhancement and coding
artifact reduction.

3.1. Image denoising

The visibility of noise in images is an important issue that has been well
investigated. However, little attention has been paid to the understanding of
how the HVS perceives noise in natural images. The HVS is able to discriminate
very quickly between two levels of noise in a given image. Image denoising is one
of the most widely studied problems in image processing. The main di�culty
is how to reduce noise while preserving some important image structures such
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as edges and �ne texture details. Although, many interesting approaches have
been proposed to address this di�culty, the problem is still open. Indeed, in
many cases there is still a large gap between the predictions of the theoretical
models and the empirical results from human observation. The main di�culty
is due to the lack of an e�ective measure that controls the e�ect of denoising
on texture and �ne details as perceived by a human observer. For example, the
SNR (signal-to-noise ratio) does not re�ect the level of denoising as perceived
by a human observer. Incorporating some characteristics of the HVS appears
as a promising solution to this di�cult problem.

In [35] a perceptual nonlinear �lter based on local contrast entropy was pro-
posed. The idea is based on the fact that additive noise increases the local
contrast entropy. Therefore, by decreasing the local entropy at the neighbor-
hood of each pixel, a smoothing e�ect ensues. The performance of the method
was evaluated on gray-tone images with additive white Gaussian noise (AWGN)
and salt&peper noise. The results show that the method compares favorably
in both objective and subjective image quality as well as in terms of compu-
tational speed, compared with classical and weighted median �lters. The idea
of exploiting the local contrast for noise �ltering was later pursued in [36], but
with a more advanced perceptual model of the HVS. This perceptual approach
incorporates some characteristics from the early stages of the human visual sys-
tem. A nonlinear �ltering approach based on the Holladay principle and, Moon

and Spencer contrast [37] was introduced and evaluated on gray-level images
[37] . The noisy pixels were �ltered using a decision rule based on the optical
Just Noticeable Contrast (JNC) de�ned in Moon and Spencer model. The per-
formance of the model was evaluated on some typical images contaminated by
AWGN (additive white Gaussian noise), and compared with some other non-
linear �ltering methods. However, the minor performance advantage does not
justify the additional computational complexity. One of the main advantages
of this model, though, is that the denoising level can be controlled by tuning
only a single parameter. Later, the multi-resolution concept was introduced for
reduction of perceptual irrelevancy based on the JNC model [38]. However, the
authors did not provide any measure related to the noise visibility. Furthermore,
the consistency of the method is demonstrated on a gray-level image only.

In [39] a perceptual variational framework was proposed for color image
denoising. The method is based on anistropic di�usion and exploits some prop-
erties of the HVS, especially edge detection mechanisms in color perception.
The image is analyzed and processed in the perceptually uniform color space
CIE-La*b*. The enhancement is then formulated as an optimization problem
with a color consistency constraint to avoid over-di�usion of color information.
The method compares favorably with the classical Perona-Malik �ltering tech-
nique; however, it is computationally complex and requires at each iteration
the evaluation of some parameters in the scale-space. More recently, a simi-
lar method based on TV variational model and some simple characteristics of
the HVS has been proposed for color image denoising [40]; here, the di�usion
parameter is adaptively selected according to noise visibility. More recently,
it has been shown that incorporating the perceptual saliency in a variational
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framework can improve image denoising performance [49]. It was reported that
the proposed method prevents some artifacts, such as staircase e�ect, without
a�ecting the perceptual quality of other salient features.

There are many other methods that implicitly exploit some properties of the
HVS for color image denoising. In [41], the image is decomposed and processed
in the perceptually color uniform space using bilateral �ltering. To avoid color
distortions that may result from �ltering, only perceptually similar colors, as
measured in the CIE-Lab space, are taken into account in the averaging opera-
tion. A new approach to color image denoising based on wavelet decomposition
and the CSF was proposed in [44]. In this approach, the CSF is applied in the
CIELAB color space. The method was found to outperform two other wavelet-
based �ltering techniques, in the presence of AWGN, using three subjective and
objective metrics. Though the method seems to be interesting, it is compared
to only some wavelet-based methods.

In [42] the authors introduced a perceptual learning-based approach for im-
age denoising. The idea is to combine a blind noise parameter estimation with
the BM3D (Block-Matching and 3D) denoising algorithm [43]. The input noise
parameter used in the BM3D method is then estimated using a learning process
based on natural scene statistics and image quality assessment. The proposed
approach statistically outperforms the BM3D algorithm. However, the slight
improvement in some cases does not seem to justify the additional computa-
tional complexity over the BM3D algorithm. Another adaptive perceptual ap-
proach based on non-local means (NLM ) �ltering was introduced in [45]. In
this approach, the anisotropic weighting function for the NLM denoising �lter is
adapted to the local perceptual content of the image. The idea is based on the
observation that image noise is highly noticeable in regions with few perceptually
signi�cant characteristics and masked in textured regions. A perceptual mea-
sure that accounts for the shape and orientation of the local structures is then
computed at each pixel and used to tune the spreading factor of the weighting
function. However, the method was only compared with NLM �ltering. Fur-
thermore, the relevance and the use of the perceptual measure was not clearly
explained. In [46] a spatial adaptive denoising method for raw CFA (Color Fil-
tering Array) data acquired by CCD/CMOS image sensors was introduced. It
was shown that by taking into account the statistical characteristics of sensor
noise and some simple features of the HVS, e�cient denoising could be achieved.
In this approach, the smoothing �lter is adapted to the noise level and the im-
age texture. But this method is quite complex and the results depend on many
parameters and tunable thresholds. Furthermore, the results are evaluated in
terms of PSNR; whereas, the method is based on some HVS characteristics. A
comparison with other HVS-based methods based on some perceptual measures
would have been better.

There are also other denoising methods where the characteristics of the HVS
are exploited indirectly through some perceptual measures [47]-[48]. In [47], the
structural similarity (SSIM) index was used to measure the similarity between
patches used in the weighting function. However, the SSIM is a full reference
image quality measure and as such cannot be used directly since the original
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image is unavailable. To overcome this di�culty, the noise is �rst estimated
from the noisy observed image. Then an estimate of noise-free patches is per-
formed by subtracting the noise from the observed image; further adjustments
of some SSIM parameters are necessary before �ltering is performed. While it
outperforms NLM �ltering, the method depends on many parameters and seems
ine�ective in the case of very low SNR. Furthermore, during the estimation of
similar patches, it is di�cult to assess how much noise still remains in the �l-
tered image. In [48], a similar method where an image content metric based
on SVD (singular value decomposition) and some local image features was in-
troduced. It was shown that this metric is well correlated with noise, contrast
and sharpness. The authors claimed that this metric could be used to optimize
the parameters for any image denoising method. However, as in the previous
method, the noise parameter is assumed to be known or can be estimated from
the noisy image. This makes the method dependent on the noise estimation
method, and hence it may fail in the case of multiplicative noise or low SNR
images.

3.2. Contrast enhancement

The main objective of contrast enhancement is to improve objective or per-
ceptual quality of a given image so that the features of the transformed image
become more visible than the feature of the original image. Contrast enhance-
ment can be expressed as an optimization problem where the objective is to
maximize the average local contrast of an image. However, a mathematical
formulation of contrast enhancement that doesn't incorporate some relevant
properties of visual perception tends to produce unrealistic results and unpre-
dictable visual artifacts. Historically, it is believed that Gabor was the �rst
to suggest a method for contrast enhancement [50]. In the same period, Land
and McCann introduced, independently, the Retinex theory [51]-[52], which has
gained increasing interest in the image processing community. This theory is
modeled on perception of lightness and color in human vision. Land suggested
decomposing the lightness into three distinct components in order to obtain
photometric invariants of the observed object surface. Two decades after the
publication of the �rst paper on Retinex, Land introduced the human percep-
tual receptive �eld structures in the model [53]. Over the past two decades,
many improvements have been introduced by incorporating new �ndings from
the HVS, color science and some new image representations such as multi-scale
models [54]-[57]. It is worth mentioning that Retinex has been mainly devel-
oped for tackling the color constancy problem. The Retinex model produces also
contrast enhancement and illumination compensation of lightness and color. Be-
sides Retinex theory, many perceptually based approaches have been proposed
for contrast enhancement. Here we give a brief description and discussion of
some representative HVS-inspired contrast enhancement methods.

Contrast enhancement (CE) methods can be classi�ed by means of various
criteria. One way to classify CE techniques is to divide them into two classes,
depending on the domain where the image is analyzed and processed (spatial
domain or spatial-frequency domain) and the way of transforming the contrast
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(direct or indirect) [58]-[59]. Direct methods involve mainly three steps. The
�rst step involves the estimation of the original contrast. In the second step, the
contrast is ampli�ed using a mapping function [59]-[60] or an optimization func-
tion as done in [61]. Finally, the pixel intensity value is transformed according
to this new contrast value.

Although much research e�ort has been devoted to the development of meth-
ods for contrast enhancement for gray-tone images, there has been less e�ort
devoted to color images. Although the basic notions of color perception are
relatively well understood, processing color images is not an easy task. This is
due to the complex interaction between many physical and psycho-visual fac-
tors that in�uence color perception. Indeed, processing color images may lead
to unpredictable results. Particular care must be taken when processing the
color components. One of the most studied problems in color processing is color
constancy. The Retinex model is one of the �rst appealing solutions for solving
this di�cult problem. Since its introduction, many methods based on Retinex
theory have been developed for color contrast enhancement [61]-[63].

An interesting perceptual approach for contrast-enhancement of gray-level
and color images was introduced in [64]. The contrast enhancement problem is
posed as a constrained optimization problem using a perceptual criteria derived
from Weber law governing the supra-threshold contrast sensitivity of the HVS.
The global function to be optimized is derived from the perceived local contrast;
it expresses the relative global increase of contrast. This function is maximized
under some constraints such as saturation and color shift. However, for gray-
level images, the method is compared only to some classical histogram-based
methods. For color images, the method is compared to multi-scale Retinex, a
curvelet-based enhancement method [65] and Fattal 's method [66]; although, the
comparison is mainly based on the optimization function used in the contrast
enhancement method.

In [75], a contrast enhancement method was introduced based on some basic
characteristics of the HVS. The basic idea is to segment the image intensity
into three regions, namely De Vries Rose region, Weber-Fechner region and the
saturation region. The enhancement is then adapted to each region, thus avoid-
ing any over-enhancement or noise ampli�cation. The method is extended to
human visual system based multi-histogram equalization approach to create a
general framework for image enhancement. The authors also proposed a quanti-
tative measure of image enhancement, restricted to gray-level images. However,
the proposed objective measures do not incorporate any relevant perceptual fea-
tures of the HVS. In [67], an HVS-based local contrast enhancement method
for the visualization of highly contrasted images was introduced. The idea is
to segment the image into light and dark regions and then process indepen-
dently the luminance and color components according to this segmentation. To
overcome the limitations of the dynamic range of cameras and display devices,
another HVS-based method for image enhancement was proposed in [68]. The
authors developed some interesting solutions inspired by the way the hue and
color saturation are processed by human perception under critical illumination
environments.
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It is worth mentioning that tone mapping (TM) technique can also be con-
sidered as another indirect approach for contrast enhancement. For example,
the TM methods proposed in [69]-[70] yield good results in terms of color con-
trast enhancement. This is mainly due to the fact that these methods try to
mimic the adaptation and local contrast enhancement mechanisms of the HVS.

Perceptual contrast enhancement in the compressed domain was investigated
in [71]-[72]. The developed method is based on Peli 's contrast measure and the
contrast enhancement method developed in [58]. Enhancing contrast in the
compressed domain o�ers many advantages. Indeed, many images and videos
are available in compressed form. It is therefore more e�cient to process the data
in their compressed form to save computational overheads when performing the
inverse transform. The other advantage is to exploit the frequency distribution
of the coe�cients in the design of the enhancement process. But, all the JPEG
compressed domain methods su�er from coding artifact ampli�cation, especially
in homogeneous regions. In [73], a more elaborated method for enhancing gray-
level and color images was developed. The idea of processing images in the
compressed domain has also been extended to the Retinex model in [74]

3.3. Coding artifact reduction

In spite of the rapid development of huge capacity and high speed storage de-
vices, lossy compression techniques of multimedia data, and especially images,
are still increasingly used. However, many of the proposed lossy image com-
pression methods su�er from some drawbacks at low bitrates [76]-[78]. In the
following, we focus on the two well-known annoying artifacts, namely blocking
and ringing e�ects. Block based compression methods su�er from blocking e�ect
which results in visible discontinuities across block boundaries. This is mainly
due is to independent processing of blocks. In JPEG it is due to independent
coarse quantization of blocks. Although blocking e�ects are reduced in wavelet
transform based compression methods, such as JPEG 2000 [76] and SPIHT
[77], another annoying e�ect called ringing appears around contours [78]. This
is due to the coarse quantization and truncation of the high frequency wavelet
coe�cients. This e�ect is generally accompanied by blurring distortion around
contours and �ne details [78]. Some metrics have been proposed to estimate
such distortions [79]-[80] However, blocking and ringing are di�cult to model
and to suppress. Many ad hoc methods have been proposed in the literature
to reduce these e�ects [81]. In this survey, we limit the discussion to some
techniques based on some relatively well-understood HVS properties.

In [84], the authors proposed a deblocking approach based on HVS prop-
erties, dedicated to highly compressed images. The approach is based on a
combination of edge detection, activity masking and brightness masking. De-
pending on the visibility level de�ned by a threshold, a processing step is applied
on the block in order to reduce the artifact. A technique of blocking artifacts
reduction based on fuzzy edge-sensitivity has been proposed in [85]. It relies on
orientation and frequency selectivity, two essential characteristics of the HVS.
Filtering is then applied by integrating a fuzzy logic technique. Wong et al. pro-
posed a deblocking algorithm which relies on a human perceptual signi�cance
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based on local phase characteristics [88]. The local phase coherence is then used
to adapt the deblocking process.

In [83], Chetouani et al. proposed a strategy for reducing the visibility of
blocking artifacts without knowledge of the method of compression. A visibility
map is obtained by analyzing the visibility of the borders of adjacent regions
using the CSF, Cortex transform and masking. Finally, the deblocking process
is adaptively applied depending on perceptual visibility of the region. A similar
approach has been proposed in [87], where the visibility map is replaced with
a map computed by summing the horizontal and vertical pro�les of gradient
vector magnitudes. The obtained map is then used to feed a recursive �lter
designed to reduce the blocking artifacts. The proposed method outperforms
the state-of-the-art methods in terms of perceptual quality but at the expense
of an increased computational complexity.

Besides works dedicated to blocking artifact reduction, several authors fo-
cused on approaches combining reduction of ringing and blocking. For instance,
Do et al. proposed to use the JNC and luminance adaptation as perceptual
properties in order to balance the total variation regularization [86]. The latter
is constrained by information extracted from the image. Recently, the same
authors proposed an approach consisting of three steps: (i) blocking-ringing
artifacts detection, (ii) perceptual distortion measure and (iii) blocking-ringing
artifacts reduction. Several other approaches have been developed, many of
them are dedicated to video, which is not the focus of this survey [82, 90].
Through this brief survey of recent works on coding artifacts reduction meth-
ods, it appears that the use of some simple HVS characteristics in the design of
the algorithms and the artifact measures good results could be achieved. How-
ever, more elaborated models that can account for other relevant HVS features
and other coding artifacts are still missing.

3.4. Tone mapping and enhancement of High Dynamic Range Images

Because of the technical capabilities in the 90s, the 8-bit representation of
visual data has been adopted for various technologies as for capture and display
devices. Consequently, the range of tones being recorded or displayed became
very limited. However, the natural world provides a wide range of colors and
tones to our visual system allowing thus an adaptation to obtain the best ap-
pearance. This visual appearance of natural scenes is highly dependent on
perceptual e�ects happening in the early stages of human vision. To solve the
aforementioned limitation, a concept (i.e. format) called High Dynamic Range
(HDR), opposed to Low Dynamic Range (LDR), has been developed to account
for a higher range of tones. This �eld is attracting interest from various appli-
cations. Nevertheless, it is still mandatory to narrow the dynamic range to be
able to visually explore the content. This operation, known as tone mapping,
relies on observer models that allow the transformation of the luminance of a
scene into a desired display image.

TMOs (Tone Mapping Operators) have been �rst used in computer graphics
community where Trumblin and Rushmeier [91] introduced a pioneering frame-
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work consisting of the combination of a scene observer model with an inverse
display observer one. Theoretically, when the framework is properly constructed
such operators should guarantee the realism of the displayed image. Nonethe-
less, visual appearance is still, to date, a very complex problem that can only
be approached thanks to computational models. Several TMOs have been de-
veloped since then and can be classi�ed as local or global operators [92]. Global
operators apply the same operation to every pixel of an image while local ones
adapt their scales to di�erent areas of an image. Most of the TMOs can be gen-
eralized as a transfer function taking luminance or color channels of an HDR
scene as input and processing it to output pixel intensities that can be displayed
on LDR devices.

Perceptual models have been widely used in tone mapping. For global ap-
proaches, Wards et al. proposed a TMO based on the idea of preservation of
perceived contrast relying on the Blackwell 's psychophysical contrast sensitiv-
ity model [93]. At the display side, the monotonic tone reconstruction avoids
the change of scene contrast. Based on threshold visibility, color appearance
and visual acuity, Pattanaik et al. proposed tone mapping operator where the
stimulation measured at the retina is used for adaptation of every image pixel
in addition to the supra-threshold colorfulness [94]. Dealing with color appear-
ance, Ferwerda et al. [100] measured changes in threshold of this appearance by
using separate TVI (threshold versus intensity) functions for rods and cones and
interpolation for the mesopic luminance range. In the same vein, Reinhard and
Devlin [101] based their development on a computational model of photorecep-
tor behavior with a chromatic transform allowing a �exibility of the white point.

In local approaches, a contrast approximation similar to Peli 's local band-
limited contrast was used by Reinhard et al. [95] and Ashikhmin et al. [96]. In
[95], a global tone mapping is applied to reduce the range of displayable lumi-
nance. In order to have di�erent exposures for di�erent areas of the image, a
photographic dodging and burning technique is applied. The automated version
presented in [98] takes advantage of low contrast region detection thanks to a
center-surround function at di�erent scales. The contrast used in the previous
approaches can be easily replaced by the one de�ned by Mantiuk et al. [97] for
HDR images. As stated by the authors, the pyramidal contrast representation
ensures proper reconstruction of low frequencies and does not reverse global
brightness levels. Moreover, the introduction of a transducer function, giving
the response of the HVS for the full range of contrast amplitudes, is especially
useful for HDR images.

Recently, two works have been dedicated to the evaluation of TMOs. In
[102], authors conducted a psychophysical experiment in order to discriminate
seven TMO approaches (3 local and 4 global) using attributes such as contrast,
brightness, details reproduction in dark and bright regions, and naturalness.
Similarly, in [103], authors run a psychophysical experiment involving several
criteria on fourteen TMOs. The result of this work was the de�nition of an
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overall image quality function dedicated to tone mapping described as a linear
combination of the used attributes.

4. Perceptual image segmentation

The objective of image segmentation is to obtain a compact representation
from an image, sequence of images, or a set of features. Robust image segmen-
tation is one of the most critical tasks in automatic image processing. Image
segmentation has been an active �eld of research for many decades [109, 110].
Many surveys on image segmentation have appeared in the literature [110][112].
Image segmentation methods can be roughly grouped into three categories, as
suggested by Fu and Mui [110]: (i) region-based segmentation, (ii) edge-based
segmentation, and (iii) feature clustering. Here we focus only on perceptual
approaches for image segmentation.

Perceptual image segmentation involves extraction and grouping of percep-
tually relevant information for complex scene segmentation [113]. Though hu-
man perception of images is heavily in�uenced by the colors of the pixels, the
perception of each pixel also depends on neighboring pixels. Similar to any
segmentation technique, perceptual image segmentation requires the extraction
of low-level image features. These low level features are then correlated with
high-level image semantics for e�cient image segmentation. For example, the
authors in [113] propose low-level image features and segmentation techniques
that are based on perceptual models and principles about the processing of color
and texture information. The approach is based on spatially adaptive color and
texture features and has been proven e�ective for photographic images includ-
ing low resolution, degraded, and compressed images. Such perceptual image
segmentation models can also help in obtaining more robust perceptual image
quality measures [114]. The authors in [114] propose a Segmentation-based
Perceptual Image Quality Assessment (SPIQA) metric which quanti�es image
quality while minimizing the disparity between human judgment and predicted
image. One novel feature of SPIQA is that it exploits inter- and intra-region at-
tributes in an image that closely resembles how the human visual system (HVS)
perceives distortions.

Another extension of perceptual image segmentation is obtained in [115]
wherein Fuzzy sets are de�ned on the H, S and V components of the HSV color
space. The model uses a fuzzy logic model that aims to follow the human in-
tuition of color classi�cation. Experimental results suggest that the proposed
algorithm obtains improved classi�cation over other basic color classi�cation
techniques, especially in more challenging outdoor natural scene segmentation.
In summary, the primary motivation of perceptual image segmentation relates
to segmentation using color and texture since imaged objects are often described
at perceptual level by distinctive color and texture characteristics [116]. The
authors in [116] provide thorough evaluation and review of the most relevant
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algorithms for image segmentation using color and texture features. Further-
more, SPIQA metric can be used for automated perceptual image segmentation
and prediction of image quality simultaneously.

Most perception-based image segmentation techniques primarily involve bottom-
up processing. However, top-down feedback of information can modulate the
feature processing and clustering appropriately for better image segmentation
as shown in Figure 1.

Figure 1: Schematic of Image Segmentation Steps in Visual Information Processing

Figure 1 shows an overall machine-centric visual information processing ap-
proach. The schematic includes both low level and high level visual processing
tasks. The low level vision tasks involve extraction of di�erent types of features
such as color, intensity, shape, texture and scale. These features are then pro-
cessed further in the visual cortex as discussed above. In the machine centric
implementation, di�erent clustering techniques such as k-means, fuzzy c-mean,
self-organizing map (SOM), and expectation maximization (EM) are used to
cluster the features into segments. The role of image semantics is very important
in perceptual image segmentation. Image semantics in the form of descriptors,
labels or boundary can help to re�ne image segmentation. The image segments
obtained from low level vision processing are then processed for object detection,
recognition and classi�cation steps. These high level vision tasks are processed
in the V1 areas with the aid of long term and short memory and attention.
This information �ow from retina (sensor) to V1 for object segmentation and
processing is known as bottom-up information processing. Feedback from the
high-level vision processing is also fed back all the way to retina for iterative
multi-scale re�nement of perceptual image segmentation process. The feedback
�ow is also known as top-down information �ow. Often times e�ective com-
putational modeling of visual information processing necessitates integration of
bottom-up and top-down �ows.
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4.1. Region-based Segmentation

The region-based segmentation algorithms stem from the fact that quanti�-
able features inside a structure in an image appear homogeneous. The region-
based segmentation algorithms aim to search for the image pixels with similar
feature values. Robust region based segmentation in noise is challenging. In
the HVS, there are two major stages for information processing, segmentation
and recognition [117]. The �rst stage is early vision that involves focusing of
attention in visual system to obtain the necessary information. The subsequent
processing step in visual system then segments out potential candidates from
noisy backgrounds for high-level processing. The second stage of recognition is
identi�cation. After information is preprocessed for segmentation in the �rst
stage, much smaller amount of information is sent up in the visual stream for
identi�cation. During identi�cation stage, knowledge from higher-level cortex
is fed back to revise the information processing in early vision. Many theories
of object segmentation involve comparing visual information with several char-
acteristic views of object stored in memory. Such theories implicitly assume
that stages of visual processing have solved visual segmentation among other
tasks. Di�erent biologically inspired models have been suggested in literature
for image segmentation.

Human visual perception can be very resilient in segmenting objects from
noisy images. Burgi and Pun proposed a human perception inspired static image
segmentation method in noise [118]. In this method the authors use the idea
of asynchronous processing such that strong luminance elicits reactions from
the visual system before weaker ones. The method involves transformation of
a static image into a data �ow in which information �ow attracts attention for
object segmentation and detections. However, this method has been evaluated
on a very limited set of gray-tone images. Furthermore, the results depends on
many tunable parameters. The other weakness of the proposed method is due
to the fact that the asynchrony analysis relies on only the pixel intensity and
does not incorporate other relevant spatial features. Reference [119] discusses a
model of human pre-attentive texture perception that can predict the salience
of texture boundaries in gray-scale image. The model attempts to simulate out-
puts of V1 area of visual cortex for image segmentation.

A novel framework for joint processing of color and shape information in
natural images is proposed in [120]. Based on the information processing in the
HVS, this work proposes a hierarchical non-linear spatio-chromatic operator
which yields spatial and chromatic opponent channels. The authors extend two
popular object recognition methods such as the hierarchical model of visual
processing and a SIFT bag-of-words approach to incorporate color information
along with shape information. They use the framework in scene categorization
and segmentation.
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4.2. Edge-based segmentation

Edge detection techniques involve characterization of abrupt intensity changes
in scenes caused by physical processes in the world. An important goal of edge
detection is the reduction of image information for further processing. Early
works on edge detection attempted to characterize intensity changes using dif-
ferent types of derivative operators, and at di�erent resolutions (scales) [121].
In one such work, a theory of multiscale edge detection is presented [122]. The
authors analyze natural image intensity at di�erent scales using second deriva-
tive of a Gaussian �lters. The intensity changes due to edge are then repre-
sented by oriented primitives called zero-crossing segments. Evidence is given
that the zero-crossing representation is complete. They also show that edges
in images are spatially localized and these edges arise from surface discontinu-
ities caused by re�ectance or illumination boundary changes. Consequently, the
zero-crossing segments in di�erent color components are not independent, and
rules are deduced for combining them into a description of the image. This
description is called the raw primal sketch. The theory explains several ba-
sic psychophysical �ndings, and the operation of forming oriented zero-crossing
segments from the output of center-surround �lters acting on the image forms
the basis for a physiological model of simple cells. Subsequent works investigate
the e�ect on edge extraction when the theory of HVS based thresholding [123]
is made to operate on the intensity domain of a grey scale image. The perfor-
mance of the systems is also quantitatively analyzed using the 'entropy' metric.

Later works on edge based segmentation are motivated by models of the
HVS and involves detection of visually relevant luminance features [124]. The
technique detects edges (sharp luminance transitions) and narrow bars (lumi-
nance cusps) and marks them with the proper polarity. This results in is a
polarity-preserving feature map representing the edges with pairs of light and
dark lines or curves on corresponding sides of the contour. The algorithm is
implemented with parameters that are directly derived from visual models and
measurements on human observers. Reference [125] takes into account the basic
characteristics of the HVS such as masking the gradient image with luminance
and also masking the activity in local image for edge labeling. An implemen-
tation of this method on a Canny detector is described as an example. The
results show that the edge images obtained are more consistent with the per-
ceptive edge images. In another HVS related approach the authors present a
technique exploiting visibility of edges by human eyes [126]. The authors obtain
threshold function according to the optical characteristics of the sensor and a
contrast sensitivity function. The information is applied to edge detection using
a binarization technique. In another complimentary method the authors com-
pute the edge visibility for the HVS [127]. Two important processes in the HVS
are taken into account: visual adaptation and contrast sensitivity. The primary
contribution is a biologically inspired uni�ed framework which mimics human
vision and computes both edge localization and edge visibility.
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In more recent works, information used in the edge-based methods combine
di�erent image cues from HVS to complete the segmentation. Examples in this
category include the watershed algorithms [128]. These algorithms combine the
image intensity with the edge information and use the mathematical morphol-
ogy operations to obtain the segmentation. In the watershed algorithms, gray
scale images are considered as reliefs and the edge magnitude is treated as ele-
vation. Watershed lines are de�ned to be the pixels with local maximum edge
magnitude. A region of the image in Watershed is de�ned as the pixels enclosed
by the same line. The segmentation procedure is to construct watersheds during
the successive �ooding of the gray value relief. Watershed algorithms tend to
present over-segmentation problems, especially when the images are noisy or the
desired objects themselves have low signal-to-noise ratio. In Reference [129] the
authors introduce a HVS-based algorithm which integrates image enhancement,
edge detection and logarithmic ratio �ltering techniques to develop an e�ective
edge detection method. The algorithm performs well in tracking and segment-
ing dark gray levels in an image and preserves object's topology and shape.

Finally, clustering is collection of features that belong together. Currently,
there is no broad theory available for clustering based segmentation. A broad
family of approaches to segmentation involves integrating features such as bright-
ness, color, or texture over local image patches as shown in Fig. 1. Clustering
these features using di�erent types of neural network such as SOM and other
modeling techniques such as mixture �tting (e.g., EM), mode-�nding, or graph
partitioning yields segmentation [130]. Threshold-based algorithms generally
assume that image regions have distinctive quanti�able features such as the im-
age intensity, texture, color, re�ectance, luminance or the gradient magnitude
[131]. The procedure of segmentation is to search for the pixels whose values
are within the ranges de�ned by the thresholds. Thresholds used in these algo-
rithms can be selected manually or automatically. Both manual and automated
selection of threshold values may need a priori knowledge and sometimes trial
experiments. Automatic threshold selection often times combines the image in-
formation to obtain adaptive threshold values for edge extraction. Examples
include di�erent local and global edge extraction algorithms such as Canny,
Otsu, Laplacian, Hough transform and object background models.

Due to noise and partial volume e�ect in the image, the edges and hence
the segments may be incomplete or discontinuous. It is then necessary to ap-
ply post-processing techniques such as morphological operations to connect the
breaks or eliminate the holes. Object background models, on the other hand,
are based on histogram thresholding. These models assumes that there is a uni-
form background and objects are irregularly placed on this background [132].
Hence, �nding an appropriate threshold between object and background obtains
background-foreground segmentation. The simple background-foreground seg-
mentation technique can be modi�ed to account for pyramidal structure yield-
ing multi-resolution segmentation [133]. There are many examples where im-
age feature histograms may not have clear separation among foreground and
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background and hence, the simple thresholding methods may not be e�ective.
Probabilistic methods are good candidates for these cases where image intensity
is insu�cient for foreground-background segmentation.

In [134], authors propose an automatic thresholding method following inspi-
ration from the HVS which preserves edge structure in images. Edge thresholds
based on human visual perception is obtained �rst, and then these edge thresh-
olds are used to �nd several edge intervals. From these edge intervals, the
threshold value at which most edge information is preserved in the thresholded
image is obtained. Another novel thresholding method that uses human visual
perception is presented in [135]. The method �rst utilizes statistical character-
istics of an image to choose two gray levels as candidate thresholds by using
the properties of human visual perception, and then determines the one having
minimum standard deviation sum as the optimal threshold. Choice of candidate
thresholds reduces search space of thresholds and accelerates threshold selection.

4.3. Cooperative and perceptual grouping based segmentation

Image segmentation based on spatially adaptive color and texture features
following human perception grouping has been active area of research [136, 137].
The image features are �rst obtained independently, and then grouped to im-
plement an overall segmentation as shown in Fig. 1. Texture feature estimation
requires a �nite neighborhood which limits the spatial resolution of texture seg-
mentation. The color segmentation, on the other hand, provides accurate and
precise edge localization. The authors use an adaptive clustering algorithm for
color and texture features to obtain integrated image segmentation. The im-
ages are assumed to be of relatively low resolution and may be degraded or
compressed.

Reference [138] presents another interesting image perceptual segmentation
algorithm driven by HVS properties. Quality metrics for evaluating the seg-
mentation result, from both region-based and boundary-based perspectives, are
integrated into an objective function. The objective function encodes the HVS
properties into a Markov random �elds (MRF) framework, where the JNDmodel
is employed when calculating the di�erence between the image contents. The
MRF is attractive for modeling texture and context of images [137]. A modi�ed
MRF model, also known as multi-scale random �eld (MSRF) model [139], uses
unsupervised segmentation scheme. MSRF forms hybrid structure of quadtree
and pyramid graph for scale representation. EM algorithm is used for solving
sequential maximization of a posteriori whose solution calculates the required
parameters of MSRF model. Supervised scheme for segmentation is used in
[140] wherein the authors apply oriented Gabor �lters, inspired by HSV, for
extracting texture features. Texture feature vector is represented as Gaussian
distribution. A posteriori probability scheme is formulated as Gibbs distribu-
tion for assigning a partition label to a pixel. The maximization of a posterior
probability is obtained using Hop�eld neural network with a deterministic re-
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laxation modeling.

On the perceptual point of view, higher perceptual grouping levels are in-
volved during object detection and recognition tasks. The authors in [141]
present an image segmentation model based on visual attention mechanism.
The model simulates the bottom-up human visual selective attention mecha-
nism, extracts early vision features of the image and constructs the saliency
map. The image is segmented by separating the salient regions and the back-
ground. The model builds on Itti-Koch saliency-based models [142]. Reference
35 discusses a model for image segmentation according to the early visual area
in primate visual cortex, which combines multiple features to build the predic-
tion of image segmentation for object recognition. The methodology consists of
parallel and multiple feature fusion blocks and performs well in �gure-ground
segmentation.

The segmentation of moving objects is comparatively more challenging. Mo-
tion can provide an important clue for perceptual object grouping and hence
segmentation. Optical �ow is an important cue for moving object segmentation
and detection. Without knowledge of the background positions, the background
motion may not be computed e�ectively. Similarly, without knowing the back-
ground �ow one may not determine which positions belong to the background
region. Humans can e�ortlessly perceive objects in a scene using only kinetic
boundaries, and can perform the perceptual grouping task even when other
shape cues are not provided. The authors in [144] discusses a biologically in-
spired model derived from mechanisms found in visual areas in the brain such
as V1 and others as suggested in Fig. 1 that achieves robust detection along
motion boundaries. The model includes both the detection of motion discon-
tinuities and occlusion regions based on how neurons in visual cortex respond
to spatial and temporal contrast. In particular, they show that mutual interac-
tions between the detection of motion discontinuities and temporal occlusions
allow a considerable improvement of the kinetic boundary detection and hence
segmentation.

The application of human visual attention is implemented in a model to im-
prove the recognition accuracy of character recognition problems known as Com-
pletely Automated Public Turing Test to Tell Computers and Humans Apart
(CAPTCHA) [145]. The technique focuses on segmenting di�erent CAPTCHA
characters to show the importance of visual preprocessing in recognition. Tradi-
tional character recognition systems show a low recognition rate for CAPTCHA
characters due to their noisy backgrounds and distorted characters. The authors
in Ref. 65 use the human visual attention system to let a recognition system
know where to focus in presence of noise. The preprocessed characters are then
recognized by an Optical Character Recognition (OCR) system.
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5. Perceptual coding

The �eld of still image compression has been the focus of important research
e�orts for decades leading to the de�nition of several coding algorithms, where
a few of them became international standards. The process started with the
information theory introduced by Shannon in 1948 [146], the Hu�man code in
1952 [147], the Discrete Cosine Transform (DCT) by Ahmed in 1974 [148], the
arithmetic coding by Rissanen in 1979 [149] and �nally leading to the widely
used JPEG standard (ISO 10918) in 1992 [150] for lossy coding. Since then
three other standards have emerged such as JPEG-LS (ISO 14495) in 1998 [151],
JPEG 2000 (ISO 15444) in 2000 [152] and JPEG XR (ISO 29199) in 2009 [153].
In the meantime, numerous works have been performed either on de�ning opti-
mized coding schemes, or introducing optimization processes in mathematical,
informational and perceptual domains.

The process of the major part of lossy coding algorithms is performed in
three main stages. First, a forward transform is applied on the input image;
second, a quantization of the coe�cients in the transform domain is performed
and �nally, an entropy coding is performed to reduce redundancy.

The performance of classical image coding algorithms for reduction of infor-
mation redundancies and bit budgeting is undoubtedly attractive. Nevertheless,
it is by far the only criterion used in benchmarking coding technologies. Further-
more, reduction of statistical redundancies is often not in line with perceptual
aspects. It is now clearly established that the reduction of perceptually re-
dundant information, for a given bit-budget, increases the performance while
preserving the visual quality. For instance, the human contrast sensitivity in-
dicates that the HVS is not able to perceive spatial frequencies beyond a given
cut-o�. Therefore, it may not be useful to preserve this information of very
high spatial frequency for an image. Human perception has been and still is
the focus of many image coding studies for understanding and exploiting some
phenomena such as masking and spatial/temporal sensitivity. There are several
ways to incorporate human perception into image coding schemes. Nonetheless,
as illustrated on �gure 2, the quantization is one of the most addressed stage in
literature [154]-[176] .

Figure 2: Generic perceptual coder - Quantization optimization.

Several perceptually uniform quantization strategies have been proposed.



5.1 DCT-oriented approaches 21

For instance, Ibrahim Sezan et al. studied the visibility of quantization noise
and proposed an e�cient model based on their �ndings [154]. However, the
various studies addressed only low dynamic range and speci�c luminance con-
ditions. Other studies about perceptually optimized quantization have been
targeted towards speci�c transforms. In the following, the exploration of the
various perceptual coding approaches are addressed depending on their targeted
scheme. For the sake of clarity and continuity, approaches have been grouped,
when possible, according to the major image compression standards i.e. JPEG
(DCT) and JPEG 2000 (DWT) and JPEG XR. Additional approaches have
been addressed separately.

5.1. DCT-oriented approaches

Transform coding is able to achieve optimum statistical compression ratios.
Several works have been performed in combining the DCT transform coding and
visual perception resulting in a higher compression ratio and good reconstruc-
tion of the original image. Many of them addressed quantization of the DCT
in order to improve related works (i.e. JPEG) from a perceptual point of view.
The motivation came from the fact that the quantization matrix is not de�ned
by the standard. [177] focused on the statistical nature of the coe�cients where
redundancy have been removed while keeping a good visual quality. Ngan et al.

[156] relied on the HVS function, of the shape H(f) = (a+bf)exp(−cf) de�ned
by Nill in [178], where f is the frequency and a, b, c are coe�cient allowing to
tune the model, in order to transpose the cosine transform coe�cients into the
perceptual domain. Similarly, Safranek proposed a JPEG compliant encoder
that removes perceptually irrelevant coe�cients [160]. Supra-threshold image
compression has been explored by Pappas et al. in [179] for minimizing per-
ceptual image distortion measures that are matched to the HVS. More recently,
Sreelekha et al. [180] used a CSF thresholding and a masking in the JPEG stan-
dard encoding process allowing to remove perceptually insigni�cant coe�cients.
These approaches provided some improvement to the JPEG-like compression
schemes but the tradeo� between quality and bitrate is often di�cult to reach.

An important approach known as DCTune has been introduced by Watson

[157, 158] for visual optimization of DCT-based compression. It relies on lumi-
nance and contrast masking to generate quantization matrices adapted to indi-
vidual images and their viewing conditions. This image dependent perceptual
method de�nes the masked threshold mk = max(tk, |ck|w(tk)1−w) as the maxi-
mum between the luminance threshold tk and a non-linear combination of DCT
coe�cient tk together with luminance and contrast masking where the exponent
w controls the adaptive aspect of the proposed approach. An extension to color
images has been given in [159] by using a YCC color space demonstrating thus
a more severe compression of chromatic channels while having acceptable visual
results. One negative aspect lies in the fact that the quantization matrices and
the scalar value of each DCT block are embedded in the codestream resulting
in an increase of the compressed image. Tran and Safranek [161] took into
account local variations in masking based on an image segmentation scheme
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allowing for local adaptation. The drawback of this approach lies in the cost of
the segmentation information needed at the decoding side.

The approach proposed in [181] aims at designing a JPEG perceptual quan-
tization matrix based on the rate-distortion algorithm designed by Wu and
Gersho and the integration of visual weightings. Macq [182] derived perceptual
weighting factors depending on quantization noise introduced on transform co-
e�cients. The extracted weighting factors present the advantage of varying as
a function of the display and the viewing conditions while being independent of
the image content. Tong et al. proposed a perceptual model based on texture
and luminance masking properties used for scaling of the JPEG quantization
matrix [183]. Therefore, masking is studied through a classi�cation of blocks into
plain, edge, and texture similarly to [161]. In [168], authors designed a percep-
tual quantization table of a DCT-based image coder by taking advantage of the
Daly's perceptual model together with a uniform quantizer. To cope with the
later, vector quantization has been used for perceptual coding as the approach
introduced by Macq et al. [184] applying the LBG (Linde-Buzo-Gray) proce-
dure in the DCT domain using an optimization of the perceptually-weighted
signal-to-noise ratio. The performance of such an approach is dependent of the
nature of the used perceptual metric.

In order to prevent high perceptual errors on individual images, Malo et al.

proposed to bound the maximum perceptual error (MPE) for each frequency and
amplitude in the coder [167]. They used a non-linear perceptual metric based
on the contrast sensitivity function leading to the conclusion that bounding the
perceptual distortion in each particular block of the image may be more im-
portant than minimizing the average perceptual distortion over a set of images.
Höntsch et al. proposed a DCT-based, locally adaptive, perceptual-based image
coder by �xing the objective of minimizing the bit-rate depending of the tar-
geted perceptual distortion [165, 169]. Therefore, masking properties derived in
a locally adaptive way based on local characteristics of images, are used. Hence,
thresholds of local distortion sensitivity are extracted and used to adaptively
control the quantization and dequantization stages of the coding process in order
to comply with the initial target. In order to avoid sending side information that
increases bit-budget, the estimation of the locally available amount of masking
can be performed at the decoder side. The aforementioned approaches achieve
an important improvement of compression ratio in comparison to [157] while
keeping a similar complexity.

With the aim of optimizing the JPEG color image coding, Westen et al.

proposed a new HVS model based on a set of oriented �lters combining back-
ground luminance dependencies, luminance and chrominance frequency sensi-
tivities, and, luminance and chrominance masking e�ects [185]. In order to cope
with the orientation di�erence of the �lters in the model domain and the DCT
block transform, they proposed a general method to combine these domains
by calculating a local sensitivity for each DCT (color) block. This leads to a
perceptual weighting factor for each DCT coe�cient in each block.

Di�erent machine learning techniques have been successfully used in image
coding. For instance, support vector machine (SVM) has been exploited by
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Gómez et al. [186] where an extension of the work described in [187] using an
adaptive ε-insensitivity has been proposed. The perceptual dimension lies in
the fact that constant ε-insensitivity is perceptually valid in the spatial domain
rather than in the DCT domain.

Recently, Ma et al. proposed a perceptual coding algorithm using DCT
based on the idea that some macroblocks of the image can be coded at a lower
resolution without impacting their visual quality [188]. In this method, more
bits are available for the most prominent macroblocks. The downsampled blocks
are obtained by minimizing the error between the original and the upsampled
blocks in the DCT domain.

5.2. DWT-oriented approaches

DWT compression is often a lossy process and the invisibility of coding arti-
fact is a real challenge. Many works have been devoted to perceptually optimize
the wavelet-based coding. For example, the study performed by Safranek and

Johnston can be considered as one of the early works [155]. It is based on
a subband decomposition and quantization step sizes obtained from frequency
and luminance sensitivity, and contrast masking. However, for a �xed display
luminance, spatial variations in the local mean luminance of the image produce
local variations in visual thresholds. An extension of this work is proposed in
[189] by using an algorithm that locally adapts the quantizer step size at each
pixel according to an estimate of the masking measure. Compared to [155],
the methods in [189] o�ers better performance without requiring additional in-
formation. Lai and Kuo propose an unconventional wavelet-based compression
method where instead of using the amplitude of wavelet coe�cients, the con-
trasts of each resolution are coded [163]. Therefore, the visual error is uniformly
distributed over the image and decreases with visual artifacts at low bit-rate.

CSF has been widely used in image coding schemes. For DWT, most of the
implementations are based on a single invariant weighting factor per subband.
Extensive experiments run by Nadenau et al. and described in [164, 190] allowed
the introduction of four di�erent ways of integrating the CSF in a JPEG 2000
scheme. Similarly, Stoica et al. proposed a weighting approach extracted from
CSF that accounts for viewing distance when applying the perceptual optimiza-
tion in the JPEG 2000 coder [172]. Both approaches improve the visual quality
of JPEG 2000 compressed image while increasing the complexity created by the
image-dependent optimization. In 2006, Liu et al. presented a standard compli-
ant distortion-based JPEG 2000 encoding scheme using a locally adaptive HVS
model [173]. This encoding scheme incorporates di�erent masking e�ects and a
perceptually weighted MSE taking into account spatial and spectral summation
of individual quantization errors. The major drawback of this approach as well
as most of them is that perceptual considerations are used for side tuning to
obtain a given visual quality while the coder is not built following human vision
properties.

Zeng et al. used self masking and neighborhood masking for the preser-
vation of detailed edges in the framework of JPEG 2000 [191]. The masking
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function is applied before the quantization process with the aim of adjusting vi-
sual signi�cance of individual coe�cients. In the Embedded Block Coding with
Optimal Truncation Points (EBCOT) coder described by Taubman in [192], the
perceptual optimization lies in the distortion function used in the R-D (Rate-
Distortion) process. Such perceptual optimization allows measurement of the
sensitivity to quantization errors. However, the masking model used in EBCOT
does not take into account the viewing conditions. In 2004, Tan et al. proposed
a perceptual coder for monochrome images following the EBCOT structure and
using a perceptual distortion measure taking advantage of an advanced vision
model. The authors show a variant of the contrast gain control (CGC) model
composed of three steps such as linear transform, masking response and detec-
tion. In [193], a monochromatic multichannel vision model has been extended
to color and used to approximate perceived errors in the R-D optimization in
the JPEG 2000 framework. In the same context, Liu proposed a new color
JND estimator and used it within JPEG 2000 to improve the perceptual qual-
ity of compressed images[194, 195]. The approach does not require any side
information and reduce the prediction error in DWT + DPCM compression.

Watson et al. proposed an interesting method on perceptually characterizing
visual thresholds for wavelet quantization errors [162]. The authors measured
visual detection thresholds for samples of DWT uniform quantization noise in
Y, Cb, and Cr color channels. A mathematical model is derived for DWT noise
detection thresholds with the level, orientation, and display visual resolution as
parameters. The obtained model allows the de�nition of perceptually lossless
quantization matrices. More recently, in a similar work performed by Larabi

et al. [196], psychophysical experiments involving noise at various sub bands
and in di�erent channels, allowed the de�nition of visual detection thresholds
for digital cinema applications. One important conclusion of this work was the
insu�ciency of the 250 Mbps limit, de�ned for JPEG 2000 digital cinema pro-
�le, to achieve visually-lossless compression. Ramos and Hemami conducted a
psychophysical investigation about distortions visibility caused by wavelet coe�-
cients quantization [166]. From these experiments, they propose a quantization
strategy producing a minimum noticeable distortion leading to a perceptual
improvement of wavelet-coded images. Based on the work of Watson [162], Al-
banesi et al. proposed a HSV-based quantization strategy for both lossy and
lossless coding [170]. A related work introduced by Liu et al. [197] discusses
an adaptive quantization using noise detection threshold associated with each
coe�cient in each subband of the color channels. Recently, Sreelekha et al.

proposed a coding approach where contrast thresholds are applied at the quan-
tization step. The novelty of this work is the facts that contrast thresholds
are used on both luminance and chromatic channels, and are adapted to image
content [198, 176].

A review of di�erent approaches in literature suggests that perceptual opti-
mization is often linked to the metric used to visually minimize the impact of
quantization errors. Consequently, Gershikov et al. proposed a weighted mean
square error (MSE) metric in order to achieve perceptually optimal coding [199].
They assume already obtaining a set of weighting factors corresponding to the
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perceptual impact of each subband of the transform. In the same fashion, Wang

et al. considered the well known SSIM metric in order to generate maps to
derive local perceptual quality indicator [174]. The extracted map is used in an
iterative process where in each pass the remaining bits are allocated to visually
important regions. This reallocation aims at decreasing the e�ect of spatial
quality distribution within an image. However, even though using SSIM will
certainly allow to preserve structural information, this metric is not always in
accordance with human perception. A di�erent perceptual optimization ap-
proach has been introduced by Wang and Bovik in [200]. This method takes
advantage of the high spatial resolution of the HVS around a �xation point, also
called foveation point, linked to the fovea. They then integrate this process in
an image coding algorithm which re-order the bitstream to optimize foveated vi-
sual quality independently of the bit-rate. This re-ordering is achieved by using
a speci�c quality metric exploiting the foveation phenomenon. This bio-inspired
approach allows mimicking the foveal vision of the HVS. Nevertheless, it does
not address jointly the problem of wavelet coe�cient selection and quantization
parameter de�nition.

A perceptual dithering approach has been used for image coding in [201].
They considered a hierarchical wavelet transform where the sibling subbands of
the same level are decorrelated by applying a series of rotations. The change
on the wavelet coe�cients is made prior to quantization. The perceptual model
used in this work relies on background luminance perceptibility and spatial
masking e�ects [202].

5.3. Perceptually lossless or near-lossless

In addition to fully lossy and the lossless compression, a third approach has
emerged and is known as near-lossless or perceptually lossless compression. It
relies on the fact that some losses are not perceptible by a human observer.
Although this notion is highlighted by all works dealing with perceptual op-
timization of image coding but it still requires further discussions. Instead of
improving the visual quality of coding results, perpetually lossless approaches
target the absence of visually di�erence between original and compressed im-
ages. The JPEG-LS standard [151] proposes such a feature even though the
results are not always convincing for the near-lossless part. A perceptual opti-
mization of the JPEG-LS standard has been introduced by Chou et al. [203]
by making coding errors imperceptible or minimally noticeable. Hence, a JND
model is used on the three color channels of each pixel allowing to perceptually
tune the quantization step size in the predictive coding mode. A similar ap-
proach has been proposed in [204]. During the last decade, medical imaging has
been the focus of the lossless coding e�orts especially using a JPEG 2000-like
compression. An approach dedicated to wavelet-based coding has been intro-
duced by Wu et al. [205, 206]. It uses a contrast gain control model de�ned
as a perceptual metric incorporating a CSF �ltering and masking, in order to
apply a visual pruning of visually insigni�cant information. In this work, it
has been demonstrated that perceptually lossless coding achieves better results
than lossless or nealy-lossless compression. However, medical images coding
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may be highly in�uenced by the nature of the diagnosis to be delivered as well
as individual situation.

5.4. JPEG XR

JPEG XR [153, 207] is the latest compression standard of the JPEG family
developed as a potential coder for extended range images. It uses a hierarchical
two stages Lapped Bi-orthogonal Transform (LBT) which is based on a �exible
concatenation of two operators such as the DCT-like Photo Core Transform
(PCT) and the Photo Overlap Transform (POT). Due to its novelty and the lack
of market adoption, a few studies have been devoted to perceptual optimization
of JPEG XR. In the same fashion as the other JPEG standards, Shonberg et al.
tackled the problem of spatial bit allocation in order to improve the perceived
quality of a compressed image [175]. The idea is to use fewer bits for image
features that are less crucial to visual quality. This is achieved by varying the
step sizes used for quantization of the transform coe�cients of each frequency
band and color component of each macroblock in the image. The advantage of
this approach is that no changes are required at the decoding side. However,
the choice of the metric deciding whether a feature is visually important or
not, is critical. Authors have chosen MS-SSIM which does not really belong to
the perceptual metrics. Nevertheless, a subjective validation has been used to
corroborate the objective quality decision.

5.5. Other approaches

Recently, Masmoudi et al. proposed in [208, 209, 210] an approach inspired
by coding strategies of the mammalians visual system generating a compressed
neural code for a visual stimulus. They rely on the bio-plausible Virtual Retina
model developed by Wohrer and Kornprobst [211] that has been adapted for
coding purposes. The proposed coder can be summarized by three processing
steps each mimicking a layer of the retina. These are time-dependent edge
detector (outer layers) followed by a non-linear contrast gain control (inner
layers) and �nally a conversion of the input stimulus into spikes (ganglionic
layer). With this architecture, authors have demonstrated scalability and bit
allocation e�ciency by using the time-dependent behavior of the retina. At last,
a dithering process is integrated in the proposed bio-inspired coder to account
for the retinal noise occurring in the inner layer. This improvement allows for
a faster recognition of the �ne details of the image during decoding process.

In [212], Niu et al. described a perceptual coding strategy based on edges. It
focuses on the preservation of scale-invariant second-order statistics of natural
images to guarantee the perceptual quality. In this work, edge geometry is
not explicitly coded. In order to describe optimal edge geometry, coding is
performed in two stages such as a background layer of the image is coded �rst
and is transmitted allowing to estimate trajectories of signi�cant edges at the
decoder side. The second stage is a re�nement one using a residual coding
technique based on edge dilation and sequential scanning in the edge direction.
In [213], an interesting review is done for perception oriented video coding. Even
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though the purpose of this survey is focused on image, this papers provides very
important opening that may apply on perception-based image coding.

There are various challenges for image coding, but often, not in the core
coding itself. Indeed, it has been demonstrated that having a unique coder for
every application is a utopian approach. Therefore, application-dependent cod-
ing scheme are preferred for many reasons. First because it implies to have a
coding scheme adapted to the application with an appropriate domain trans-
form, an adapted quantization and a set of embedded tools. For instance, se-
curity applications may need to have speci�c ROI-based coding, intra and inter
super-resolution stage and metrics to characterizing the Detection, Recognition,
Identi�cation (DRI) indexes. On the other hand, new applications have emerged
such as high dynamic range imaging requiring appropriate coding schemes with
appropriate perceptual model. Most of the psychophysical models have been
constructed on 8-bit displays and this raises the question of models' validity
for such extended range data. Finally, a tradeo� has to be found between the
fully bio-inspired schemes lacking in terms of real time application and sim-
plistic perceptual models failing in capturing perceptual features fundamentally
important for a human observer.

6. Visual information quality assessment

In any processing or transmission of visual information, the ultimate judge is
the human observer. Generally, the performance evaluation of image processing
tools is based on some objective and/or subjective criteria. Although, many
objective performance evaluation measures have been developed for image pro-
cessing and coding, the subjective evaluation remains the most reliable solution.
Therefore, a large e�ort has been devoted to developing more robust objective
measures that are consistent with human visual system (HVS) performance.

Indeed in many tasks where the �nal results are presented as images, ob-
servers are asked to judge the perceptual quality of the pictorial representation
of the results. However, subjective evaluation of image processing methods is
not practical for applications that involve automatic control and adjustment of
machine parameters. It is, therefore, desirable to develop objective methods for
evaluating image processing algorithms. However, in spite of the great number
of objective measures developed for evaluating the quality of image processing
techniques, such as noise �ltering, segmentation, compression, etc., the most
widely used assessment method is still based on subjective evaluation. Neverthe-
less, it is believed that by exploiting some perceptual criteria and computational
models of the HVS one can derive e�cient objective image quality measures.
This �eld of research is growing rapidly and has now attained a high level of ma-
turity. Since the work of Mannos and Sakrisson [214], numerous methods have
been proposed for image distortion evaluation: some are inspired by perceptual
mechanisms of the HVS, whereas others are based on more traditional signal
processing techniques [215, 216, 217]. The choice of one metric over another is
rather a hard task. There is no universal criteria on how to choose or to adapt a
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given image quality to a speci�c application. Depending on the available infor-
mation from the original (undistorted) image, quality assessment techniques can
be grouped into three categories: full-reference (FR), reduced reference (RR),
and no-reference (NR), also called blind. FR methods require the original im-
age to evaluate the quality of the distorted image, whereas RR methods require
only a set of features extracted from both the original and the degraded im-
age. When a priori knowledge on the distortion characteristics is available, NR
methods can be used without referring to the original image. A brief review of
image quality assessment (IQA) methods is provided herein; for a more com-
prehensive survey on Image Quality Metrics (IQM), the reader is refereed to
[218, 219, 220, 221, 222]. Many FR objective measures have been proposed in
the literature such as PSNR or weighted PSNR [217]. However, such metrics
re�ect the global properties of the image quality but are ine�cient in predicting
local structural degradations. Since image quality is subjective, the evaluation
based on subjective experiments is the most accepted approach. Unfortunately,
subjective image quality assessment necessitates the use of several procedures,
which have been formalized by the ITU recommendation [223]. These proce-
dures are complex, time consuming and non-deterministic. It should also be
noted that perfect correlation with the HVS could never be achieved due to the
natural variations in the subjective quality evaluation. These drawbacks led to
the development of other practical and objective measures [224, 225, 235]. Ba-
sically, there are two approaches for objective Image Quality Assessment. The
�rst and more practical are the distortion-oriented measures, e.g., the MSE,
PSNR and other similar measures. However, for this class of IQA measures, the
quality metric does not correlate with the subjective evaluation for many types
of degradations. The second class corresponds to the HVS-model oriented mea-
sures. Unfortunately, there is no satisfactory visual perception model that can
account for all the experimental �ndings on the HVS. All the proposed models
have parameters that depend on many environmental factors and require deli-
cate tuning in order to correlate with the subjective assessment [234]. The need
for a reliable and consistent objective image quality measure has not been met
yet.

In the following we provide a uni�ed approach for objective image quality
assessment of some image processing tasks.

6.1. performance evaluation of Visual information processing methods

There are many visual information processing methods which involve as-
sessment of image quality of the outputs: image compression, image denoising,
contrast enhancement, quantization and segmentation are among the methods
where the performance evaluation is based on the perceptual quality of the re-
sults. It is worth noting that IQA involves higher level perceptual and cognitive
factors that are not easy to model. Therefore, the e�ciency depends strongly
on the image characteristics used in the design of the IQA method. In some ap-
proaches, a set of image characteristics are used for evaluating the quality of the
image processing results, some of which include gray-level histogram, entropy
of the gray-level histogram, edge thickness, dynamic range, local variance of
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gray-level, mean edge gray-level, local contrast, and visibility map. A plethora
of objective measures have been proposed for assessing the quality of image pro-
cessing methods [226, 227, 228, 229, 230, 236, 237, 232, 233]. But at the end all
the developed measures often have to be combined with subjective evaluation
in order to evaluate the performance of the image processing tasks in terms of
image quality and accuracy of the obtained results. Therefore, it is desirable
to develop evaluation methods that incorporate some perceptual criteria in the
design of objective measures [228, 229, 230, 236, 237, 231]. For example, in the
case of image segmentation, such as edge detection, gray-level thresholding or
region-based segmentation, the outputs are considered as simpli�ed represen-
tations of the visual content of the image. Therefore, the objective of image
segmentation evaluation is to quantify the visual quality of these representa-
tions as compared with the original image by using some perceptual criteria.
However, at present time, there is no universal measure for evaluating image
segmentation such as thresholding, edge detection or region segmentation. The
most intuitive and popular approaches are based on the a priori knowledge of the
segmentation results or the ground truth. Unfortunately, in many applications
the ground truth is not available. The development of objective measures with-
out ground truth is still an active �eld of research. There are some works in the
area of psycho-visual image segmentation evaluation; however, the procedure is
often very complex, time consuming and depends on many unpredictable factors
[238, 239]. A new perceptual approach for image segmentation evaluation has
been proposed in [240]. In this approach, it is argued that image segmentation
could be considered as a perceptual process, which tends to transform the vi-
sual content of the image so as to provide a simpli�ed representation of it. It
becomes than possible to use IQM for performance evaluation of the segmented
image output. In the case of image enhancement, namely contrast enhance-
ment or denoising, the situation is quite di�erent in the sense that the output
is supposed to exhibit higher perceptual image quality. Some interesting HVS-
based quantitative measures for evaluating image enhancement were presented
in [241, 242, 243]. While many image quality metrics have been developed for
image distortion estimation, there are only a few ad hoc objective measures for
the image enhancement evaluation [242, 243, 244]. Very often we content our-
selves by perceptual evaluation. To evaluate contrast enhancement methods, a
measure based on the spectral energy analysis, introduced in [245], has been
proposed [244]. The basic idea is to evaluate the amount of energy increase
in the di�erent bands and orientations, taking into account the directional and
frequency selectivity of the HVS [246, 247, 29].

Through this brief overview it appears that image quality assessment is still
an open problem; it is not possible to develop reliable image quality metrics
for all known distortions. Image quality is a multidimensional problem and
the best way is to proceed in two steps. First, one has to develop for each
distortion an IQM, which correlates well with subjective evaluation. Then, a
fusion strategy of the di�erent IQMs could be used in order to derive global
measure able to work for all the considered distortions as done in [248]. The
problem of IQA could be also considered as a classi�cation and identi�cation
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problem. Indeed, to overcome the limitations of IQMs, in [249] the authors
proposed a strategy where the degradation type contained in an image is �rst
identi�ed by using a classi�cation scheme then the quality of that image is
estimated using the most appropriate IQM for that speci�c degradation. This
approach is not new and is used in many �elds of research. For image processing
performance evaluation we believe that the use of HVS-inspired approaches
presents an interesting alternative to the classical evaluation metrics.

7. Conclusion

This paper considered perceptual aspects of human vision used in literature
to improve the performance of few basic image processing techniques such as
enhancement, segmentation, coding and quality assessment. The main purpose
of this paper is to provide the reader with the most important works relying
on perceptual modeling for the aforementioned research topics The Introduc-
tion section begins with discussions on information processing in human vision
system tackling the most important characteristics of the human visual system:
image contrast, visual masking, contrast sensitivity function and, orientation
and frequency selectivity. Image enhancement has been the focus of many stud-
ies and perceptual enhancement has been tackled at three levels, i.e., image
denoising, contrast enhancement, coding artifact reduction and tone mapping
and enhancement of high dynamic range images. Perception is also used for seg-
mentation purposes where the aim is to obtain a relatively small number of seg-
mented regions, where each region can be seen as a main object or a meaningful
part of an object. A review of the main image segmentation methods has been
grouped into region-, edge- and perceptual grouping-based methods. Among
these di�erent segmentation techniques, perception-based image segmentation
hold more promise due to its close resemblance of human vision processing.
However, there is still a wide gap in meaningfully harnessing the limited under-
standing of human perception and e�ective high quality image segmentation.
Another important �eld having bene�ted from the development of perceptual
models is image coding. The latter, always seeks the right tradeo� between
compression rate and artifact invisibility. Therefore, the coding literature has
been explored depending on the transforms and standards of the state-of-the-art
in order to provide a comprehensive description of the use of perceptual features
in coding schemes. Finally, image quality is an important issue in image pro-
cessing in its broad sense. Consequently, a section has been dedicated to this
important topic with a special focus on its use for performance evaluation of
some image processing tasks and lossy compression methods. Our review sug-
gests that image quality assessment is still an open problem that concerns many
issues related to visual information processing and communication.

An important issue when using perceptual approaches in image processing
is to avoid applying available models without any consideration of the context,
content or nature of the image. Very often, the used models are derived from
some psycho-visual experiments conducted under limited and speci�c labora-
tory environments. For example, Weber-Fechner law is still used to estimate
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the visibility of a pixel in a small neighborhood, despite the real situation being
far from the ideal con�guration of Weber-Fechner experiments, where a target
is seen over a uniform background. On the other hand, the JNC model by Moon
and Spencer cannot be used in its original form, where there is a non-uniform
background. The situation is even more complex when it concerns high dynamic
images for which color models developed under the 8-bits assumptions may not
be considered as valid. The color issue is also of great importance in image
processing and analysis. Despite decades of intensive studies for understand-
ing and modeling color vision it is not yet completely understood. However,
the use of few common color models for image processing and coding is rela-
tively satisfactory. Another important point that should be taken into account
when using perceptual approaches is that the new commonly available image
acquisition systems have spatial resolution and responses that go beyond the
limitations of the HVS. Therefore, it may be useless to de�ne some perceptual
measures on the raw data. One way to circumvent these limitations is to de-
rive an appropriate representation of the acquired images by using, for instance,
pyramidal decomposition and de�ne the local measures on the low level of this
decomposition. Therefore, caution is required to make perceptual models rele-
vant and useful for image processing tasks. Perceptual data fusion and decision
making in the HVS is another issue that is not yet well understood. Substan-
tial e�orts are needed for developing e�ective models that may be used in the
design of perceptual approaches for image processing. Finally, we believe that
the best way to exploit our knowledge on visual perception mechanisms is to
avoid the race of mimicking the entire properties and cognitive mechanisms of
the HVS. Instead, one can develop HVS-inspired methods by combining some
well-established computational models of perceptual vision using appropriate
signal and image processing tools.
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