Y
USTH

Documents are here:

GRAPH THEORY
[5]

Binary Trees
Huffman encoding

||
B I n a ry S e a rC h Tre e S https://www-I2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Emmanuel Viennet
emmanuel.viennet@univ-paris13.fr

Slides adapted from D.G. Sullivan, Harvard

Université
TI Sorbonne
Paris Nord

mailto:emmanuel.viennet@univ-paris13.fr
https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

What Is a Tree?

root

node

\

edge

« Atree consists of:
 a set of nodes
 a set of edges, each of which connects a pair of nodes

« Each node may have one or more data items.
» each data item consists of one or more fields
» key field = the field used when searching for a data item
« multiple data items with the same key are referred to
as duplicates

« The node at the “top” of the tree is called the root of the tree.

Relationships Between Nodes

If a node N is connected to other nodes that are directly
below it in the tree, N is referred to as their parent and they

are referred to as its children.
« example: node 5 is the parent of nodes 10, 11, and 12

Each node is the child of at most one parent.

Other family-related terms are also used:
* nodes with the same parent are siblings

* a node’s ancestors are its parent, its parent’s parent, etc.
» example: node 9’s ancestors are 3 and 1

» a node’s descendants are its children, their children, etc.
« example: node 1’s descendants are all of the other nodes

Types of Nodes

A leaf node is a node without children.

 An interior node is a node with one or more children.

A Tree is a Recursive Data Structure

« Each node in the tree is the root of a smaller tree!

« refer to such trees as subtrees to distinguish them from
the tree as a whole

« example: node 2 is the root of the subtree circled above
« example: node 6 is the root of a subtree with only one node

« We’'ll see that tree algorithms often lend themselves to
recursive implementations.

Path, Depth, Level, and Height

<+— J|evel 0

<+— J|evel 1

depth=2 ——» <+«— |evel 2

« There is exactly one path (one sequence of edges) connecting
each node to the root.

« depth of a node = # of edges on the path from it to the root
* Nodes with the same depth form a /level of the tree.

« The height of a tree is the maximum depth of its nodes.
« example: the tree above has a height of 2

Binary Trees

* In a binary tree, nodes have at most two children.

» Recursive definition: a binary tree is either:
1) empty, or
2) a node (the root of the tree) that has
* one or more data items
* a left child, which is itself the root of a binary tree
* a right child, which is itself the root of a binary tree

« Example:
26's left child —% & 26's right child
26's left subtree — 26'’s right subtree

« How are the edges of the tree represented?

Representing a Binary Tree Using Linked Nodes

public class LinkedTree {
private class Node {
private int key;
private LLList data;
private Node Tleft;
private Node right;

// 1ist of data 1items
// reference to left child
// reference to right child

}
private Node root; ”
} A AN
root| —
4 A
12 32
/ \ nulll N\
rd N A
4 18 38
null \ | |nulljnull nullinull
7
nulljnull

see ~csciell9/examples/trees/LinkedTree.java

Traversing a Binary Tree

Traversing a tree involves visiting all of the nodes in the tree.

« visiting a node = processing its data in some way
« example: print the key

We will look at four types of traversals. Each of them visits the
nodes in a different order.

To understand traversals, it helps to remember the recursive
definition of a binary tree, in which every node is the root of a
subtree.

12 is the root of —,%

<—«— 32 is the root of
26’s left subtree / "\

26’s right subtree

4 is the root of
12’s left subtree

Preorder Traversal

« preorder traversal of the tree whose root is N:
1) visit the root, N
2) recursively perform a preorder traversal of N's left subtree
3) recursively perform a preorder traversal of N’s right subtree

» Preorder traversal of the tree above:
75246098
* Which state-space search strategy visits nodes in this order?

10

Implementing Preorder Traversal

public class LinkedTree {
private Node root;

public void preorderPrint() {
if (root != null)
preorderPrintTree(root);

}
private static void preorderPrintTree(Node root) {
System.out.print(root.key + “ ”); O\
if (root.left != null) Not always the
preorderPrintTree(root.left); same as the root
if (root.right != null) of the entire tree
preorderPrintTree(root.right); '
}

« preorderPrintTree() is a static, recursive method that takes as
a parameter the root of the tree/subtree that you want to print.

« preorderPrint() is a non-static method that makes the initial
call. It passes in the root of the entire tree as the parameter.

11

Tracing Preorder Traversal

void preorderPrintTree(Node root) { 0
System.out.print(root.key + “ ”);
if (root.left != null)

preorderPrintTree(root.left); e o
if (root.right != null)

preorderPrintTree(root.right);
} 2) ®& (&

print 4
root: @ root: @ root: @ root @
print 2 print 6
root @ root: @ root: @ root @ root @ root @

root: (7) root: (7) root: (7) root: (7) root: (7) root: (7) root: (7)

print 7

Postorder Traversal

« postorder traversal of the tree whose root is N:
1) recursively perform a postorder traversal of N's left subtree
2) recursively perform a postorder traversal of N’s right subtree
3) visit the root, N
(7

« Postorder traversal of the tree above:
4265897

13

Implementing Postorder Traversal

public class LinkedTree {
private Node root;

public void postorderPrint() {
if (root != null)
postorderPrintTree(root);

}

private static void postorderPrintTree(Node root) {
if (root.left != null)
postorderPrintTree(root.left);
if (root.right != null)
postorderPrintTree(root.right);
System.out.print(root.key + “ ”);

* Note that the root is printed after the two recursive calls.

14

Tracing Postorder Traversal

void postorderPrintTree(Node root) { a

if (root.left != null)
postorderPrintTree(root.left);

if (root.right 1= null) (5)

postorderPrintTree(root.right);

System.out.print(root.key + “ 7);
} 2) & &

15

Inorder Traversal

inorder traversal of the tree whose root is N:
1) recursively perform an inorder traversal of N’s left subtree
2) visit the root, N
3) recursively perform an inorder traversal of N's right subtree

Inorder traversal of the tree above:
2456789

16

Implementing Inorder Traversal

public class LinkedTree {
private Node root;

public void inorderPrint() {
if (root != null)
inorderPrintTree(root);

}

private static void inorderPrintTree(Node root) {
if (root.left != null)
inorderPrintTree(root.left);
System.out.print(root.key + “ ”);
if (root.right != null)
inorderPrintTree(root.right);

« Note that the root is printed between the two recursive calls.

17

Tracing Inorder Traversal

void inorderPrintTree(Node root) { 0
if (root.left != null)
inorderPrintTree(root.left);

System.out.print(root.key + “ ”); e o

if (root.right != null)

inorderPrintTree(root.right);
, (2) (6) (3

root: @
print 4
root: @ root: @ root: @ root @
print 2 print 6
root @ root: @ root: @ root @ root: root @
print 5
root: (7) root: (7) root: (7) root: (7) root: (7) root: (7) root: (7)
time >

18

Level-Order Traversal

» Visit the nodes one level at a time, from top to bottom
and left to right.

 Level-order traversal of the tree above: 7 59 2 6 8 4

* Which state-space search strategy visits nodes in this order?

* How could we implement this type of traversal?

19

Tree-Traversal Summary

preorder: root, left subtree, right subtree
postorder: left subtree, right subtree, root
inorder: left subtree, root, right subtree
level-order: top to bottom, left to right

« Perform each type of traversal on the tree below:

O
O (13
(H) (& (o (e
2 (& (15) (@
O

20

Using a Binary Tree for an Algebraic Expression

We’'ll restrict ourselves to fully parenthesized expressions and to
the following binary operators: +, —, *, /

Example expression: ((a + (b * ¢)) - (d / e))

Tree representation:

Leaf nodes are variables or constants: interior nodes are
operators.

Because the operators are binary, either a node has two
children or it has none.

21

Traversing an Algebraic-Expression Tree

Inorder gives conventional
algebraic notation.

« print ‘(" before the recursive
call on the left subtree

 print ‘)’ after the recursive
call on the right subtree

» fortree atright: ((a + (b * ©)) - (d / e))

Preorder gives functional notation.

 print ‘('s and ‘)’s as for inorder, and commas after the
recursive call on the left subtree

* for tree above: subtr(add(a, mult(b, c)), divide(d, e))

Postorder gives the order in which the computation must be
carried out on a stack/RPN calculator.

» for tree above: push a, push b, push c, multiply, add,..

see ~csciell9/examples/trees/ExprTree.java 22

Fixed-Length Character Encodings

« A character encoding maps each character to a number.

« Computers usually use fixed-length character encodings.
« ASCII (American Standard Code for Information Interchange)

uses 8 bits per character.

char | dec binary
a 97 01100001
b 98 01100010
C 99 01100011

example: “bat” is stored in a text

file as the following sequence of bits:

01100010 01100001 01110100

* Unicode uses 16 bits per character to accommodate
foreign-language characters. (ASCII codes are a subset.)

* Fixed-length encodings are simple, because
- all character encodings have the same length
« a given character always has the same encoding

23

Variable-Length Character Encodings

Problem: fixed-length encodings waste space.

Solution: use a variable-length encoding.
» use encodings of different lengths for different characters
« assign shorter encodings to frequently occurring characters

Example: e 101
o [100
s [111
t |00

“test” would be encoded as
00 01 111 00 = 000111100

Challenge: when decoding/decompressing an encoded document,
how do we determine the boundaries between characters?

« example: for the above encoding, how do we know whether
the next character is 2 bits or 3 bits?

One requirement: no character’s encoding can be the prefix of

another character’s encoding (e.g., couldn’t have 00 and 001).

24

Huffman Encoding

Huffman encoding is a type of variable-length encoding that is
based on the actual character frequencies in a given document.

Huffman encoding uses a binary tree:
» to determine the encoding of each character

» to decode an encoded file — i.e., to decompress a
compressed file, putting it back into ASCII

Example of a Huffman tree (for a text with only six chars):
Leaf nodes are characters.

Left branches are labeled
with a 0, and right branches
are labeled with a 1.

If you follow a path from root

to leaf, you get the encoding

of the character in the leaf
example: 101 =%

25

Building a Huffman Tree
1) Begin by reading through the text to determine the frequencies.

2) Create a list of nodes that contain (character, frequency) pairs
for each character that appears in the text.

‘o’ ‘1" la’ ‘s’ lt! ‘e
21 23 25 26 27 40
—— 4 1+ " —

3) Remove and “merge” the nodes with _

the two lowest frequencies, forming a 44
new node that is their parent.
* left child = lowest frequency node // \
* right child = the other node o’ 31)
» frequency of parent = sum of the 21 23

frequencies of its children
* in this case, 21 + 23 =44

Building a Huffman Tree (cont.)
4) Add the parent to the list of nodes:

‘a’ ‘s’ ‘t’ ‘e’ -
25 26 27 40 44
»> > > —1 >
e A RN
¥ N
o’ TE
21 23

5) Repeat steps 3 and 4 until there is only a single node in the list,
which will be the root of the Huffman tree.

Completing the Huffman Tree Example |

Merge the two remaining nodes with the lowest frequencies:

‘a’ ‘s’ ‘t’ ‘e’ -
25 26 27 40 44
» » —1>
. L \
¥ N
o’ T
21 23
‘t’ ‘e’ - -
27 40 44 51
> > >
Z Z
"4 " A i
‘o’ ‘i’ ‘a’ ‘s’
21 23 25 26

28

Merge the next two nodes:

Completing the Huffman Tree Example Il

at’ le’ _ _
27 40 44 51
P > P
./ Z Z 1\
¥ N ¥ N
lO, 51'! ‘a’ ‘S’
21 23 25 26
e
44 51 67
> g
/ Z 1\ AN
¥ N ¥ N AN
‘O, ‘_iy na! ‘S’ ‘t’ ‘el
21 23 25 26 27 40

29

Completing the Huffman Tree Example Il

 Merge again:

44 51 67
» >
PARN PARN PARN
Y S " SE— U SR
lol l1'! la! IS! lt! le’
21 23 25 26 27 40
67 95
>
RN L |
¥ N ol A
lt’ ‘e! _ _
27 40 44 51
1 N PARN
Yy K N
lo! c_i, ia' lsl
21 23 25 26
L

30

Completing the Huffman Tree Example IV

« The next merge creates the final tree:

« Characters that appear more frequently end up higher in the tree,
and thus their encodings are shorter.

31

Using Huffman Encoding to Compress a File

1) Read through the input file and build its Huffman tree.

2) Write a file header for the output file.

— include an array containing the frequencies so that the tree
can be rebuilt when the file is decompressed.

3) Traverse the Huffman tree to create a table containing the
encoding of each character:

i [101
100
111
00

~ (0 | O

4) Read through the input file a second time, and write the
Huffman code for each character to the output file.

32

Using Huffman Decoding to Decompress a File

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child

when you read a bit of 0, go to the left child

when you reach a leaf node, record the character,
return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 101111110000111100
101 = right,left,right = |

111 = right,right,right
00 = left,left

111 = right,right,right= s
110 = right,right,left = a
00 = left,left =t
01 = left,right = e
=S
=t

33

Binary Search Trees

» Search-tree property: for each node k:
 all nodes in k’s left subtree are < k
 all nodes in k’s right subtree are >= k

* Our earlier binary-tree example is
a search tree:

<k

34

Searching for an Item in a Binary Search Tree

 Algorithm for searching for an item with a key k:

if k == the root node’s key, you're done
else if k < the root node’s key, search the left subtree
else search the right subtree

« Example: search for 7

/
() @
OOl

©

35

Implementing Binary-Tree Search

public class LinkedTree { // Nodes have keys that are ints
private Node root;

public LLList search(int key) {
Node n = searchTree(root, key);
return (n == null ? null : n.data);

}

private static Node searchTree(Node root, int key) {
// write together

}
}

 If we find a node that has the specified key, we return its data
field, which holds a list of the data items for that key.

36

Binary-Tree Search : complete method

private static Node searchTree(Node root, int key) {
if (root == null || root.key == key) {
return root;
}
if (key < root.key) {
return searchTree(root.left, key);
} else {
return searchTree(root.right, key);

37

Inserting an Item in a Binary Search Tree

We want to insert an item whose key is k.

example: insert 35

We traverse the tree as if we were
searching for k.

If we find a node with key k, we add the
data item to the list of items for that node.

If we don’t find it, the last node we
encounter will be the parent P of
the new node.

» if k < P’s key, make the new node
P’s left child

 else make the node P’s right child

Special case: if the tree is empty,
make the new node the root of the tree.

The resulting tree is still a search tree.

38

Implementing Binary-Tree Insertion

« We'llimplement part of the insert () method together.

 We'll use iteration rather than recursion.

* Our method will use two references/pointers: parent
 trav: performs the traversal down
to the point of insertion @
. trav
« parent: stays one behind trav e
* like the trail reference that we e @

sometimes use when traversing

a linked list o @ @
(D)

39

Implementing Binary-Tree Insertion

public void insert(int key, Object data) {
Node parent = null;
Node trav = root; @
while (trav != null) {

if (trav.key == key) {
trav.data.addIitem(data, 0); @ @
return;

} (4) (o) (o
(@

}

Node newNode = new Node(key, data);

if (parent == null) // the tree was empty
root = newNode;

else if (key < parent.key)
parent.left = newNode;

else
parent.right = newNode;

40

Binary-Tree Insertion : complete method

public void insert(int key, Object data) {
Node parent = null;
Node trav = root;
while (trav != null) {
if (trav.key == key) {
// “addItem’ is a method that adds the item to the node's data.
trav.data = data;
return;
}
parent = trav; // Update the parent before going deeper
if (key < trav.key) {
trav = trav. left;
} else {
trav

trav.right;

Node newNode = new Node(key, data);

if (parent == null) // the tree was empty
root = newNode;

else if (key < parent.key)
parent.left = newNode;

else
parent.right = newNode;

41

Deleting Items from a Binary Search Tree

» Three cases for deleting a node x

« Case 1: x has no children.
Remove x from the tree by setting its parent’s reference to null.

ex: delete 4

« Case 2: x has one child.
Take the parent’s reference to x and make it refer to x’s child.

ex: delete 12

42

Deleting Items from a Binary Search Tree (cont.)

Case 3: x has two children
« we can't just delete x. why?

* instead, we replace x with a node from elsewhere in the tree

« to maintain the search-tree property, we must choose the
replacement carefully

« example: what nodes could replace 26 below?

43

Deleting Items from a Binary Search Tree (cont.)

« Case 3: x has two children (continued):

 replace x with the smallest node in x’s right subtree—
call it y

— y will either be a leaf node or will have one right child. why?

« After copying y’s item into x, we delete y using case 1 or 2.

ex:
delete 26

) ok
W] @ =))

y y (35)
@@ @@

44

Implementing Binary-Tree Deletion

public LLList delete(int key) {
// Find the node and its parent.
Node parent = null;
Node trav = root;
while (trav != null && trav.key != key) {
parent = trav;
if (key < trav.key)
trav = trav.left;
else
trav = trav.right;

}

// Delete the node (if any) and return the removed items.
if (trav == null) // no such key

return null;
else {

LLList removedData = trav.data;

deleteNode(trav, parent);

return removedData;

}
« This method uses a helper method to delete the node.

45

Implementing Case 3

private void deleteNode(Node toDelete, Node parent) {
if (tobDelete.left != null && toDelete.right != null) {
// Find a replacement - and

// the replacement's parent. toDelete
Node replaceParent = toDelete; ‘/

// Get the smallest item @

// in the right subtree.

Node replace = toDelete.right;

// what should go here? @ @

// Replace toDelete's key and data @
// with those of the replacement 1item.

toDelete.key = replace.key;

toDelete.data = replace.data;

// Recursively delete the replacement
// item's old node. It has at most one
// child, so we don't have to
// worry about infinite recursion.
deleteNode(replace, replaceParent);

} else {

Implementing Cases 1 and 2

private void deleteNode(Node toDelete, Node parent) {
if (tobDelete.left != null && toDelete.right != null) {

} else {
Node toDeletecChild;
if (toDelete.left != null)
toDeleteChild = toDelete.left;
else
toDeleteChild = toDelete.right;
// Note: in case 1, toDeletechild
// will have a value of null.

parent

/ toDelete
if (toDelete == root) |
root = toDeletecChild;
else if (toDelete.key < parent.key)
parent.left = toDeleteChild;
else
parent.right = tobDeletecChild; toDeleteChild

47

Binary-Tree Deletion : complete method (1)

public Object delete(int key) {
// Find the node and its parent.
Node parent = null;
Node trav = root;
while (trav != null && trav.key !'= key) {
parent = trav;
if (key < trav.key)
trav = trav. left;
else
trav = trav.right;
}
// Delete the node (if any) and return the removed items.
if (trav == null) // no such key
return null;
else {
Object removedData = trav.data;
deleteNode(trav, parent);
return removedData;

48

Binary-Tree Deletion : complete method (case 3)

private void deleteNode(Node toDelete, Node parent) {
if (toDelete.left != null && toDelete.right != null) {
// Find a replacement — and
// the replacement's parent.
Node replaceParent = toDelete;
// Get "y", the smallest item
// in the right subtree.
Node replace = toDelete.right;
while (replace.left != null) {
replaceParent = replace;
replace = replace. left;

// Replace toDelete's key and data

// with those of the replacement item.
toDelete.key = replace.key;
toDelete.data = replace.data;

// Delete the replacement node

if (replaceParent.left == replace) {
replaceParent.left = replace.right;
} else {

replaceParent.right = replace.right;

Binary-Tree Deletion : complete method (case 1 and 2)
if (toDelete.left != null && toDelete.right != null) {

} else {
Node toDeleteChild;
if (toDelete.left != null)
toDeleteChild = toDelete. left;
else
toDeleteChild = toDelete.right;
// Note: in case 1, toDeleteChild
// will have a value of null.
if (toDelete == root)
root = toDeleteChild;
else if (toDelete.key < parent.key)
parent. left = toDeleteChild;
else
parent.right = toDeleteChild;

Efficiency of a Binary Search Tree
The three key operations (search, insert, and delete)
all have the same time complexity.

« insert and delete both involve a search followed by
a constant number of additional operations

Time complexity of searching a binary search tree:
» best case: O(1)
» worst case: O(h), where h is the height of the tree
» average case: O(h)

What is the height of a tree containing n items?
* it depends! why?

51

Balanced Trees

 Atree is balanced if, for each node, the node’s subtrees
have the same height or have heights that differ by 1.

 For a balanced tree with n nodes: @
* height = O(log,n).
« gives a worst-case time complexity
that is logarithmic (O(log,n)) @ @ @

* the best worst-case time complexity
for a binary tree

52

What If the Tree Isn't Balanced?

Extreme case: the tree is equivalent to a linked list
* height=n -1
« worst-case
time complexity = O(n)

53

54

Coming next

Assignment on Moodle

| ook

d,

a
at that tree!!

, d

Dad

S
s

just a
son...

Jus

It's
tree,

/

1S a

But

binary tree.

inary trees and Huffman’s

lement b
encoding

imp

Documents are here

Daniel Stori {turnoff.us}

[Iwww-I2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

https

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

