Documents are here:

GRAPH THEORY E!
[7] i

Graph Coloring

https://www-I12ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Emmanuel Viennet
emmanuel.viennet@univ-paris13.fr

mailto:emmanuel.viennet@univ-paris13.fr
https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Graph Coloring

* Coloring maps and graphs
 Chromatic number

* Applications of graph coloring

Graph Theory Coloring

Map Coloring

Is it possible to use less colors ?

(such that no adjacent regions share the
same color !)

Graph Theory Coloring

Ma

Graph Theory

p coloring: 4 colors are enough

wikipedia

Coloring

Map coloring

Color a map such that two regions with a common border are
assigned different colors.

Each map can be represented by a graph:
* Each region of the map is represented by a vertex;
* Edges connect two vertices if the regions represented by
these vertices have a common border.
The resulting graph is called the dual graph of the map.

Graph Theory Coloring

Poland

Czech
Republic

https://www.mathsisfun.com/activity/coloring.html

Graph Theory Coloring 6

https://www.mathsisfun.com/activity/coloring.html

Map coloring

Poland
Poland

R
A o/

enia

Can you see the similarity between these two diagrams?

Graph Theory Coloring

Map coloring

| Czech Republic
| Slovakia
Hungary

Slovenia

Poland

Poland

X' Czech
Republic

o ol

a

Planar graph

Graph Theory Coloring 8

Map coloring

How many colors do we need to color the regions on a map, so that
adjacent regions have different colors?

Some maps require four colors. For example:

et

Whatever color Kentucky has, its 7 neighboring states can't be colored
using only 2 more colors; they form an odd cycle.

Are four colors always enough? That's a much harder problem!

Graph Theory Coloring

Vertex coloring

Generalizing this problem, a (vertex) coloring of G assigns every vertex
of G a color; formally, it is a function f: V(G) — R, where R is a set
of colors.

A proper (vertex) coloring of G is a coloring that gives adjacent
vertices different colors: vw € E(G) = f(v) # f(w).

We say that GG is k-colorable if it has a proper coloring with k colors.
The chromatic number x(G) is the least k such that G is k-colorable.

Graph Theory Coloring 10

The four-color theorem

Was posed as a conjecture in the 1850s. Finally proved in 1976 with the help of computers.

Graph Theory

The general vertex coloring problem has many applications: register
allocation in compilers, scheduling problems, etc.

Map coloring is equivalent to coloring a planar graph.

Theorem (Appel-Haken, 1976). Every planar graph is 4-colorable.

There is some intuition for this: the smallest graph that's not
4-colorable is K5, and K5 is not planar.

Coloring

11

The four-color theorem - historical note @\S)

F. Guthrie first conjectured the theorem in 1852. In 1878, Cayley wrote the first
paper on the conjecture.

Fallacious proofs were given independently by Kempe (1879) and Tait (1880).
Kempe's proof was accepted for a decade until Heawood showed an error using a
map with 18 faces.

This result was finally obtained by Appel and Haken (1977), who constructed a
computer-assisted proof that four colors were sufficient. However, because part of
the proof consisted of an exhaustive analysis of many discrete cases by a
computer, some mathematicians did not accept it.

In December 2004, G. Gonthier of Microsoft Research in Cambridge, England
(working with B. Werner of INRIA in France) announced that they had verified the
Robertson et al. proof by formulating the problem in the equational logic program
Coq and confirming the validity of each of its steps (Devlin 2005, Knight 2005).

Graph Theory Coloring 12

Bipartite and 2-colorable graphs

Bipartite graphs are exactly the 2-colorable graphs. Two ways to say
the same thing:

“V(G) can be partitioned into A U B such that all edges have one
endpoint in A and one endpoint in B”

“The vertices of GG can be colored red and blue such that all edges
have one red endpoint and one blue endpoint.”

Graph Theory Coloring 13

Ckecking bipartite graphs

We can check if a graph is bipartite (2-colorable) by trying to color it:
Color an arbitrary vertex red (because the colors are equivalent).
Color all its neighbors blue (because they cannot be red).

Color all of the blue vertices' neighbors red, and so on.

Eventually, we will have successfully colored everything, or this strategy
will tell us to color a vertex blue when it has already been colored red
(or red when it has already been colored blue).

If that happens, there is no 2-coloring, and the graph has an odd cycle.

Checking if a graph is k-colorable for £ > 3 is very hard! There is no
efficient algorithm known.

Graph Theory Coloring 14

Bounds and coloring algorithms

If it's hard to determine the chromatic number of a graph, what can we
do?

We can try to prove upper and lower bounds on the chromatic number
of a graph.

Today, we will focus on upper bounds on the chromatic number. The
best kind of upper bound is a constructive upper bound. Constructive
upper bounds will give us an algorithm to color the graph with some
number of colors, even though it may not be the best number.

For example, for any n-vertex graph G, its chromatic number x(G)
satisfies x(G) < n. This corresponds to the very simple algorithm “give
each vertex its own color”.

Graph Theory Coloring

15

The greedy algorithm

The greedy algorithm is a slightly more intelligent coloring strategy.

Here, we assume that the vertices of a graph are ordered vq,v9, ..., v,.
The greedy algorithm colors vq, then vg, then v3, and so on. It follows
one simple rule:

When coloring vertex v;, use any available color! that was not
used on any of v;'s neighbors that have been colored so far.

Here is an example. The colors we'll try are ®R® OV in order.

® © &V

'For concreteness, “the first” color?

Graph Theory Coloring 16

Improved bound (using greedy)

Theorem. Every graph G with maximum degree A(G) has chromatic
number x(G) < A(G) + 1.

Proof. This is how many colors the greedy algorithm uses, in the worst
case.

If we have A(G) + 1 colors available, then the greedy algorithm will
never run out of colors. Each vertex we color has at most A(G)

neighbors that have already been colored; even if they all get different
colors, there is one color remaining.

Graph Theory Coloring 17

Improved bound (using greedy)

Theorem. Every graph G with maximum degree A(G) has chromatic
number x(G) < A(G) + 1.

Proof. This is how many colors the greedy algorithm uses, in the worst
case.

If we have A(G) + 1 colors available, then the greedy algorithm will
never run out of colors. Each vertex we color has at most A(G)

neighbors that have already been colored; even if they all get different
colors, there is one color remaining.

Graph Theory Coloring 18

Improving greedy: DSATUR (Brélaz, 1979)

DSatur colors the vertices of a graph one after another, adding a previously unused color when
needed.

Once a new vertex has been colored, the algorithm determines which of the remaining uncolored
vertices has the highest number of colors in its neighborhood and colors this vertex next.

Brélaz defines this number as the degree of saturation of a given vertex.
The contraction of the term "degree of saturation" forms the name of the algorithm.
DSatur is a heuristic graph coloring algorithm, yet produces exact results for bipartite, cycle, and

wheel graphs.

Graph Theory Coloring 19

DSATUR algorithm (Brélaz)

while there exists uncolored nodes:
for each uncolored node x:
if no neighbor 1s colored:
DSAT[x] = degree of x
else:
DSAT[x] = num. of colored neighbors

Pick the uncolored node n with max DSAT

(1f several possibilities, choose the one with max degree)
Color node n with the lowest possible color

Graph Theory Coloring

20

DSATUR algorithm : example

a b
i h
g f

Graph Theory

Nodes’ degrees:

Som(G)

alb

d|e

f

h

d'(x,G)

4

5

3

4

5

4

4

Table with nodes sorted by growing degrees:

Som(G)

)

ble

a

d

f

h|c

i

DSAT(x);

6

5

4

4

4

4

1

DSAT(x);

DSAT(x)3

DSAT(x)4

DSAT(x)g

DSAT(x)7

(

(

(
DSAT(x)5

(

(

(

DSAT(X)s

DSAT(x)o

COULEUR

Example from
D. Hébert, USPN

21

Max DSAT for node g, color with 1

Som(g)

e|a

d

flhic

i

DSAT(x);

4

4

4

1

DSAT(x);

4

1

1

DSAT(x)3

DSAT(x)4

DSAT(x)¢

DSAT(x)7

(
(
(
(
DSAT(xX)s
(
(
(

DSAT(x)g

DSAT(x)9

COULEUR

=N BN BN BN BN BN BE BE BE- WL

Graph Theory

Coloring

DSATUR algorithm : example

Max DSAT for node d, color with 1

Som(G)

ja¥

DSAT(x);

DSAT(x);

DSAT(x)3

N[— || T

N[= Ol ®

N|=|&|p

N | —= ||

—] — N

— | = |w|6o

— | — [— | e

DSAT(x)4

DSAT(x)g

DSAT(x)7

(
(
(
(
DSAT(X)s
(
(
(

DSAT(x)g

DSAT(x)9

COULEUR

=Sl BN BR BE BN BE BE BE REOL-

=N BN BE BE BN BE BR NN

22

DSATUR algorithm : example, cont.

Max DSAT for node d, color with 1

Max DSAT+degree for node b, color with 2

WiIN| = O®

wiN|[=|ap

WIN| =B

h
4
1
1
1

— — | - 0O

— —_— —_— —_— [

COULEUR

=2 ER BE ER BE BE BE BE RE-2NE-
(CEN BN BE BE EE BE BESEECRES:EN-»

NN BN BN BN BN BN BN BiEECNIE-NE-Y

Graph Theory

Coloring

Som(G)

ja¥

DSAT(xX);

DSAT(x);

DSAT(x)3

N[— || T

N[= Ol ®

N|=|&|p

N | —= ||

—] — N

— - 0O

— | — [— | e

DSAT(x)s

DSAT(x)g

DSAT(x)7

(
(
(
DSAT(x)4
(
(
(
(

DSAT(x)g

DSAT(x)9

COULEUR

=Sl BN BR BE BN BE BE BE REOL-

=N BN BE BE BN BE BR NN

23

example, cont.

DSATUR algorithm

i
1

1

1
1
1
1

24

1

1
1
1
1
1
1
1

VIV IS

< 5]
=] K
o .
S o
..M QN |r—|—|— N[N ™ ..pmbu ol |—l—l—IN NN B
4 h4.|.|]1.|2..2m elg|l—l—l—|—|—|~|H BN
Q, 7]
e “ <t |m(N(onfonom B W o] ||~ || |n|n B W W o
]
w sdhana LI LI L L S e A L LI
[}
) a4]234llll4.mvma4.|234llll4
+ T =
S | O]~ |m|m m mm|e SE|o|w|—|~jm mmmmm|e
R 8
i Sv|l— | H H B E BB J0Ff oclnm/@EEE BB«
— Q
= T 9
g |ocmmmmmmmm~ 25 oo/ mn(nn(ninnln~
22 o=l ool sl el 5= ole| B sl 22| 2|22l 2
58 B 22222 Z2IZ|Z12(8] 22 |2 22 22222 ZZE
ez ElZ|EE EEEE LR EEl <8 EElEEEEEEEEE
E o |RlB| v v v v b v vblu|ld R Ol nlnlwlwl vl alalagl
o.nSDDDDDDDDDC o— ||l Aalalalalalalaalalo
7] 2=
o o
[Pt = ©
— O A
@ o
5] E
E <
o wCl——_—] -] - wm.1111111
«3]
- Ol | —|—|— |~ ® 5 Ol ||~ |||
S T Q
S g —_ - - - o —_—] -] -
28 =7 o g | =1
.mlw. |t~ | N[|m Gy ST [[N[n[m]|o
+ O >
mad44lllllll1ma AR RSN B BR BE BE BE BE BE.
— ‘- QO
- ot
Wm la|lmla|eo| < o8 |8t~ |N|o|<HH E R <
SIS
o &
- & O~ (N (W (W (mE| o ame5123lllll3
(SR —_—
-
ES |olv|—|~|(m(mmE EE B~ g |olw|l~||H|H H H BN
g9 °©
o 3
3 o .-
H.he 96........1%% SIRCEE BE BN BN BN BE BN BN BE.
9 || =] & o | »| e ~| o o g _ o~ ©| ~
o g 223 RNME R AR o Q e Iy A il . 2 I RN g N
£ .8 Sieaiciciciciaicion: 2282 2% 2 =% 2% %8
thDDDDDDDDDCmmSDDDDDDDDDC
_
8 T o g
> o > 2

Graph Theory

example, end

DSATUR algorithm

=

-~

(]

g

m I A B B e B B N A B
o

[72]

M Ol |—m —l—lN/NINn B
g

mu. el —|l—|—|—|— | H BN
<

w |t |—|N A ||| W
-~

5 AR SN B BN BN BN BN BE BE.
2

>

<] S|lt|—|N|n|<|H B HEH B <
8 e
— V|~ N | BN W e
—

3

9 CREEE_NEEE BN BN BE BN BE BNS
=

Q

o SIRCEE BE B BE B BN BE BN BB
< .

—_— e

[)\H\N.\B\M\B\),o\ﬂ\mm\ﬂm
Ee (2R XXX IRIR X R
%5 |gleleElE|lE| B ElE|E| B
=29 |8l=sls|l=sl=s|l=sl=s|=|=s|=|
=0 n n n n unul vl n un|l
20 |ma|la|lalalalalalalalo
g

= O

m g

o

5

© D= —f——| — -

<

B O M|r—|—|— || NN

[o%

i) Llt|r—|r—|—|—|—|&

&

g ||| m |
)

ATEEECER NE AN N BE BE BN BN BE BRG]
g™

o8 |||~ |(N|ov|<(H | E B B| <
\a.I.M

28 VI | — Nl E R e e
(9}

22 o~ /E(H E/E BB~
T8

SE (o mEEEEEE N~
72}
em)]23456789
ng)))))))))
Tl R R R IR IR IS IR IR IR IR
¢ o |E8lElBE|lE|lE BB BB | B
L |8l
mrsssssssssso
olo. QAlalAalalAalalalalAa|ll
2o

eC

=2

g

Nous pouvons donc affirmer que X(G) < 4.

25

Coloring

Graph Theory

An application of graph coloring in scheduling

Graph Theory

International Journal of Computational and Applied Mathematics.
ISSN 1819-4966 Volume 12, Number 2 (2017), pp. 469-485

© Research India Publications

http://www .ripublication.com

A Study on Course Timetable Scheduling using
Graph Coloring Approach

Runa Ganguli! and Siddhartha Roy?

!Department of Computer Science,
The Bhawanipur Education Society College, Kolkata, West Bengal, India

2 Department of Computer Science,
The Bhawanipur Education Society College, Kolkata, West Bengal, India

Abstract

In any educational institution, the two most common academic scheduling
problems are course timetabling and exam timetabling. A schedule is desirable
which combines resources like teachers, subjects, students, classrooms in a
way to avoid conflicts satisfying various essential and preferential constraints.
The timetable scheduling problem is known to be NP Complete but the
corresponding optimization problem is NP Hard. Hence a heuristic approach is
preferred to find a nearest optimal solution within reasonable running time.
Graph coloring is one such heuristic algorithm that can deal timetable
scheduling satisfying changing requirements, evolving subject demands and
their combinations. This studv shows aoolication of eravh coloring on

Coloring

26

An application of graph coloring in scheduling

Input Dataset: Table 1 shows the Honours-General subject combination of a typical Solution:
undergraduate science course. . ” 5 o .
Considering each course as a node, edge between two nodes is drawn only if there is

common student. (See Fig. 3)
Table 1 Honours-General Subject Combination

List of Honours General Subject Combination
Subjects

Mathematics(compulsory) +
1 Physics
Computer Science/Chemistry/Electronics
Mathematics(compulsory) +
2 Chemistry
Physics/Computer Science
Physics(compulsory) + Fig. 3 Course Conflict Graph
= L) . . . After applying graph coloring algorithm, the resultant graph in Fig. 4 is properly
Chemistry/Computer Science/Statistics colored with chromatic number 4. This is the minimum number of non-conflicting
time-slots scheduling all the given courses.
Mathematics(compulsory) +
4 Economics
Statistics/Computer Science
List of constraints:
Hard Constraints-

e Courses having common student cannot be allotted at the same time slot on
the same day.

e Total number of available periods is 8. (maximum)

Soft Constraints-

e Honours and General courses need to be scheduled in non-overlapping time-
slots.

Fig. 4 Colored Conflict Graph
Graph Theory Coloring 27

Exercise: application in scheduling

Suppose that in a particular quarter there are

students taking each of the following
combinations of courses:
» Math, English, Biology, Chemistry

= Math, English, Computer Science, Geography
= Biology, Psychology, Geography, Spanish
= Biology, Computer Science, History, French

= English, Psychology, Computer Science,

History

= Psychology, Chemistry, Computer Science,

French

= Psychology, Geography, History, Spanish

Graph Theory

Coloring

What is the minimum number of
examination periods required for the
exams in the ten courses specified so that
students taking any of the given
combinations of courses have no
conflicts? Find a schedule that uses this
minimum number of periods.

28

Exercise: application in scheduling (2)

Graph Theory

Coloring

Create a Conflict Graph

* Each node represents a course.

* An edge between two courses signifies
that they have a common student and
thus cannot be in the same exam
period.

Math (M), English (E), Biology (B),
Chemistry (C), Computer Science (CS),
Geography (G), Psychology (P), Spanish
(S), History (H), and French (F).

29

Exercise: application in scheduling (2)

Math (M) M £ Link <> courses are in conflict
English (E) ' ,
Biology (B) \
Chemistry (C) F‘
Computer Science (CS) NS
Geography (G)
Psychology (P) H i
Spanish (S) 5 -
History (H) &Lt QUES
French (F) S
c o MP (NAT v
OF
COURSES

From the combinations of courses given, we can infer the edges.
For example, from the first combination (Math, English, Biology, Chemistry),
we draw edges between M and E, Nand B, Mand C, Eand B, E and C, and B and C.

Graph Theory Coloring 30

Exercise: application in scheduling (3)

With the graph in place, we apply a graph coloring algorithm to
determine the minimum number of colors (examination
periods) needed.

The chromatic number of a graph is the smallest number of
colors needed to color the vertices of the graph so that no two
adjacent vertices share the same color.

Finding the chromatic number of a general graph is NP-

Complete, but for small graphs, we can often find it by
inspection or using a straightforward greedy algorithm.

Graph Theory Coloring

31

