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Part One: Kriging

• named after D.G. Krige (1951)

• classical theory – (Matheron, 1963)

• intrinsic theory – (Matheron, 1973)

• well-established in Geostatistics

• connections with time-series prediction

• also known under the name of Gaussian processes
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Objective: predict system output from observed data using

black-box modelling

System modeled by a random process F(x)
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Figure 1: Conditional simulations of F(x) given F(xi)
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Linear prediction on HS = vect{F(x1), · · · ,F(xn)}

F̂(x) =
n

∑
i=1

λi,xF(xi) , (1)
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Figure 2: Orthogonal projection
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Three points of view, one structure

(Assume EF(x) = 0)

1. F(x) generates a Hilbert space H , whose elements are limits of linear
combinations

n

∑
i=1

λi,xF(xi) (2)

H endowed with scalar product

(F(x),F(y))H = E[F(x)F(y)] = k(x,y)

2. Define the finite support measure

λ =
n

∑
i=1

λi,xδxi (3)
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The set of these measures generates another Hilbert space Λ

– Λ can be identified to H

– inherits the scalar product of H

(λ,µ)Λ = ∑
i, j

λik(xi,x j)µ j (4)

3. Λ can also be viewed as the dual of an rkhs, or a feature space F in SVM

theory.

The covariance k(x,y) is the reproducing kernel of F

F and H share the same structure.

⇒ Kriging can be used to build SVM
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Example

Kriging lore applied in SVR
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Regularization and intrinsic Kriging

Regularization minimizes

|| f̂ ||2F
︸ ︷︷ ︸

smoothness

+ C∑
i

l( f̂ (xi)− fxi)

︸ ︷︷ ︸

data fidelity

(5)

• Strongly connected with Kriging (Wahba and Kimeldorf, 1970) and

(Matheron, 1981)

• Intrinsic Kriging (I.K.) facilitates incorporation of prior knowledge

• In I.K., ||.||F replaced by a seminorm ⇒ null-space N of the seminorm

not regularized → N should correspond to prior information (Smola

et al., 1999).
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For prediction by I.K., error of prediction required to be be orthogonal to N.

• Define Λ′ ⊂ Λ such that Λ′ ⊥ N ( more rigourously

Λ′ = {λ , 〈λ,g〉F ∗,F = 0 ∀g ∈ N}).

• Λ′ corresponds to H ′ ⊂ H , with H ′ ⊥ N.

• Thus, in I.K. prediction error required to be in H ′.
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Figure 3: Best approximation given F̂(x)−F(x) ⊥ N
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Simple example of I.K.

Assume variance of F(x1)−F(x2) is stationary, i.e.,

Var(F(x1)−F(x2)) = 2γ(||x1 −x2||) = 2γ(h) (6)

Then

• γ(h) called variogram

• Nullspace N made of constant functions

Canonical decomposition:

F(x) = G(x)+b with EG(x) = 0 (7)

I.K. is a semi-parametric formulation of Kriging
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Example of variogram
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Part Two: Incorporating prior
information
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Application to flow measurement
collaboration with Services des Mesures Supélec

• Estimation of flow in a pipe from punctual observations of speed of

fluid;

• Desired performance: relative error < 1%;

• Many fluid speed profiles have been simulated, for different types of

pipes.
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Direct estimation of speed profile is not sufficient.
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First idea: artificially add the trend
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Including prior information via I.K.

Principle:

• Add new factors x∗ corresponding to prior information. For instance, at

each position x of the cross section of the pipe, add a scalar factor x∗

indicating nominal speed there.

• For prior knowledge to be preserved by regularization it should be

introduced in the nullspace N. This is done under the form

x,x∗ 7→ aTx∗ +b (8)

• a estimated by I.K. Prediction error orthogonal to x∗.
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Conclusions

• including prior knowledge in black-box modelling made easy via a

semi-parametric approach

• good results obtained in a real application

• I.K. theory allows to interpret regularization methods (Splines, RBF,

SVR) in a probabilistic framework

• interpretation of a kernel as the covariance of a random process helps

choosing a kernel for a given application
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