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Part One: Kriging

e named after D.G. Krige (1951)

e classical theory — (Matheron, 1963)

e intrinsic theory — (Matheron, 1973)

e Well-established in Geostatistics

e connections with time-series prediction

e also known under the name of Gaussian processes




Objective: predict system output from observed data using
black-box modelling

System modeled by a random process F (x)

Figure 1: Conditional simulations of F(x) given F(x;)




Linear prediction on Hs = vect{F (X1),---,F(Xn)}

|£(X) = .i)\i’XF(Xi) :

Best linear prediction

F(x) prediction
H error
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Figure 2: Orthogonal projection




‘ Three points of view, one structure'

(Assume EF (x) = 0)

1. F(x) generates a Hilbert space #, whose elements are limits of linear
combinations

ii)\i’XF (Xi) (2)

# endowed with scalar product
(F(x),F(y))s = E[F(X)F(y)] =k(x,y)

2. Define the finite support measure

A= _im,xaxi




The set of these measures generates another Hilbert space A
— A\ can be identified to #H

— inherits the scalar product of #H

(A A = Nik(Xi, XK, (4)

1)

3. A\ can also be viewed as the dual of an rkhs, or a feature space # in SVM
theory.

The covariance k(x,y) is the reproducing kernel of

F and A share the same structure.

= Kriging can be used to build SVM




Kriging lore applied in SVR

—— Matern kernel SVR
O Nugget effect

margins
data points
support vectors




Regularization and intrinsic Kriging I

Regularization minimizes

N

Ifl3 + ¢ Ifx.—fx.
\/-/ |Z
smoothness

data fldellty

e Strongly connected with Kriging (Wahba and Kimeldorf, 1970) and
(Matheron, 1981)

e Intrinsic Kriging (I.K.) facilitates incorporation of prior knowledge

e In 1K, ||.||# replaced by a seminorm =- null-space N of the seminorm
not regularized — N should correspond to prior information (Smola
etal., 1999).




For prediction by 1.K., error of prediction required to be be orthogonal to N.

e Define A’ C A such that A’ L N ( more rigourously
N = {)\7 <)\,g>5r*,f =0 Vge N})

e /\' corresponds to H' C H, with #’" L N.

e Thus, in I.K. prediction error required to be in #’.




Figure 3: Best approximation given F (x) —F(x) L N




‘ Simple example of | .K. I

Assume variance of F(x1) — F(x2) is stationary, i.e.,

Var(F (x1) — F(x2)) = 2y(|[x1 — X2|[) = 2y(h)

Then

e y(h) called variogram

e Nullspace N made of constant functions

Canonical decomposition:
F(X) =G(x)+bwithEG(x) =0

|.K. Is a semi-parametric formulation of Kriging

10



Example of variogram
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Part Two: Incorporating prior

Information
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Application to flow measurement

collaboration with Services des Mesures Supélec

e Estimation of flow in a pipe from punctual observations of speed of
fluid,;

e Desired performance: relative error < 1%;

e Many fluid speed profiles have been simulated, for different types of
pipes.
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Direct estimation of speed profile is not sufficient.
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First idea: artificially add the trend
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Artificially pull back
speeds at the border
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|ncluding prior information via l .K. I

Principle:

e Add new factors x* corresponding to prior information. For instance, at
each position x of the cross section of the pipe, add a scalar factor x*
Indicating nominal speed there.

e For prior knowledge to be preserved by regularization it should be
Introduced in the nullspace N. This is done under the form

X, x* —a'x*+b

e aestimated by I.K. Prediction error orthogonal to x*.
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First method
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Conclusi ons'

Including prior knowledge in black-box modelling made easy via a
semi-parametric approach

good results obtained in a real application

|.K. theory allows to interpret regularization methods (Splines, RBF,
SVR) in a probabilistic framework

Interpretation of a kernel as the covariance of a random process helps
choosing a kernel for a given application
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