Documents are here:

GRAPH THEORY

6 - Graph Traversal Algorithms
Breadth-First-Search

https://www-I2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Emmanuel Viennet
emmanuel.viennet@univ-paris13.fr

USTHY Rl



mailto:emmanuel.viennet@univ-paris13.fr
https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Graph : review

 Number of nodes : N, number of edges (links) : L
* Neighbors of a node

* Incident link, indegree, outdegree

* path

e distance

e cycle

* connected

* tree

Graph Theory 2 — Graph Traversal



Graph Traversal techniques

The previous connectivity problem, as well as many other graph
problems, can be solved using graph traversal techniques

There are two standard graph traversal techniques:

* Depth-First Search (DFS)
* Breadth-First Search (BFS)

Graph Theory 2 — Graph Traversal



Graph Traversal techniques (2)

In both DFS and BFS, the nodes of the undirected graph are visited in a
systematic manner so that every node is visited exactly one.

Both BFS and DFS give rise to a tree:
« When a node x is visited, it is labeled as visited, and it is added to the tree

« |f the traversal got to node x from node vy,
y is viewed as the parent of x,
and x a child of y

(a) undirected graph (b) DFS spanning tree
Graph Theory 2 — Graph Traversal



Graph Traversal

@ Is a graph connected?

The Internet

Sl

@LUMETA

hmmm...

Graph Theory 2 — Graph Traversal



Graph Traversal

@ Is a graph connected?

@ Approach: explore outward from arbitrary

starting node s to find all nodes reachable
from s (connected component)

Graph Theory 2 — Graph Traversa



Graph Traversal
Is a Graph Connected?

@ Algorithm 1: Breadth-first search (BFS)
Explore outward by distance

Start at a: ?_ E l

Visit all nodes at
distance 2 from a:

Visit all nodes at
distance 1 from a:

Graph Theory



Breadth-First-Search (BFS)

Layers
@ Lo={s}
@ L, = all neighbors of Lo
@ L2 = nodes with edge to L, that do not belong to Lo or L;
o
@ Lis1 = nodes with edge to L; that do not belong to an
earlier layer

Lii=§¢v:3a(uv)eE ueli,veglou. ulL}

Observation:
@ L;i consists of all nodes at distance exactly i from s. There
is a path from s fo t iff t appears in some layer:




BFS Tree

If we keep only the edges traversed while doing a
breadth-first-search, we will have a tree

o) (10 1 12

https://en.wikipedia.org/wiki/Breadth-first search

Graph Theory 2 — Graph Traversal


https://en.wikipedia.org/wiki/Breadth-first_search

BFS pseudo-code

very similar to DFS, but use a Queue

1 procedure BFS(G, root) is

2 let Q@ be a queue

3 label root as explored

4 Q.enqueue(root)

5 while Q is not empty do

6 v := Q.dequeuel()

7 if v is the goal then

8 return v

9 for all edges from v to w in G.adjacentEdges(v) do
10 if w is not labeled as explored then
11 label w as explored

12 w.parent = v

13 Q.enqueue(w)

Graph Theory 2 — Graph Traversal

10



Depth-First Search (DFS)

Play: https://visualgo.net/en/dfsbfs



https://visualgo.net/en/dfsbfs

