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Part 1

Motivations
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Context

• Data available in bioinformatics: sequences, molecules, graphs,

measurements...

? heterogeneous

? large quantity

? noisy.

• Complex biological process still poorly understood
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From DNA to proteins

Central dogma: DNA → RNA → Protein
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Genes encode proteins which can catalyse chemical
reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
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Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway
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Microarray technology monitors RNA quantity

(From Spellman et al., 1998)
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Part 2

Problem formulation
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Comparing gene expression and protein network
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What is a correlation?

• A pattern of expression shared by genes close to each other on the

graph

? activity level of a metabolic pathway

? environmental change
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Pattern of expression
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• A pattern is by definition a profile.

• The correlation between a candidate pattern and a gene quantifies

how much the gene shares the pattern
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Pattern smoothness
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• The correlation function with interesting patterns should vary

smoothly on the graph
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Pattern relevance

• Interesting patterns involve many genes

• The projection of profiles onto an interesting pattern should capture

a lot of variations among profiles
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Problem

Find patterns of expression which are simultaneously

• smooth

• relevant
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Part 3

An approach using RKHS
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The idea
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Pattern relevance

• Let e(x) the profile of gene x, and v =
∑

x αxe(x) a candidate

pattern.

• Let K1(x, y) = e(x).e(y) be the linear kernel matrix on the space

of genes

• The relevance of a pattern is quantified as:

R(v) ∆=
∑

x(v.e(x))2

||v||2
=

α′K2
1α

α′K1α
=
||K1α||L2

||K1α||H1
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Pattern smoothness

• Let K2(x, y) be the diffusion kernel obtained from the gene network.

• It can be considered as a discretized version of a Gaussian kernel

(solving the heat equation with the graph Laplacian)

• The norm in the RKHS defined by K2 is a smoothness functional:

the smoother a function K2β, the larger the function:

S(K2β) =
||K2β||L2

||K2β||H2

=
β′K2

2β

β′K2β
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Diffusion kernel (Kondor and Lafferty, 2002)
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−L =


−1 0 1 0 0
0 −1 1 0 0
1 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1


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Diffusion kernel (Kondor and Lafferty, 2002)
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K = exp(−L) =


0.49 0.12 0.23 0.10 0.03
0.12 0.49 0.23 0.10 0.03
0.23 0.23 0.24 0.17 0.10
0.10 0.10 0.17 0.31 0.30
0.03 0.03 0.10 0.30 0.52


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Problem reformulation

Find a linear function K1α and a function K2β such that:

• K1α be relevant : ||K1α||L2/||K1α||H1 be large

• K2β be smooth : ||K2β||L2/||K2β||H2 be large

• K1α and K2β be correlated :

α′K1K2β

||K1α||L2||K2β||L2

be large
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Problem reformulation (2)

The three goals can be combined in the following problem:

max
α,β

α′K1K2β(
||K1α||2L2 + δ||K1α||2H1

)1
2
(
||K2β||2L2 + δ||K2β||2H2

)1
2

where the parameter δ controls the trade-off between

relevance/smoothness on the one hand, correlation on the other

hand.
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Solving the problem

This formultation is equivalent to a generalized form of CCA

(Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the

following generalized eigenvector problem(
0 K1K2

K2K1 0

) (
α

β

)
= ρ

(
K2

1 + δK1 0
0 K2

2 + δK2

) (
α

β

)
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Part 4

Experimental results
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Related genes
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Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes
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Related genes
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Conclusion
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Conclusion

• Heterogeneous data can be integrated with kernels

• The approach can be generalized (non-linear kernel for gene

expression, string kernels...)

• Working in RKHS can help solve real-world problems
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Workshop

Kernel Methods in Bioinformatics
Harnack-Haus, Berlin, April 14, 2003

http://www.cg.ensmp.fr/vert/kmb03


