GRAPH THEORY [5]

Binary Trees Huffman encoding Binary Search Trees Documents are here:

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Emmanuel Viennet emmanuel.viennet@univ-paris13.fr

Slides adapted from D.G. Sullivan, Harvard

What Is a Tree?

- A tree consists of:
 - a set of nodes
 - a set of edges, each of which connects a pair of nodes
- Each node may have one or more data items.
 - each data item consists of one or more fields
 - key field = the field used when searching for a data item
 - multiple data items with the same key are referred to as duplicates
- The node at the "top" of the tree is called the root of the tree.

Relationships Between Nodes

- If a node N is connected to other nodes that are directly below it in the tree, N is referred to as their parent and they are referred to as its children.
 - example: node 5 is the parent of nodes 10, 11, and 12
- Each node is the child of at most one parent.
- Other family-related terms are also used:
 - nodes with the same parent are siblings
 - a node's ancestors are its parent, its parent's parent, etc.
 - example: node 9's ancestors are 3 and 1
 - a node's descendants are its children, their children, etc.
 - example: node 1's descendants are all of the other nodes

Types of Nodes

- A leaf node is a node without children.
- An interior node is a node with one or more children.

A Tree is a Recursive Data Structure

- Each node in the tree is the root of a smaller tree!
 - refer to such trees as subtrees to distinguish them from the tree as a whole
 - example: node 2 is the root of the subtree circled above
 - example: node 6 is the root of a subtree with only one node
- We'll see that tree algorithms often lend themselves to recursive implementations.

Path, Depth, Level, and Height

- There is exactly one path (one sequence of edges) connecting each node to the root.
- depth of a node = # of edges on the path from it to the root
- Nodes with the same depth form a level of the tree.
- The height of a tree is the maximum depth of its nodes.
 - example: the tree above has a height of 2

Binary Trees

- In a binary tree, nodes have at most two children.
- Recursive definition: a binary tree is either:
 - 1) empty, or
 - 2) a node (the root of the tree) that has
 - one or more data items
 - a left child, which is itself the root of a binary tree
 - a right child, which is itself the root of a binary tree

How are the edges of the tree represented?

Representing a Binary Tree Using Linked Nodes

```
public class LinkedTree {
    private class Node {
        private int key;
        private LLList data; // list of data items
        private Node left; // reference to left child
        private Node right; // reference to right child
    private Node root;
                                              26
}
                    root
                                                  32
                                         12
                                               nu11
          32
                                             18
                                                       38
       18
             38
                                  lnu11
                                           nu11|nu11
                                                     nu11|nu11
                                      null|null
```

See ~cscie119/examples/trees/LinkedTree.java

Traversing a Binary Tree

- Traversing a tree involves visiting all of the nodes in the tree.
 - visiting a node = processing its data in some way
 - example: print the key
- We will look at four types of traversals. Each of them visits the nodes in a different order.
- To understand traversals, it helps to remember the recursive definition of a binary tree, in which every node is the root of a subtree.

Preorder Traversal

- preorder traversal of the tree whose root is N:
 - 1) visit the root, N
 - 2) recursively perform a preorder traversal of N's left subtree
 - 3) recursively perform a preorder traversal of N's right subtree

Preorder traversal of the tree above:

7 5 2 4 6 9 8

Which state-space search strategy visits nodes in this order?

Implementing Preorder Traversal

```
public class LinkedTree {
    private Node root;

public void preorderPrint() {
    if (root != null)
        preorderPrintTree(root);
}

private static void preorderPrintTree(Node root) {
    System.out.print(root.key + " ");
    if (root.left != null)
        preorderPrintTree(root.left);
    if (root.right != null)
        preorderPrintTree(root.right);
}

Not always the same as the root of the entire tree.
```

- preorderPrintTree() is a static, recursive method that takes as a parameter the root of the tree/subtree that you want to print.
- preorderPrint() is a non-static method that makes the initial call. It passes in the root of the entire tree as the parameter.

Tracing Preorder Traversal

```
void preorderPrintTree(Node root) {
    System.out.print(root.key + " ");
    if (root.left != null)
        preorderPrintTree(root.left);
    if (root.right != null)
        preorderPrintTree(root.right);
}
```


			root: 4 print 4				
		root: 2	root: 2	root: 2		root: 6	
	root: (5) print 5	root: 5	root: 5	root: (5)	root: (5)	root: 5]
root: 7 print 7	root: 7	root: 7	root: 7	root: 7	root: 7	root: 7	
time —							

Postorder Traversal

- postorder traversal of the tree whose root is N:
 - 1) recursively perform a postorder traversal of N's left subtree
 - 2) recursively perform a postorder traversal of N's right subtree
 - 3) visit the root, N

Postorder traversal of the tree above:

4 2 6 5 8 9 7

Implementing Postorder Traversal

```
public class LinkedTree {
    private Node root;

public void postorderPrint() {
    if (root != null)
        postorderPrintTree(root);
}

private static void postorderPrintTree(Node root) {
    if (root.left != null)
        postorderPrintTree(root.left);
    if (root.right != null)
        postorderPrintTree(root.right);
    System.out.print(root.key + " ");
}
```

Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal

```
void postorderPrintTree(Node root) {
   if (root.left != null)
      postorderPrintTree(root.left);
   if (root.right != null)
      postorderPrintTree(root.right);
   System.out.print(root.key + " ");
}
```


			root: 4 print 4				
		root: 2	root: 2	root: 2		root: 6	
	root: (5)	root: (5)	root: 5	root: 5	root: (5)	root: 5]
root: 7	root: 7	root: 7	root: 7	root: 7	root: 7	root: 7	

Inorder Traversal

- inorder traversal of the tree whose root is N:
 - 1) recursively perform an inorder traversal of N's left subtree
 - 2) visit the root, N
 - 3) recursively perform an inorder traversal of N's right subtree

- Inorder traversal of the tree above:
 - 2 4 5 6 7 8 9

Implementing Inorder Traversal

```
public class LinkedTree {
    private Node root;

public void inorderPrint() {
    if (root != null)
        inorderPrintTree(root);
}

private static void inorderPrintTree(Node root) {
    if (root.left != null)
        inorderPrintTree(root.left);
    System.out.print(root.key + " ");
    if (root.right != null)
        inorderPrintTree(root.right);
}
```

Note that the root is printed between the two recursive calls.

Tracing Inorder Traversal

```
void inorderPrintTree(Node root) {
   if (root.left != null)
      inorderPrintTree(root.left);
   System.out.print(root.key + " ");
   if (root.right != null)
      inorderPrintTree(root.right);
}
```


			root: 4 print 4				
		root: 2	root: 2	root: 2		root: 6	
	root: (5)	root: 5	root: 5	root: (5)	root: (5)	root: 5]
root: 7	root: 7	root: 7	root: 7	root: 7	root: 7	root: 7	

Level-Order Traversal

 Visit the nodes one level at a time, from top to bottom and left to right.

- Level-order traversal of the tree above: 7 5 9 2 6 8 4
- Which state-space search strategy visits nodes in this order?
- How could we implement this type of traversal?

Tree-Traversal Summary

preorder: root, left subtree, right subtree

postorder: left subtree, right subtree, root

inorder: left subtree, root, right subtree

level-order: top to bottom, left to right

Perform each type of traversal on the tree below:

Using a Binary Tree for an Algebraic Expression

- We'll restrict ourselves to fully parenthesized expressions and to the following binary operators: +, -, *, /
- Example expression: ((a + (b * c)) (d / e))

Tree representation:

- Leaf nodes are variables or constants; interior nodes are operators.
- Because the operators are binary, either a node has two children or it has none.

Traversing an Algebraic-Expression Tree

- Inorder gives conventional algebraic notation.
 - print '(' before the recursive call on the left subtree
 - print ')' after the recursive call on the right subtree
 - for tree at right: ((a + (b * c)) (d / e))
- Preorder gives functional notation.
 - print '('s and ')'s as for inorder, and commas after the recursive call on the left subtree
 - for tree above: subtr(add(a, mult(b, c)), divide(d, e))
- Postorder gives the order in which the computation must be carried out on a stack/RPN calculator.
 - for tree above: push a, push b, push c, multiply, add,...
- See ~cscie119/examples/trees/ExprTree.java

Fixed-Length Character Encodings

- A character encoding maps each character to a number.
- Computers usually use fixed-length character encodings.
 - ASCII (American Standard Code for Information Interchange) uses 8 bits per character.

char	dec	binary
a	97	01100001
b	98	01100010
С	99	01100011

example: "bat" is stored in a text file as the following sequence of bits: 01100010 01100001 01110100

- Unicode uses 16 bits per character to accommodate foreign-language characters. (ASCII codes are a subset.)
- Fixed-length encodings are simple, because
 - all character encodings have the same length
 - · a given character always has the same encoding

Variable-Length Character Encodings

- Problem: fixed-length encodings waste space.
- Solution: use a variable-length encoding.
 - use encodings of different lengths for different characters
 - assign shorter encodings to frequently occurring characters
- Example:

е	01
0	100
S	111
t	00

"test" would be encoded as 00 01 111 00 → 000111100

- Challenge: when decoding/decompressing an encoded document, how do we determine the boundaries between characters?
 - example: for the above encoding, how do we know whether the next character is 2 bits or 3 bits?
- One requirement: no character's encoding can be the prefix of another character's encoding (e.g., couldn't have 00 and 001).

Huffman Encoding

- Huffman encoding is a type of variable-length encoding that is based on the actual character frequencies in a given document.
- Huffman encoding uses a binary tree:
 - to determine the encoding of each character
 - to decode an encoded file i.e., to decompress a compressed file, putting it back into ASCII
- Example of a Huffman tree (for a text with only six chars):

Leaf nodes are characters.

Left branches are labeled with a 0, and right branches are labeled with a 1.

If you follow a path from root to leaf, you get the encoding of the character in the leaf example: 101 = 'i'

Building a Huffman Tree

- 1) Begin by reading through the text to determine the frequencies.
- 2) Create a list of nodes that contain (character, frequency) pairs for each character that appears in the text.

- 3) Remove and "merge" the nodes with the two lowest frequencies, forming a new node that is their parent.
 - left child = lowest frequency node
 - right child = the other node
 - frequency of parent = sum of the frequencies of its children
 - in this case, 21 + 23 = 44

Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes:

5) Repeat steps 3 and 4 until there is only a single node in the list, which will be the root of the Huffman tree.

Completing the Huffman Tree Example I

• Merge the two remaining nodes with the lowest frequencies:

Completing the Huffman Tree Example II

Merge the next two nodes:

Completing the Huffman Tree Example III

• Merge again:

Completing the Huffman Tree Example IV

The next merge creates the final tree:

 Characters that appear more frequently end up higher in the tree, and thus their encodings are shorter.

Using Huffman Encoding to Compress a File

- 1) Read through the input file and build its Huffman tree.
- 2) Write a file header for the output file.
 - include an array containing the frequencies so that the tree can be rebuilt when the file is decompressed.
- 3) Traverse the Huffman tree to create a table containing the encoding of each character:

а	?
Ф	?
:-	101
0	100
S	111
t	00

4) Read through the input file a second time, and write the Huffman code for each character to the output file.

Using Huffman Decoding to Decompress a File

- 1) Read the frequency table from the header and rebuild the tree.
- 2) Read one bit at a time and traverse the tree, starting from the root:
 when you read a bit of 1, go to the right child
 when you read a bit of 0, go to the left child
 when you reach a leaf node, record the character,
 return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of determining the character boundaries!

Binary Search Trees

- Search-tree property: for each node k:
 - all nodes in k's left subtree are < k
 - all nodes in k's right subtree are >= k
- Our earlier binary-tree example is a search tree:

Searching for an Item in a Binary Search Tree

- Algorithm for searching for an item with a key k:
 if k == the root node's key, you're done
 else if k < the root node's key, search the left subtree
 else search the right subtree
- Example: search for 7

Implementing Binary-Tree Search

```
public class LinkedTree { // Nodes have keys that are ints
...
   private Node root;

public LLList search(int key) {
     Node n = searchTree(root, key);
     return (n == null ? null : n.data);
}

private static Node searchTree(Node root, int key) {
     // write together
```

 If we find a node that has the specified key, we return its data field, which holds a list of the data items for that key.

Binary-Tree Search: complete method

```
private static Node searchTree(Node root, int key) {
    if (root == null || root.key == key) {
        return root;
    }
    if (key < root.key) {
        return searchTree(root.left, key);
    } else {
        return searchTree(root.right, key);
    }
}</pre>
```

Inserting an Item in a Binary Search Tree

- We want to insert an item whose key is k.
- We traverse the tree as if we were searching for k.
- If we find a node with key k, we add the data item to the list of items for that node.
- If we don't find it, the last node we encounter will be the parent P of the new node.
 - if k < P's key, make the new node
 P's left child
 - else make the node P's right child
- Special case: if the tree is empty, make the new node the root of the tree.
- The resulting tree is still a search tree.

example: insert 35

Implementing Binary-Tree Insertion

- We'll implement part of the insert() method together.
- We'll use iteration rather than recursion.
- Our method will use two references/pointers:
 - trav: performs the traversal down to the point of insertion
 - parent: stays one behind trav
 - like the trail reference that we sometimes use when traversing a linked list

Implementing Binary-Tree Insertion

```
public void insert(int key, Object data) {
    Node parent = null;
                                                  26
    Node trav = root;
    while (trav != null) {
        if (trav.key == key) {
                                                      32
                                               12
            trav.data.addItem(data, 0);
            return;
        }
                                                  18
                                                          38
    Node newNode = new Node(key, data);
    if (parent == null) // the tree was empty
        root = newNode;
    else if (key < parent.key)
        parent.left = newNode;
    else
        parent.right = newNode;
}
```

Binary-Tree Insertion: complete method

```
public void insert(int key, Object data) {
   Node parent = null;
   Node trav = root;
   while (trav != null) {
        if (trav.key == key) {
            // `addItem` is a method that adds the item to the node's data.
            trav.data = data;
            return;
        parent = trav; // Update the parent before going deeper
        if (key < trav.key) {</pre>
            trav = trav.left;
        } else {
            trav = trav.right;
   Node newNode = new Node(key, data);
    if (parent == null) // the tree was empty
        root = newNode;
   else if (key < parent.key)</pre>
        parent.left = newNode;
    else
        parent.right = newNode;
```

Deleting Items from a Binary Search Tree

- Three cases for deleting a node x
- Case 1: x has no children.
 Remove x from the tree by setting its parent's reference to null.

Case 2: x has one child.
 Take the parent's reference to x and make it refer to x's child.

Deleting Items from a Binary Search Tree (cont.)

- Case 3: x has two children
 - we can't just delete x. why?
 - instead, we replace x with a node from elsewhere in the tree
 - to maintain the search-tree property, we must choose the replacement carefully
 - example: what nodes could replace 26 below?

Deleting Items from a Binary Search Tree (cont.)

- Case 3: x has two children (continued):
 - replace x with the smallest node in x's right subtree call it y
 - y will either be a leaf node or will have one right child. why?
- After copying y's item into x, we delete y using case 1 or 2.

ex: delete 26

Implementing Binary-Tree Deletion

```
public LLList delete(int key) {
    // Find the node and its parent.
    Node parent = null;
    Node trav = root;
                                                   26
                                                         parent
    while (trav != null && trav.key != key) {
        parent = trav;
                                                12
                                                       32
        if (key < trav.key)
                                                              trav
            trav = trav.left:
        else
                                                   18
                                                           38
            trav = trav.right;
    // Delete the node (if any) and return the removed items.
    if (trav == null) // no such key
        return null;
    else {
        LLList removedData = trav.data;
        deleteNode(trav, parent);
        return removedData;
}
```

This method uses a helper method to delete the node.

Implementing Case 3

```
private void deleteNode(Node toDelete, Node parent) {
   if (toDelete.left != null && toDelete.right != null) {
       // Find a replacement - and
        // the replacement's parent.
                                                         toDelete
        Node replaceParent = toDelete:
        // Get the smallest item
                                                       26
        // in the right subtree.
        Node replace = toDelete.right;
        // What should go here?
                                                   18
                                                           45
                                                       30
        // Replace toDelete's key and data
                                                              35
        // with those of the replacement item.
        toDelete.key = replace.key;
        toDelete.data = replace.data;
        // Recursively delete the replacement
        // item's old node. It has at most one
        // child, so we don't have to
        // worry about infinite recursion.
        deleteNode(replace, replaceParent);
    } else {
        . . .
```

Implementing Cases 1 and 2

```
private void deleteNode(Node toDelete, Node parent) {
    if (toDelete.left != null && toDelete.right != null) {
    } else {
        Node toDeleteChild;
        if (toDelete.left != null)
                                                        30
            toDeleteChild = toDelete.left;
                                                                  parent
        else
            toDeleteChild = toDelete.right;
                                                    18
        // Note: in case 1, toDeleteChild
        // will have a value of null.
                                                                   toDelete
                                                         30
        if (toDelete == root)
            root = toDeleteChild;
                                                               35
        else if (toDelete.key < parent.key)</pre>
            parent.left = toDeleteChild;
        else
            parent.right = toDeleteChild;
                                                            toDeleteChild
```

Binary-Tree Deletion: complete method (1)

```
public Object delete(int key) {
   // Find the node and its parent.
   Node parent = null;
   Node trav = root;
    while (trav != null && trav.key != key) {
        parent = trav;
        if (key < trav.key)</pre>
            trav = trav.left;
        else
            trav = trav.right;
    // Delete the node (if any) and return the removed items.
    if (trav == null) // no such key
        return null;
    else {
        Object removedData = trav.data;
        deleteNode(trav, parent);
        return removedData;
```

Binary-Tree Deletion: complete method (case 3)

```
private void deleteNode(Node toDelete, Node parent) {
   if (toDelete.left != null && toDelete.right != null) {
       // Find a replacement - and
       // the replacement's parent.
       Node replaceParent = toDelete;
       // Get "y", the smallest item
       // in the right subtree.
       Node replace = toDelete.right;
       while (replace.left != null) {
           replaceParent = replace;
           replace = replace.left;
       // Replace toDelete's key and data
       // with those of the replacement item.
       toDelete.key = replace.key;
       toDelete.data = replace.data;
       // Delete the replacement node
       if (replaceParent.left == replace) {
           replaceParent.left = replace.right;
       } else {
            replaceParent.right = replace.right;
```

Binary-Tree Deletion: complete method (case 1 and 2)

```
if (toDelete.left != null && toDelete.right != null) {
} else {
   Node toDeleteChild;
    if (toDelete.left != null)
        toDeleteChild = toDelete.left;
   else
        toDeleteChild = toDelete.right;
   // Note: in case 1, toDeleteChild
   // will have a value of null.
    if (toDelete == root)
        root = toDeleteChild;
    else if (toDelete.key < parent.key)</pre>
        parent.left = toDeleteChild;
   else
        parent.right = toDeleteChild;
```

Efficiency of a Binary Search Tree

- The three key operations (search, insert, and delete) all have the same time complexity.
 - insert and delete both involve a search followed by a constant number of additional operations
- Time complexity of searching a binary search tree:
 - best case: O(1)
 - worst case: O(h), where h is the height of the tree
 - average case: O(h)
- What is the height of a tree containing n items?
 - it depends! why?

Balanced Trees

- A tree is balanced if, for each node, the node's subtrees have the same height or have heights that differ by 1.
- For a balanced tree with n nodes:
 - height = $O(\log_2 n)$.
 - gives a worst-case time complexity that is logarithmic (O(log₂n))
 - the best worst-case time complexity for a binary tree

What If the Tree Isn't Balanced?

- Extreme case: the tree is equivalent to a linked list
 - height = n 1
 - worst-case time complexity = O(n)

Coming next:

Assignment on Moodle:

implement binary trees and Huffman's encoding

Documents are here:

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs