Extracting metabolic pathways from gene expression data using kernel CCA

Jean-Philippe Vert

Bioinformatics group Ecole des Mines de Paris

Jean-Philippe.Vert@mines.org

Conference Statistical Learning, Theory and Applications, November 14-15, 2002, CNAM Paris.

Overview

- 1. Motivations
- 2. Problem Formulation
- 3. An approach using RKHS
- 4. Experimental results

Part 1

Motivations

Context

- Data available in bioinformatics: sequences, molecules, graphs, measurements...
 - * heterogeneous
 - * large quantity
 - * noisy.
- Complex biological process still poorly understood

From DNA to proteins

Central dogma: $DNA \rightarrow RNA \rightarrow Protein$

Genes encode proteins which can catalyse chemical reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+

Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway

Microarray technology monitors RNA quantity

(From Spellman et al., 1998)

Part 2

Problem formulation

Comparing gene expression and protein network

Gene network

Expression profiles

Are there "correlations"?

What is a correlation?

- A pattern of expression shared by genes close to each other on the graph
 - ★ activity level of a metabolic pathway
 - ★ environmental change

Pattern of expression

- A pattern is by definition a profile.
- The correlation between a candidate pattern and a gene quantifies how much the gene shares the pattern

Pattern smoothness

 The correlation function with interesting patterns should vary smoothly on the graph

Pattern relevance

- Interesting patterns involve many genes
- The projection of profiles onto an interesting pattern should capture
 a lot of variations among profiles

Problem

Find patterns of expression which are simultaneously

- smooth
- relevant

Part 3

An approach using RKHS

The idea

Pattern relevance

- Let e(x) the profile of gene x, and $v = \sum_{x} \alpha_x e(x)$ a candidate pattern.
- Let $K_1(x,y) = e(x).e(y)$ be the linear kernel matrix on the space of genes
- The relevance of a pattern is quantified as:

$$R(v) \stackrel{\triangle}{=} \frac{\sum_{x} (v.e(x))^2}{||v||^2} = \frac{\alpha' K_1^2 \alpha}{\alpha' K_1 \alpha} = \frac{||K_1 \alpha||_{L^2}}{||K_1 \alpha||_{H_1}}$$

Pattern smoothness

- Let $K_2(x,y)$ be the diffusion kernel obtained from the gene network.
- It can be considered as a discretized version of a Gaussian kernel (solving the heat equation with the graph Laplacian)
- The norm in the RKHS defined by K_2 is a smoothness functional: the smoother a function $K_2\beta$, the larger the function:

$$S(K_2\beta) = \frac{||K_2\beta||_{L^2}}{||K_2\beta||_{H_2}} = \frac{\beta' K_2^2 \beta}{\beta' K_2 \beta}$$

Diffusion kernel (Kondor and Lafferty, 2002)

Diffusion kernel (Kondor and Lafferty, 2002)

Problem reformulation

Find a linear function $K_1\alpha$ and a function $K_2\beta$ such that:

- $K_1 \alpha$ be relevant : $||K_1 \alpha||_{L^2} / ||K_1 \alpha||_{H_1}$ be large
- $K_2\beta$ be smooth : $||K_2\beta||_{L^2}/||K_2\beta||_{H_2}$ be large
- $K_1\alpha$ and $K_2\beta$ be correlated :

$$\frac{\alpha' K_1 K_2 \beta}{||K_1 \alpha||_{L^2} ||K_2 \beta||_{L^2}}$$

be large

Problem reformulation (2)

The three goals can be combined in the following problem:

$$\max_{\alpha,\beta} \frac{\alpha' K_1 K_2 \beta}{\left(||K_1 \alpha||_{L^2}^2 + \delta ||K_1 \alpha||_{H_1}^2\right)^{\frac{1}{2}} \left(||K_2 \beta||_{L^2}^2 + \delta ||K_2 \beta||_{H_2}^2\right)^{\frac{1}{2}}}$$

where the parameter δ controls the trade-off between relevance/smoothness on the one hand, correlation on the other hand.

Solving the problem

This formultation is equivalent to a generalized form of CCA (Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the following generalized eigenvector problem

$$\begin{pmatrix} 0 & K_1 K_2 \\ K_2 K_1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \rho \begin{pmatrix} K_1^2 + \delta K_1 & 0 \\ 0 & K_2^2 + \delta K_2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Part 4

Experimental results

Data

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

First pattern of expression

Related metabolic pathways

50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)
- Selenoaminoacid metabolism (4), etc...

Opposite pattern

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3), etc...

Conclusion

Conclusion

- Heterogeneous data can be integrated with kernels
- The approach can be generalized (non-linear kernel for gene expression, string kernels...)
- Working in RKHS can help solve real-world problems

Workshop

Kernel Methods in Bioinformatics
Harnack-Haus, Berlin, April 14, 2003
http://www.cg.ensmp.fr/vert/kmb03