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Complex Network



A lot of real world phenomena can be 
modeled as complex networks



Facebook graph (2010)

Keith Shepherd's "Sunday Best”. http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/



Facebook graph (2010)

Social Network (facebook, zoom)



Facebook graph (2010)

Cooking ingredients



Facebook graph (2010)

Termite mounds
The galleries of a termite mound form a complex graph



Facebook graph (2010)
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Public Health
Red conectando enfermedades 



Graph to model complex systems

Credit: Lada Adamic



History of Complex Networks

Ø Graph Theory: 1735, Euler

Ø Social Networks (sociology): 1930… (Moreno)
Ø Communication Networks, Internet 1960…
Ø Ecological Networks : 1979

Ø Web: 1990s (Barabasi, scale free graphs…)

Ø Social Web (Web2.0): 2000s
• Data mining, processing data from huge graphs
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Applications 
of 

Social Network Analysis
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Networked data in the industry
• Telecoms

– call data

• Banks
– Tranfer (checks, money transfer,…)
– Credit card transactions

• Social apps, blogs
– friends, followers
– Posts and comments…

• Distribution 
– Customers buying the products
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Example 1: application to marketing
• Direct marketing actions to some customers
– target is defined by a model
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Example 1: application to marketing
• When customers interact, a behavior can 

become viral: a client can influence her friend

… but sometimes not

A successful viral campaign requires
- a good understanding of the roles of the nodes
- creating a correct propagation model
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Example 2: social web platform 
eg food recipes
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Example 2: social web platform 
RecipesUsers

• Blogs (associated to the users or to the recipes)
• Users’ ratings
• Tags
• Comments on recipes
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Example 2: social web platform 
• One can build several graphs

Unipartites or Bipartites 
Explicits or Implicits
Unipartites or Bipartites 

Unipartites                or     Bipartites graphs
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Some important application of Social Network Analysis
• Analyze users behavior, understand customers

– Link analysis
• Security (finance, intelligence)
• fraud detection (banks, telcos)

– Community analysis
• clustering/segmentation
• community management
• detect hot groups/topics, emergence, predict evolution

• Use the network
– Viral marketing

• identify influencers
• build diffusion models

• Predictive modeling
– Churn prediction, x-sell/up-sell
– Recommender systems

Unipartites or Bipartites 
Explicits or Implicits
Unipartites or Bipartites 



Graph Theory       Complex Networks 20

Challenges of Social Networks Analysis
• Big Data: very large amount/rate of 

transactions
– Network links => impossible to model on random subsamples

• Data is moving fast => scalability of the models
– Example in telecoms (CDRs): 

Rows 
(Millions)

Nodes 
(Millions)

One day 150 20

One week 1 100 45

One month 4 360 70

Three months 13 080 90
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Graph and Networks in Science & Technology
Ø  1735 Graph Theory (Euler)
Ø  1930 Social networks (Moreno)
Ø  1950 Random networks (Erdős-Rényi)
Ø  1960-70 Some applications to telecom 

networks, biology, ecology
Ø  1990 Web, scale free (Barabasi-Albert)
Ø  2000 Social Web (2.0), data mining, big 

graphs
Ø  Present: networks are everywhere, lot of 

industrial application

7 bridges of Königsberg
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(most) real graphs are sparse
In most cases, the average degree of a node does not depend on the 
size of the graph.

The adjacency matrix is thus sparse (most elements are zeroes)

      #Nodes  #Links     Average degree
 WWW (ND Sample): N=325 729; L=1.4 106  Lmax=1012  <k>=4.51
 Protein (S. Cerevisiae):  N=    1 870; L=4 470  Lmax=107  <k>=2.39 
 Coauthorship (Math):  N=  70 975; L=2 105  Lmax=3 1010 <k>=3.9 
 Movie Actors:   N=212 250; L=6 106  Lmax=1.8 1013 <k>=28.78
 
            (Source: Albert, Barabasi, RMP2002)
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Some properties 
of complex networks
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Small worlds

Six degrees of separation
https://en.wikipedia.org/wiki/Six_degrees_of_separation

http://www.ams.org/mathscinet/collaborati
onDistance.html

https://en.wikipedia.org/wiki/Six_degrees_of_separation
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Degree distribution
In complex networks, most nodes have a low degree, 
but some have a very high degree.
The degree distribution follows a power law:
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Connected components
Giant connected component

For more details, see: https://fr.coursera.org/lecture/algorithms-on-graphs/strongly-connected-components-OlOTT

https://fr.coursera.org/lecture/algorithms-on-graphs/strongly-connected-components-OlOTT
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Clustering coefficient
What are the odds that two of my friends know each other?

• Clustering coefficient of a node (“triangles”)
– measures how close its neighbors are to being a clique: 

i.e. the proportion of links between nodes in its 1st circle 
to the number of links that could possibly exist

If Ni is the neighborhood (or 1st circle of node ni)
{ } ( ) ( )[ ]1nDegnDegNn,n:EeC iiikjjki -´ÎÎ= (in a directed graph)

CA =  1 CA =  1/3 CA =  0
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Centrality
Node importance in a network can be measured by
• its degree (number of neighbors)
• proximity to other nodes (average)
• betweenness (number of shortest path passing through this node)

Degree centrality Proximity centrality Betweenness centrality
… among other, like spectral centrality, see https://en.wikipedia.org/wiki/Centrality

https://en.wikipedia.org/wiki/Centrality
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Example: betweenness centrality of stations in Paris subway

Note: I’ve lost the source for this figure, but you could start from https://github.com/totetmatt/gexf/tree/master/metro/Paris

https://github.com/totetmatt/gexf/tree/master/metro/Paris
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Social roles
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•  Structural roles
– central/peripheral 
– connectors

•  Roles based on actions
– Author, reader, commentator

See Roles in social networks: methodologies 
and research issues, M. Forestier et al. 2012.
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Communities 
in 

complex networks
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A. Lancichinetti, S. Fortunato (2009)

Communities in complex networks

Communities at different scales 
Credit: P. Pons, 2007

Political blogs

Link density higher inside communities

Group nodes in clusters
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Many definitions for “communities”
à many partitioning algorithms
A community is a set of nodes such that

– Nodes are similar (considering attributes)
• Persons, Web pages  …

– or Highly connected
• Quasi-clique …

– or Local link density > Cst *  Global density
• Cliques, triangles…

– More links inside than outside
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Modularity of a graph partition
• Assume random networks do not have communities
• Consider a network with N nodes and L links
• Partition it into nc communities, each with Nc nodes connected by Lc 

links, where c=1,..., nc

• For each community, measure the difference between the network 
connections (Aij) and the expected links if the network were randomly 
wired

 where kc is the total degree in community c
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Finding communities: Louvain algorithm
Local greedy algorithm

very fast (process millions of nodes in less than one minute)
Blondel et al., Fast unfolding of communities in large networks, 2008
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Louvain algorithm: example

Blondel et al., Fast unfolding of communities in large networks, 2008

The algorithm provides a hierarchical segmentation

Belgian mobile phones
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Local or ego-centric communities

Blaise Ngonmang, Maurice Tchuente & Emmanuel Viennet 2012

Algorithms to extract a community of nodes in strong interaction 
with a given node (starting point)
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Conclusion
• We briefly introduced Complex Network concepts
• Powerful tools to model complex systems with links or transactions
• We defined some basic metrics: degree, centrality, clustering coefficient 
• We have shown how to extract communities
• “Social variables” can help build better predictive models
• Other important topics:

– Dynamic networks
– Propagation models
– Recommendation in social networks
– Graph neural networks
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References: general books
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Datasets
- Stanford Large Network Dataset Collection  https://snap.stanford.edu/data

- Mark Newman's collection https://public.websites.umich.edu/~mejn/netdata

- The Colorado Index of Complex Networks} (ICON) https://icon.colorado.edu 

- The KONECT Project http://konect.cc 

- Interaction data from the Copenhagen Networks Study https://www.nature.com/articles/s41597-019-
0325-x

https://snap.stanford.edu/data
https://public.websites.umich.edu/~mejn/netdata
https://icon.colorado.edu/
http://konect.cc/
https://www.nature.com/articles/s41597-019-0325-x
https://www.nature.com/articles/s41597-019-0325-x
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Software

Tulip

Pajek

igraph library


