Minimum Spanning Tree



Spanning Trees

A spanning tree of a graph is just a subgraph that
contains all the vertices and is a tree.

A graph may have many spanning trees.

Graph A Some Spanning Trees from Graph A

RR-se-13-13- o



TR K
18l s
SRR NI
2y



Minimum Spanning Trees

The Minimum Spanning Tree for a given graph is the Spanning Tree of
minimum cost for that graph.

Complete Graph Minimum Spanning Tree




Algorithms for Obtaining the Minimum Spanning Tree

» Kruskal's Algorithm
* Prim's Algorithm

» Boruvka's Algorithm









Sort Edges

(in reality they are placed in a priority
queue - not sorted - but sorting them
makes the algorithm easier to visualize)

RECERC.
® 1 90
A



4
4
1
5

Add Edge

O,

*

L ©

®

©

10
(e P
3

RO,

OO s



Add Edge



Add Edge

e IR e O
© * 0e—@



Add Edge @ 1 @@ 1 @




Add Edge

e IR e O
© 0 * @
ORNON o



Don’t Add Edge

® OO ' ©®




Add Edge




Add Edge

“

4
2
4
1
2
10
5 6

1@@ !
2 @@ 2
2 @@ 3
3 @@ 3

OO
CIONORO.

9!
333



Add Edge @1@@1@
O OIOEESN O

.0 ®|leo:00:0
{0 ® 00 * O
O 00—

e
33



Cycle
Don’t Add Edge

4
4
2
4
2
10
5 6

: D) G
NI
OO
ENON o

HOEO
CIONORO.

e
33



Add Edge

e IR e O
© 0 * @
W06 O
@ OO O
(O——) B——)
ORNNON s

Lo
3



Minimum Spanning Tree Complete Graph




Prim's Algorithm

This algorithm starts with one node. It then, one by one, adds a node that
is unconnected to the new graph to the new graph, each time selecting
the node whose connecting edge has the smallest weight out of the

available nodes’ connecting edges.






Old Graph New Graph




Old Graph New Graph




Old Graph New Graph




Old Graph New Graph




Old Graph New Graph




Old Graph New Graph




Old Graph New Graph




Old Graph New Graph




Old Graph New Graph




Old Graph New Graph




Complete Graph Minimum Spanning Tree




Boruvka's Algorithm

This algorithm is similar to Prim’s, but nodes are added to the new graph
in parallel all around the graph. It creates a list of trees, each containing
one node from the original graph and proceeds to merge them along the
smallest-weight connecting edges until there’s only one tree, which is, of
course, the MST. It works rather like a merge sort.






Trees of the Graph at Beginning
of Round 1

®@ ' O
4
2 1
® - O
I
@ | A
10
® -

o EH - OB I

List of Trees



Round 1 Tree A




Round 1

Edge A-D



Round 1 Tree B




Round 1

Edge B-A



Round 1

Tree C



Round 1

Edge C-F



Round 1 Tree D




RRRRRR



Round 1 Tree E




Round 1

Edge E-C



Round 1 Tree F




Round 1

Edge F-C



Round 1 Tree G




Round 1

Edge G-E



Round 1 Tree H




Round 1

Edge H-J



Round 1 Tree 1




Round 1

Edge I-G

®



Round 1 Tree J







Round 1 Ends -
Add Edges

List of Edges to
Add



Trees of the Graph at Beginning List of Trees
of Round 2




Round 2 Tree D-A-B




Round 2 Edge B-C




Round 2 Tree F-C-E-G-1




Round 2 Edge I-J




Round 2 Tree H-J1




Round 2 Edge J-1




Round 2 Ends - List of Edges to
Add Edges Add




Minimum Spanning Tree Complete Graph




Conclusion

Kruskal’s and Boruvka’s have better running times if the number of
edges is low, while Prim’s has a better running time if both the number
of edges and the number of nodes are low.

Boruvka’s avoids the complicated data structures needed for the other
two algorithms.

So, of course, the best algorithm depends on the graph and if you want
to bear the cost of complex data structures.

The best algorithm that I know of is a hybrid of Boruvka’s and Prim’s,
which I did not examine here. It does O(log log n) passes of Boruvka’s
and then switches to Prim’s, resulting in a running time of O(m log log
n). So, it’s the fastest algorithm, but would, of course, require the
Fibonacci heap for Prim’s which Boruvka’s avoids when used by itself.
However, in order to keep things simple, I did not explore it here.



