
GRAPH THEORY
[1]

Introduction

Emmanuel Viennet
emmanuel.viennet@univ-paris13.fr

Documents are here:

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

mailto:emmanuel.viennet@univ-paris13.fr
https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

Graph Theory Introduction 2

Graphs are a data structure

https://medium.com/codex/a-dummys-guide-to-linked-lists-part-1-44469f35f65a

Graph Theory Introduction 3

Seven Bridges of Königsberg

Graph Theory Introduction 4

Seven Bridges of Königsberg

Graph Theory Introduction 5

Seven Bridges of Königsberg

Can you walk all seven bridges,
without walking over the same
bridge twice?

Graph Theory Introduction 6

Seven Bridges of Königsberg

Can you walk all seven bridges,
without walking over the same
bridge twice?

Graph Theory Introduction 7

Seven Bridges of Königsberg

Can you walk all seven bridges,
without walking over the same
bridge twice?

Graph Theory Introduction 8

Leonhard Euler
1707-1783, German

https://en.wikipedia.org/wiki/Leonhard_Euler#Graph_theory

Graph Theory Introduction 9

Seven Bridges of Königsberg

Can you walk all seven bridges,
without walking over the same
bridge twice?

Graph Theory Introduction 10

Seven Bridges of Königsberg
Can you walk all seven bridges,
without walking over the same bridge twice?

You’d have to start from a node, enter another node AND exit it by another edge, …,
and terminate on the starting node OR on another one.

So:
- intermediate nodes have necessarily an even number of edges (enter/exit x N)
- if ending at the starting node, this node must also have an even number of edges
- OR, if ending on another node, both START and END must have an ODD number
of edges.

Graph Theory Introduction 11

Seven Bridges of Königsberg
Can you walk all seven bridges,
without walking over the same bridge twice?
Euler's argument shows that a necessary condition for the walk of the desired form
is that the graph
- be connected
- and have exactly zero or two nodes of odd degree.
This condition turns out also to be sufficient—a result stated by Euler and later
proved by Carl Hierholzer.

Such a walk is now called an Eulerian path or Euler walk in his honor.

Further, if there are nodes of odd degree, then any Eulerian path will start at one of
them and end at the other.

https://en.wikipedia.org/wiki/Connectivity_(graph_theory)
https://en.wikipedia.org/wiki/Carl_Hierholzer
https://en.wikipedia.org/wiki/Eulerian_path

Graph Theory Introduction 12

Seven Bridges of Königsberg

Can you walk all seven bridges,
without walking over the same
bridge twice?

No !
- connected, but
- 4 nodes with odd degree

Graph Theory Introduction 13

Graph: Formal Definition
A graph is defined by a pair of sets G = (V, E) where…

• V is a set of vertices (or nodes)
– A vertex or “node” is a data entity

• E is a set of edges (or “links”)
– An edge is a connection between two

vertices

A

B

CD

E

F

G

H

V = { A, B, C, D, E, F, G, H }

E = { (A, B), (A, C), (A, D), (A, H),
 (C, B), (B, D), (D, E), (D, F), (F, G), (G, H)}

Graph Theory Introduction 14

Graph elements: edges
Edges are also called arcs or links

• Directed
• A -> B

• A likes B, A gave a gift to B, A is B’s child

• Undirected
• A < – > B or A – B

• A and B like each other
• A and B are siblings
• A and B are co-authors

Graph Theory Introduction 15

Graph elements: edge’s attributes
• Examples

• Weight (e.g. frequency of communication)
• Ranking (best friend, second best friend…)
• Type (friend, relative, co-worker)
• Properties depending on the structure of the rest of

the graph: e.g. betweenness

Graph Theory Introduction 16

Example of directed graph
girls’ school dormitory dining-table partners, 1st and 2nd choices
(Moreno, The sociometry reader, 1960)

2

1

1

2

1

2

1
2

1

2

2

1

1 2
1

2

1

2
1

2

1

2

1

2

1

2

1
2

1

2 1

2

1

2

12 1

2

1

2

1
2

1

2

1

2

1 2

1 2

12

Ada

Cora

Louise

Jean

Helen

Martha

Alice

Robin

Marion

Maxine

Lena

Hazel Hilda

Frances
Eva

RuthEdna

Adele

Jane

Anna
Mary

Betty

Ella

Ellen

Laura

Irene

Graph Theory Introduction 17

Graphs Vocabulary

Graph Theory Introduction 18

More Graph Terminology
Two vertices are connected if there is a path between them
- If all the vertices are connected, we say the graph is connected

A path is a sequence of vertices connected by edges
- A simple path is a path without repeated vertices
- A cycle is a path whose first and last vertices are the same

- A graph with a cycle is cyclic

Graph Theory Introduction 19

Directed vs Undirected; Acyclic vs Cyclic

a

b

d

c

a

b

d

c

e

a

b

d

c

a

b

d

c

Acyclic:

Cyclic:

Directed: Undirected:

Graph Theory Introduction 20

Vertex & Edge
Labels

Labeled and Weighted Graphs

Edge Labels

a

b

c

d

Vertex Labels

b

d

c

e

a

Numeric Edge Labels
(Edge Weights)

1

2

3

1

2

3

4

5

1
a

b

c

d

Graph Theory Introduction 21

Example: The Web
– Vertices: webpages.
– Edges from a to b if a has a hyperlink to b.
– Directed, since hyperlinks go in one direction

Graph Theory Introduction 22

Example : Family Tree

– Vertices: people.
– Edges: relationships
– Undirected, bidirectional relationships (?)

By the way,
a tree is a graph !

Graph Theory Introduction 23

– Vertices: actors.
– Edges: movies (labeled)
– Undirected, a both actor would need to be in the movie for the edge to be added

Six degrees of Kevin Bacon has been a popular
way to measure affinity between actors. It links
actors who have appeared in the same movie.

Example: 6 Degrees of
Kevin Bacon

Graph Theory Introduction 24

Example: positive and negative weights

one person trusting/distrusting another

sample of positive & negative ratings from Epinions network
https://en.wikipedia.org/wiki/Epinions

– Vertices: users (reviews’ authors)
– Edges: trust
– Directed

see https://networkrepository.com/epinions.php

https://networkrepository.com/epinions.php

Graph Theory Introduction 25

Example: Course Prequisites

– Vertices: courses
– Edge: from a to b if a is a prerequisite for b.
– Directed, since one course comes before the other

Graph Theory Introduction 26

Example: map
• Ways to walk between campus buildings

– Vertices: buildings.
– Edges: A street name or walkway that connects 2 sites
– Undirected, since each route can be walked both ways (?)

Graph Theory Introduction 27

Representation of Graphs

• Adjacency Matrix

• Edge List

• Adjacency List

Graph Theory Introduction 28

Representation of Graphs
Adjacency Matrix

Representing edges (who is adjacent to whom) as a matrix
Aij = 1 if node i has an edge to node j
 = 0 if node i does not have an edge to j

Aii = 0 unless the network has self-loops

Aij = Aji if the network is undirected,
or if i and j share a reciprocated edge

Graph Theory Introduction 29

Representation of Graphs
Adjacency Matrix

1

2
3

45

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 0 0 0 1
1 1 0 0 0

A =

Graph Theory Introduction 30

Representation of Graphs
Adjacency Matrix
• Pros:

• Simple to implement
• Easy and fast to tell if a pair (i,j) is an edge:

simply check if A[i][j] is 1 or 0

• Cons:
• No matter how few edges the graph has,

the matrix takes O(n2) in memory

Graph Theory Introduction 31

Representation of Graphs
Edge List

1

2

3

4
5

2, 3
2, 4
3, 2
3, 4
4, 5
5, 2
5, 1

Compact

Graph Theory Introduction 32

Representation of Graphs
Adjacency List

1

2

3

4
5

For each node, list the neighbors:
1:

2: 3 4

3: 2 4

4: 5

5: 1 2

Interesting for large sparse graphs

Graph Theory Introduction 33

Representation of Graphs
Adjacency List : another example

Graph Theory Introduction 34

Representation of Graphs
Adjacency List :
• Pros:

• Saves on space (memory): the representation takes
as many memory words as there are nodes and
edges

• Cons:
• It takes O(n) time to determine if a pair of nodes (i,j)

is an edge: one would have to search the linked list
L[i], which takes time proportional to the length of L[i].

Graph Theory Introduction 35

Representation of Graphs
Sparse Adjacency Matrix
A graph is frequently sparse

If we have N nodes, the maximum number of edges for an undirected
graph is L = N(N-1)/2

But in a lot of graphs, we have L growing proportionally with N : L = d .
N
where d is the average degree of the nodes.

In this case, the adjacency matrix if full of zeroes

Graph Theory Introduction 36

Representation of Graphs
Sparse Adjacency Matrix

Graph Theory Introduction 37

Representation of Graphs
Sparse Adjacency Matrix

A sparse matrix is internally stored as linked list, but presents itself as a
matrix for common operations

Sparse matrices are supported by most linear algebra packages (Python,
Matlab, Scilab, …)

See eg https://docs.scipy.org/doc/scipy/reference/sparse.html

https://docs.scipy.org/doc/scipy/reference/sparse.html

Graph Theory Introduction 38

Node Degree
which node has the most edges?

Graph Theory Introduction 39

Node degree
• indegree

how many directed edges (arcs) are incident on a node

• outdegree
how many directed edges (arcs) originate at a node

• degree (in or out)
number of edges incident on a node

Graph Theory Introduction 40

Computing the degrees

Graph Theory Introduction 41

Handshaking lemma
handshaking lemma states that, in every finite undirected graph,
the number of vertices that touch an odd number of edges is even.

ó every graph has an even number of odd nodes

https://en.wikipedia.org/wiki/Undirected_graph

Graph Theory Introduction 42

Degree sequence and degree distribution
Degree sequence: An ordered list of the (in,out) degree of each node

n In-degree sequence:
n [2, 2, 2, 1, 1, 1, 1, 0]

n Out-degree sequence:
n [2, 2, 2, 2, 1, 1, 1, 0]

n (undirected) degree sequence:
n [3, 3, 3, 2, 2, 1, 1, 1]

Degree distribution: A frequency count of the occurrence of each degree

n In-degree distribution:
n [(2,3) (1,4) (0,1)]

n Out-degree distribution:
n [(2,4) (1,3) (0,1)]

n (undirected) distribution:
n [(3,3) (2,2) (1,3)]

0 1 2
0

1

2

3

4

5

indegree

fre
qu
en
cy

Graph Theory Introduction 43

Is everything connected?

Graph Theory Introduction 44

Connected Components

Graph Theory Introduction 45

Giant Component

Graph Theory Introduction 46

Graph problems
There are lots of interesting questions we can ask about a graph:

• What is the shortest route from S to T?
• What is the longest without cycles?
• Are there cycles?
• Is there a tour (cycle) you can take that only uses each node

(station) exactly once?
• Is there a tour (cycle) that uses each edge exactly once?

Graph Theory Introduction 47

Graph problems
Some well known graph problems and their common names:
▪ s-t Path. Is there a path between vertices s and t?

▪ Connectivity. Is the graph connected?
▪ Biconnectivity. Is there a vertex whose removal disconnects the graph?

▪ Shortest s-t Path. What is the shortest path between vertices s and t?
▪ Cycle Detection. Does the graph contain any cycles?
▪ Euler Tour. Is there a cycle that uses every edge exactly once?

▪ Hamilton Tour. Is there a cycle that uses every vertex exactly once?
▪ Planarity. Can you draw the graph on paper with no crossing edges?

▪ Isomorphism. Are two graphs the same graph (in disguise)?

Graph problems are among the most mathematically rich areas of CS theory!

Graph Theory Introduction 48

Conclusion
Graph theory is a fundamental component of computer science with wide-ranging applications

• Data Structures and Algorithms: Graphs are essential in representing complex data structures like networks, which
are central to various algorithms in computer science, such as those used in searching (like BFS and DFS), shortest
path algorithms (like Dijkstra's and Bellman-Ford), and network flow algorithms.

• Network Analysis: Analyzing and optimizing computer networks, social networks, and web networks, including
understanding the internet's topology, routing protocols, and analyzing social media interactions.

• Problem Solving and Optimization: Many complex computer science problems are modeled using graphs, including
scheduling problems, resource allocation, and optimization problems (like the Traveling Salesman Problem), making
graph theory a key tool for developing efficient solutions.

• Database Theory: Graphs are used in the modeling of databases, particularly in understanding relationships within
network databases and for designing efficient data retrieval algorithms, including the use of graph databases in big
data applications.

• Artificial Intelligence and Machine Learning: Graph theory plays a role in AI and ML, particularly in areas like
semantic networks, neural networks, and in developing algorithms for clustering and pattern recognition,
enhancing machine learning models' effectiveness in interpreting complex datasets.

Graph Theory Introduction 49

In this course…
We will study Graph Theory from the Compute Science point of view:

• describe basic algorithms : paths, connected components, flows…
• discuss the complexity of the algorithms

• implement some of them (in Python)
• show some useful software tools

Graph Theory Introduction 50

Coming next:
1. Implement in Python a naïve Graph class using edge adjacency lists

2. Implement in Python a naïve Graph class using adjacency matrix
3. Load a real graph

4. Using network library
5. Presenting Gephi software

Documents are here:

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

https://www-l2ti.univ-paris13.fr/~viennet/ens/2024-USTH-Graphs

