A statistical study of regularized
boosting methods

Gabor Lugosi
Universitat Pompeu Fabra, Barcelona

lugosi@upf.es

Nicolas Vayatis
Université Paris VI

vayatis@ccr. jussieu.fr

Overview

Binary classification: notations
Combining classifiers

Heuristics of boosting algorithms
Main result on consistency
Extensions of the main result

Simulations results

Binary classification

Observation: X € R?, distribution p
Label/Class: Y € {—1,+1}

Regression function:

n(z) =P{Y =1|X =z}
Data sample:

D, ={(X1,Y1), ..., (Xn, Yn)} iid.
Classifier:
makes a prediction g,(X) € {—1,+1}
A performance/error measure:
L(gn) = P{gn(X) # Y | Dyn} = El1y.4, (x)<0}

Bayes classifier and error:

g* = argmin L(g)
allg

L* = L(g") = E{min(n(X),1 — n(X))}

Learning

Inputs:
e a model class C of indicator functions

e a sample-based criterion:

in K (g, D,
min (g, D)

Output: a classifier g,

Goal of learning:

minimize generalization error L(g,) > L*

Examples of learning algorithms:

perceptron, neural networks, decision trees

Learning (2)

Complexity trade-off: estimation vs.

approximation

L(gn)—L" = (L(gn)—;relg L(g))Jr(;Ielg L(g)—L")

Empirical risk minimization:

(= 1
gn = argimin <Ln(9) c= 5 ZH{Yig(Xi)<O}>

gec i=1

From Vapnik-Chervonenkis (VC) theory:
If the class C is not “too large” (finite VC

dimension):

L(g,) — ;IégL(g) — 0 a.s.

However: a poor class often leads to poor
performance...

Solutions: increase class complexity or

combine!

Combination methods

II, distribution over D,, — select hy € C

I1, distribution over D,, — select hy; € C

Final prediction:

gn(X) = sign (Z wtht(X)>

where

e uniform weights — Bagging

II; distribution of a bootstrap subsample

e adaptive weights — Boosting

Wy = %log (1;_?)
II; updated iteratively from II;_;

Combination methods

Estimator: f =) w;h; € F,

where h; € C, w; are (convex) weights.
Model class: F = L(C) or conv(C)
Classifier: g(X) = sign f(X)

Remarks:

e convex hulls of simple classes have infinite
complexity

e derived algorithms are amazingly efficient

Open question:
Do boosting algorithms overfit?

Formally: Statistical consistency? Practical

efficiency?

Leo Breiman: “understanding why boosting
works is the main open problem in Machine
Learning”.

Previous work

Origins: Schapire (1990), Freund and Schapire
(1995, 1996) for boosting, Breiman (1996) for

bagging
Empirical studies: too many!!!

— visit www.boosting.org

Boosting as gradient descent: Breiman
(1997) Friedman-Hastie-Tibshirani (1998),
Collins-Schapire-Singer (2000),
Mason-Bartlett-Baxter-Frean (1999).

Margin analysis:
Schapire-Freund-Bartlett-Lee (1998),
Koltchinskii-Panchenko (2000), Blanchard
(2001)

About consistency: only very recent work
from Breiman (2000), Jiang (2000, 2001),
Mannor-Meir-Mendelson (2001), Biihlmann-Yu
(2001), Zhang (2001), Mannor-Meir-Zhang
(2002).

Common belief

Observation:

Minimizers:

fn = argmin A, (f)
f

1
f* =argmin A(f) = = log (_77)
all f 2 1—=n

Hopefully:

AN

L(f,) = L(f*) = L*, almost surely

Our challenge: prove it!!!

More notations

Let gb R — R_|_
e strictly increasing,

e strictly convex,

o ¢(x) > I>) for all z € R,

o lim, . ¢(x)=0
Cost functional:

ANf) = A(Af) = E¢(—AY - f(X)) .

where) is a smoothing parameter.

Empirical cost functional:
1 n
- D (=AY f(X3)) -
i=1

Typical example: ¢ = exp

— other choices? ...

Main result

Assume

e F = conv(C) contains the indicators of all
subrectangles of R?

e Let)\, such that \,, — oo and

1
Md D)) —— 50 asn — o0
n

o f, = }2‘” = argmin,cr Ay (f) € F
Then, we have

lim L(f,)=L* almost surely.

n—oo

Comments

Universal result: noise-resistant strategy

Denseness assumption: fulfilled by decision

trees with T' > d terminal nodes

Key of the result: the smoothing parameter

A governs complexity trade-oft
e accurate estimation — A small

e reduce approximation error — A large

First simple lemma

Let f,, such that

lim A(f,) = A"

n— oo
and
gn(x) = sign frn(X).
Then
L(gn) — L* as.

Characterization of f;

0.5
n(x)

Proof sketch

Estimation /approximation error decomposition

with respect to the cost function ¢:

A(Anfn) — A*
B (AA"(A&\”) — AN (TM>>+ (feiilf-fA(f) - A*>
where

\ = arg min A*(f)

feF
Estimation error:
We have
AN (frm) — AN (Fy) < 2sup [AMN(F) — ANF))

fer

> < sup [AMNf) — An(f)]
feF

Part I: Denseness

If F contains the indicators of all subrectangles
of R?, then

lim inf A(f)= A"

n—oo feX-F

where A* = inf A(f) over all measurable f.

Part II: Concentration

For any 0 > 0, with probability at least 1 — 9,

sup |A*(f) — AR (f)]
feF

< 4A¢’(A)\/

(Koltchinskii & Panchenko (2000))

2V In(4n + 2) G () In(1/9) |

n 2n

Second result

Strategy based on a penalized criterion is also

Bayes-risk consistent.

Formally:

Consider positive A\, — 400 and

c ANE (A
fn = arg min AF(fi*)

where

Vinn + In(nk)

~

AN(f) = Apr(f) + 5)\k¢'()\k)\/

n

and

ffb"“ — arg min A (f).
feFr

Under the denseness assumption, we have

lim L(f,)=L* almost surely.

n—oo

Choices for the cost

function

o (x) = exp(),
¢'(A) = exp(})
o ¢(x) =logit(z) := logy(1 + exp(x)),

/ . exp()\)
»(N) = 1 + exp(A)

e ¢(x) =(x) := min{exp(x), |z| + 1},
¢'(A) =1

logit

Simulations

Set-up

Generate 6-dimensional synthetic data
samples of size n = 100, ..., 500 from
‘twonorm’, 'threenorm’, 'ringnorm’

generators.

For each A, run the boosting algorithm to

minimize A)(f) over the convex hull of all

decision stumps (CPU time from 10 to 50

seconds for 300 iterations).

Estimate the expected cost AA(L)%‘) and the
2

generalization error L(f

) over a test set of

size m.

Comments

influence of the cost function
comparison of the minimizers

sensitivity to the level of noise

Figure 1: Threenorm. Cost ¢ = . d = 6. n = 0.1. n = 100.

m = 500. Plot of the cost A (f,r)L‘) (upper curves) and test error (lower
curves) for various cost functions (a) exp, (b) logit, (c) .

0.8

0.7

0.6

05

0.4r-

031

0.2

0 1 2 3 4 5 6 7 8 9 10 11 12) 13 14 15
n

Figure 2: Twonorm. Cost ¢ =1. d =6. n =100. m = 500. (a)
A%(f%‘) (b) AA(f%) (c) training error. (d) test error.

09

0.8

0.7

05

0.4r-

031

0.1r-

Figure 3: Threenorm. Cost ¢ = . d = 6. n = 100. m = 500.
(a) Ai\t(f’r)t\) (b) AA(f%‘) (c) training error. (d) test error.

0.9\
0.8 "\

0.7 A

(@) ~ -

0.5~

0.4

M\ @
\

02 \
\

0.1r- -~

Figure 4: Threenorm. Cost ¢ = ¢. d =6. n = 500. m = 1000.
(a) Ai‘b(f,r)b‘) (b) AA(f%) (c) training error. (d) test error.

0.91
081 <

0.7+ AN roa AN
06F

05

03 \@

02F

01p AN

Flgure 5: Ringnorm. Cost ¢ = 9. d = 6. n = 100. m = 500. (a)
A%‘l(fé‘) (b) AA(fqi‘) (c) training error. (d) test error.

0.9H

08"\

0.7 -

Figure 0: Ringnorm. Cost ¢ = 1. d = 6. n = 200. m = 1000.
(a) Ai‘b(f,r)b‘) (b) AA(f%) (c) training error. (d) test error.

1.4

12

0.8

0.6

0.4

0.2

— — - cost functional

— error n=0.2
n=0.1
n=0.2
n=0.1
n=0
n=0
L L L L L L L L L L L L L J
4 6 8 10 12 14 16 18 20 22 24 26 28 30
A
= 6. n = 100. m

Flgure 7: Twonorm. Cost ¢ = . d
Plots of AA(fqi‘) and of the test error for levels of noise n = 0,0.1, 0.2.

1.4

1.2

0.8

0.6

0.4

0.2

- — —: cost functional

. error

n=0.2

n=0.1

n=0

500.

Flgure 8: Threenorm. Cost ¢ = 9. d = 6. n = 100. m = 500.
Plots of AA(JZ%‘) and of the test error for levels of noise n = 0,0.1, 0.2.

Further work

e Non-asymptotic behavior has to be better

understood.

e Rates of convergence for boosting. Use of

approximation results.

e Distribution-dependent results.

